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ON THE ADDITIVE FORMULAE OF THE THETA FUNCTIONS
AND A COLLECTION OF LAMBERT SERIES PERTAINING
TO THE MODULAR EQUATIONS OF DEGREE 5

LI-CHIEN SHEN

ABSTRACT. We examine the connection between the additive formulae of the
theta functions, the Fourier series expansion of the 12 elliptic functions, and
the logarithmic derivatives of the theta functions. As an application, we study
the Lambert series related to the modular equations of degree 5 and many
interesting identities of Ramanujan are found in this process.

1. INTRODUCTION

The following two identities play a pivotal role in the study of the modular
equations of degree 5:

93(07) — 92(0|57) = 4¢* J[ (1 +4*)(1 +¢°")(1 - ¢°")%(1 + ¢'*"~%),

n=1

82(0f) - 93(0/57) = 4g [] (1 + 421 +g)(1 - ¢™)(1 + 'O,

n=1

The main purpose of this paper is to systematically reexamine the above iden-
tities as well as a family of identities of this type within the framework of the
well-known additive formulae of the elliptic functions. It will be apparent to
the reader that the additive formulae which we are about to derive can be used
to obtain unlimited number of identities; however, they are particularly suited
for the study of the Lambert series related to the modulus equations of degree
3 and degree 5. In this work we will focus on the degree 5 case only and a
collection of 44 identities are obtained in this manner. Among them are the
two above-mentioned identities (see (3.1) and (3.3)). Others include several
remarkable identities of Ramanujan (for example, see (3.20) and (3.43)).
Before we begin we should say a few words about our notation. We essentially
adopt the notation used in Chapters 21 and 22 of Modern Analysis by Whittaker
and Watson [5]. In this section, for brevity, we use 9;(z) and 9; to denote,
respectively, ¥;(z|t) and 9;(0), i = 1,2, 3,4. When confusion does arise
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such as in the identity (1.3a’) and in Section 3, the formal notation ¥;(z|t)
will be employed. Also the reader’s fluency in the basic properties of the theta
functions and the theory of elliptic functions is assumed.

We begin our discussion by introducing the following two identities:

B1(x)B1(2)02(1)B2(x +y + 2) + 1 (¥)Di(x +y + 2)02(x)02(2)

(L.1) =001 (y + 2)01(x + y)%(x + 2)
and
(1.22) ( ) (2) = 0505 ZZEZ; ¥ K

The identity (1.2a) is listed and proved in [5, p. 518] as

2,94 (¢ E
dn U= e(u) + x>

where K and E are the complete elliptic integrals of the first and second kinds,
respectively. The identity (1.1) is of great significance and we shall make some
comments on it at the end of this paper.

We will use these two identities to derive a collection of companion identities.
To this end, we first consider (1.2a). Replacing z by z +n/2, z+n/2 +
nt/2, z+nt/2 and using the basic properties of the theta functions, we obtain,
respectively,

(1.2b) (%) (z) = 0202 g‘;gzi 4 %
AN 2
(1.2¢) (g—;) (z) = —0%02 352 ; 0 K
2
(1.2d) (g]) (z) = —622 §§§Z§ o %
Choosing z = —(x +y)/2 in (1.1), we have
192191(X+J’)l91( )192( > )
n (X)) - B ()Da(x) = PYEs: y)ﬂz(ﬂ 7
Ja
8,91 (x — ywl(”y oo (3%
191 (x)t9(y) + 191 (y)ﬁz(X) X—y
815218, (F52)

The second identity of (1.3a) is obtained from the first one with the replacement
of y by —y. Now multiplying the above two identities together yields

(1.4a) 02(x)03(y) — 93(¥)B3(x) = 821 (x — »)B1 (x + ).

It is worthwhile to point out here that if we apply the triple product identities
for the theta functions to the right-hand side of the first identity of (1.3a), it
becomes

(1.3a")  Bi(x|)B(yl7) — Bi(¥I7)B2(x]7) = 281 (x — yI27)04(x + p|27).
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Other companion identities of (1.3a) and (1.4a) will be given later. To keep
us in proper focus, we now go directly to the most essential aspects of our
method. To this end, we will have to recall the Fourier series expansions of the
Jacobian elliptic functions (see [5, pp. 511-512] for the complete listing of these
12 elliptic functions). For the present purpose, which is immediately evident,
we will use

21 §in 2 2K
CSU = 747 COtX — ——Z 2 lil;z:lx (u= x)

to illustrate our method. We ﬁrst note that in terms of the theta function
notation, the above identity is equivalent to

O 2n o
(1.5) U304 %) _ cotx — 42 un_z_{z_)ﬁ

(2] (x) 1+ q2"
From (1.5) and (1.3a), we deduce that

2n(sin 2nx + sin 2ny)
1+ g2

(cotx £ coty) — 4) a

n=1

_ B(x) | B(y)
= 03B (W) £ 3 (y))

BixFy  )9(

(1.6)
x:l:y

)192(
82(x)81 (£7)01 (* 32 3] 02(

And recall that (see [5, p. 489])
o] _ — ¢2"sin2nx
(E) (x) =cotx + 4§ o

Combining this with (1.4a) and (1.6), we have

)

= 00304

. ng?"(cos 2nx — cos2
csc?y —csc?x +8) | (cosl ixqzn cos 2ny)

n=1

-(31) - (3) v

(0D (x—y)i(x+y) .
=\ 1912(x)1912(y) (0] = $1,0504)

_ 202 (D2(x) | Ba(p) (B20¥)  Ba(x)
= 03% (z%(x) * 191<y>> (ﬁ.(y) zsl(x>>

A ™ 2n(ci in2
= (cotx +coty — 42 q (SIH ?nf;;:ln ny))

(1.7)

n=1

o 2n _
. (cot y —cotx + 42 q“"(sin ?n:cqznsm 2ny)>

n=1

The chief reason that the identities (1.6) and (1.7) are very interesting is due pri-
marily to the fact that one side of the identity is an infinite sum while the other
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side is an infinite product. So by choosing x, y, and the variable g (= e*7)
appropriately, we can obtain many strikingly interesting identities. For example,
the identities (3.1) and (3.2) are obtained from (1.6) and the identities (3.11)
and (3.12) are immediate consequences of (1.7). A more detailed discussion of
these identities will be given in the next section. For the time being, we will see
how to derive the remaining 15 companion identities of (1.3a) and (1.4a).

First applying the familiar imaginary transformation of Jacobi (see [5, p.
474]) to (1.3a), we obtain

xiy xiy

0491 (x F y) 0 ( )04(

)
81(22 )b, ("”) '

(1.3b) B1(x)04(v) £ B1(¥)0a(x) =

And, from (1.3b) we have

(1.4b) B (x)03(y) — O ()03 (x) = 31 (x — ¥)B(x + ¥).
We now replace ¢ by —¢g in (1.3b) and (1.4b). Then
0501 (x 7 )01 (520523 2)
(130)  B(x)B() +hp)Ba(x) = = =y
8 (55)%5(5)
and
(1.4c) B(x)93(y) - B ()83 (x) = O3V (x — ¥)(x + ).
It is interesting to observe that
By) B(x) _ 0(x—y)di(x+y) -
W wo)y ww = ewem 0 oY
and
0 B 92 (x)
(5 ) - (5 ) (62(y) Mx))
B 02(y) 9%(x)
(19 - (ﬂ%(y Mx))

o (0) 8)
= 0793 (ﬁ%(y) - 6§<x))-'

We now go to the table of identities in Section 3. We see that, from (1.9),
(3.11) = (3.1) x (3.2) = (3.3) x (3.4) = (3.7) x (3.8).
In particular, from (3.11) = (3.1) x (3.2), we have the following interesting

identity:
oo qn _ q3n _ q7n + q9n o0 qn + q3n + q7n + q9n
Z 1+q10n 1+n ‘ 1+q10n

n=1

o n n q7"+q9”)
Z l_qun

n=1
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To obtain the remaining identities, we replace x by x + #t/2 and y by
y+mnt/2 in (1.3a), x by x+n7/2 and y by y + n7/2 in (1.3b), and x by
x+mn/2 and y by y+n/2 in (1.3c):

801 (x = )03 )05

Ba(x)03(y) + 0a(y)03(x) = - = ;
ﬂl(x B y)192(x 7 y)

(1.3d)
50— el () = 9201 (x + )0y (=2 )9,(Z=2)
4\ X)U3 Y ) — U4y )U3(X ’
<x+y>z94("+y>
(1.4d) 93(y)03(x) — 02(»)D3(x) = 0201 (x — y)B(x +¥),
301 D515 8401 (x = )2 (32853 2)
3(X)U2(Y 2(X)U3(Y) = — s
ﬂ.("Tywx %)
(1.3¢)
8401 (x + )01 (5 )85 2)
93(x)02(y) — D2(x)D3(y) = SappyELE ,
9 (E Yy, 22
(1.4¢) 92(x)03(») — B3(x)03(y) = 020 (x — ) By (x + ),
501 B0 8301 (x - )8 (3 )03 )
4(X)U2Y 4() )U2\X) = — s
zmxz”)ﬂs(" y)
(1.3f)
a0 — Bu ) — 8381 (x + )81 (5 2)05(5 %)
4(X Y) — U4(y)U2( X >
i 0T )0, 1)
(1.4) 93(x)B3(y) — B2(»)93(x) = 301 (x — ¥)B1(x + ).

The identities of the type (1.4a)-(1.4f) are often called the addition formulae
for the theta functions and were known to Jacobi. For more identities of this
type, see [5, pp. 487, 488, Examples 1, 2, and 3]. A different method of proving
these identities is given in [5, p. 467].

Now with these identities in our disposal, we can easily derive identities of
the types (1.6) and (1.7). We consider, for example,

_n q" cos2nx
dnu = —+ Z Trg

2K K
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In terms of the theta functions, it is the same as

42 q" cos2nx

(1.10) D504 2 o

19

So, from (1.3d), we have
(L.11)

X n
1+ 22 q"(cos2nx +cos2ny)) Y (z%(x) + 193(y))
=1

1+g2n Ba(x) * Ba(y)

O - a0

8(x)Ba(»)01 (* 5 192(*5%)

and

4§: q"(cos2nx — cos2ny) — 8,0, (193(x) M)

1+¢g2 U4(x)  Ba(y)
ﬂ{ﬁl(x+y)l91(x-y =)
- + +
0t EEY)
Also recall that [5, p. 489]
v, q"sin2nx
(1.12) (6—4) (x) = Z T
So, from (1.12), and (1.2a) and (1.4d), we deduce that
4\ v, ngq"(cos 2nx — cos 2ny)
(5) 0 (5) 0 =53 "
Hx) KW
1.13 292
(-3 =03 (wx) My))

(8D (x + y)0(x ~ y)
0;(x)9;(») '
And from (1.11

>~ q"(cos2nx +cos2ny) \ [w= g"(cos2nx — cos2ny)

~

and (1.13), it yields

B i nq"(cos2nx — cos2ny)
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The identity (1.13) is particularly significant. Because by choosing x =

3nt/4, y = nt/4 and replacing g by g}, it gives the following remarkable
identity of Ramanujan:

i n(qn _ q2n _ q3n + q4n H (1 5")5
1- an =4 1 —qn

n=1

which in turn yields one of the most celebrated identities of Ramanujan:

(1.14) Z‘J)(Sn+4)q =5 H G-a )y

5n
q")6

Two other identities of this nature, which are derived from (1.11), are discussed
in Section 4.

2. PROOFS FOR SOME IDENTITIES

In this section, we will use the formulae derived in the previous section to
establish a collection of identities tabulated in Section 3. Since all the proofs
are essentially identical, we will pick out identities (3.1) and (3.6) to illustrate
our method. We treat (3.1) first. We observe that choosing x = 0 in (1.10), we
obtain

q= enit
s .

(2.1) =030jr) =1+ zlwz”

Therefore,

93(0|7) — 93(0|57) = 42

Sn
( (1-— q2n +q4n q6n +q8n) an )
q"

q q7n + q9n

I M8 Il

This establishes the first part of the identity. To prove the remaining part of
the identity, we again appeal to (1.10) (If we look at the last part of the identity
(3.1), it would seem that (1.5) is the one to use. However, direct application of
(1.5) would result in a good deal of complication).
We need to recall that [5, p. 464]
nT

81(2) = igte~704(z - %) and 9(2) = gte 05z - ).

Thus

h(zlo) _ Bs(z - %W)
Bi(zl7) Ba(z — %m'
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So, from the second identity of (1.11), we have

05150 050

T
1(7|5‘f) O ( m|5 )

¥3(2nt[5T) 193(m|51))
04(2n1|57)  V4(m7|57)
S qn 3n _ 7n+q9n

§ﬂ3<0|51>z94(0|51>

- 1193(0|51)z94(0|51) (
(2.2)

n=1
1 19’(0|51)19,(37zr|51)191(—|51)z92( |51)

194(27tt|5‘t)194(7t‘t|51)193(——|5 )194(27E|51)

Using the triple product identities [5, p. 469] for the theta funcuons, we can
easily see the last quantity in (2.2) becomes

1_ lOn) (1 _ lOn—l)(l _ 10n-4)
qH a1- qun—l)(l —g10n=3)(1 = glon=7y(1 — q10n-9)
(1 _ 10n—6)(1 _ q10n—9)(1 + qIOn—l)(l + qIOn—9)
(1 + qun—Z)(l + qun—S)(l _ qun—Z)(l _ qun—B)’
We now observe that the last two factors in the denominator of the above
quantity can be rewritten as

H(l 10n— 2 10n 8)_H(1 Sn— 1) Sn 4)(1+q5n l)(l+q5n 4)

(2.3)

(1 _ q10n—1)(1 _ qIOn—4)(l _ qIOn—6)(l _ q10n—9)

—3

n=1

. (1 +q10n—l)(1 +q10n—9)(1 + qIOn—4)(l +q10n—6).
Therefore, (2 3) becomes

(1 qIOn)
qH(l 0= T)(1 = g10n=3)(1 — g10n=7)(1 — g10n-9)

1
) (1 ¥ q10n=2)(1 + q'0n—4)(1 + q10n=6)(1 + q10n-8)

(1 10n)2(1_ 10n— 5)(1+q10n)
- qH —g2r—1)(1 4 g27)

= qH(l +@ (1 + )L - ) (1 +¢'™).
n=1
This completes the proof of (3.1).
To establish (3.6), we need

s 2n+1 o3
n /4 sin(2n + 1)x
dsu = — CcSCX — — q (2n+1)

2n+1
2K K"=0 1+ g+
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This is equivalent to

93(x) = g2 sin(2n + 1)x
004 ) =CcsCx — 4; T3

From (1.3c), we have
9,04 (193(76) + 193()’))

Bi(x)  B(y)
=CSCX +Cscy — 4% ¢>"*!(sin(2n + 1)x + sin(2n + 1)y)
(2'4) n=0 1 + q2n+l

8, L)y
et

We now choose x = n/10 and y = 37/10 in (2.4). Using the facts that
sinn/10 = v/5/4 — 1/4 and sin3n/10 = v/5/4 + 1/4 we have

(2.5)
st q10n+1 q10n+3 q10n+7 q10n+9
2v5 (1 - Z%('l)" { T+ g0 1 T T4 qions3 T T4 glons7 T T g10n49
n=
. 3n
3n i o g?"*+1(sin(2n + 1)l +sin(2n + 1) 10)
—csclO+csc 0 > [T g

n=0
19’192( )193( )

2
From the tnple product identities, (2.5) becomes
(2.6) . . A
2\/_1_[ (1 +q2n 1 - 2n)2(1 _anel’;'—')Z(l _ 2ne —?‘)2(1 +q2n lel'g")(l +q2n—le Zf-’-)
el (1+q1om)(1 — gne¥)(1 — g2ne=¥)(1 + g2n-1e¥)(1 + g21-1e~¥)
We note that

[T(1 - g>e®)(1 - g?re=#)

n=1

(1-g"e¥)(1+g"e¥)(1-g"e"¥)(1+q"¥)

(2.7)

s -8

(1-g¥e%¥)(1 - ¥ 'e¥)(1+g¥e¥)(1+g*'e¥)

X
I

C(1-ge ¥)(1 - g e ¥)(1 4+ g™e¥)(1 + ¢ 'e¥).
Using (2.7) and the following propertics of the fifth roots of unity:
(1+x)(1 —xe¥)(1 — xe®)(1 —xe ¥)(1 - xe %) =1+x,

(1-x)(1-xe%)(1-xe®)1 —xe  F)1 —xe~F)=1-x5,
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we see that (2.6) becomes

rp (1=¢*) (1 +4¢*)(1+¢'" )1 - ¢'")
211 (T+ g1+ )

2\/310_01 (1 — q”)(l +q2")2(1 _ an)(l +qIOn—-5)2.

n=1

This completes the proof of (3.6).

3. A COLLECTION OF 44 LAMBERT SERIES IDENTITIES

The title of this section is slightly misleading, because the actual number of
distinct identities is far fewer. For instance, the identities (3.1) and (3.25) both
have the same infinite product, so they are different representations of the same
entity. So are the pairs (3.2) and (3.10), (3.3) and (3.16), etc. Furthermore,
if one recognizes the fact that the identity (3.13) can be obtained from (3.1)
with the replacement of ¢ by —g, then, after careful examination, there are
only 21 genuinely distinct identities. There are 15 identities associated with
the modular forms of weight 1. These are (3.1), {3.2), (3.3), (3.4), (3.5), (3.7),
(3.8), (3.22), (3.23), (3.27), (3.28), (3.37), (3.38), (3.39), and (3.40). And six
identities representing modular forms of weight 2: (3.11), (3.12), (3.20), (3.31),
(3.32), and (3.43).

Despite the repetitions, there are, however, several reasons for us to list these
44 identities. First, the last line of each identity gives a clear indication as to
how it is derived. Also, it shows that we have systematically exhausted all the
possibilities in obtaining identities arising from this particular approach. More-
over, since many identities can be derived in two different ways, it yields several
different representations for that identity. For example, the identities (3.5) and
(3.42) show that 592(0|5t) — 92(0|7) can be written in five seemingly different
ways. It is not apparent that they all represent the same expression until we
recognize that they both have the same infinite product representation. Finally,
this table also allows us to see the relations between various identities. For
example, if we apply the imaginary transformation to (3.1), it gives (3.9), and
replacing the ¢ in (3.9) by —q yields (3.5). Now the application of the imagi-
nary transformation to (3.5) leads to (3.3). So one sees clearly that (3.1), (3.3),
(3.5), (3.9), (3.13) and (3.23) are linked by a series of successive applications
of the imaginary transformation and the replacement of g by —gq.

One more clarification needs to be made before we present the table. That
is, if one glances at the list, one immediately realizes that these identities are
obtained from two types of substitutions: (1) evaluations at n/10 and 37/10;
(2) replacement of g by ¢° (or g?) and evaluations at nt/2 and 3rnt/2 (or
nt/4 and 3mt/4). Naturally, one might ask: Are there any other substitutions?
Simple experiment shows that there are, indeed, others. But using the basic
properties of the theta functions, they invariably are reduced to the above-
mentioned two types of substitutions and we have already encountered one
such instance earlier in (2.2).
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o n_ ,3n _ 7n+ 9n
R e LGB HUER)

n=1

(31) — qﬁ(l +q2n—l)(1 +q5n)(1 _ an)Z(l + qIOn)

n=1

——193<0|51>194<0|51)("2 s - 255t >)

82(013)

(192 Olz) — 83(0/57))

l °°qn+q3n+q7n+q

-bl

8,(015)

(3-2) ﬁ 1_ (1 +q ) ( +an)( _an)(l _qIOn—S)(l +qIOn—5)

S

i Y, nt 192 3nt )

ﬂ3<0|51)04(0|51)(19<2|5> 25y

i(—l)" g+t ~ gsn+3 _ gsn+i N g5n+i
— 1 - q10n+1 1 - q10n+3 1 - q10n+7 1 - q10n+9

=q! i (1+¢*)(1+¢°")(1 = ¢*)*(1 +¢'")
(3.3) ,E[l

_1 7 (93017) - 93(0157))

= 30:005984(0150) (2 FF1sm) - 2510

iq'l"'% +q3n+§ +q7n+% +q9n+%

1+ q10n+5
82(015)
Z(ﬂs(oh 93(0]57)) 5t
(3.4) 92(0157)
= ﬁ 1+q (1 q2n—l)(l Sn)( lOn 5)(1+q10n)

Nl

50a(0159)94(015%) (2550 + 225150
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334
q10n+l q10n+3
I+ E( 1" { 1+ qlontT ~ 1 4 g10n+3
n=0
_ 4q10n+5 !0+ q10n+9
(3.5) 1+ ql0n+5 1 4 glon+7 1 + q10n+9
= [[(1 =21 +¢")(1 - ¢'" %) = (5194(0I51) 9;(0]7))
n=1
1 n 9 3z
= 3809400 (3510 - F3519)
e 10n+1 10n+3 10n+7 10n+9
RSV O q g q
1 ngo( l) {1 +q10n+l + 1 +q10n+3 + 1 +q10n+7 + 1 +qun+9}
(3.6) = [I(1 = a1 + )21 - ") (1 + 4" )
n=1
_ /4 93 37
= 20,0900 (7510 + F3510)
o q5n+% q5n+§ q5n+% q5n+§
~ 1 — q1on+1 1= qon+3 + 1 — qlon+7 T 1= q10n+9

=g [Ja+gm1 -1+ ¢ (1 - g1+ g2

2(0157)95(015%) (‘9“(’”|5 )-343s0)

© q5n+% q5n+§ q5n+§ q5n+§
g 1 — gi0n+1 1z qion+3 T gl0nt7 T T Z 410149

(3.8) =g [Ja+gm1 -1+ g1 +¢°")
n=1
1 - an—2)(l _ 5n—3)(1 +q5n—4)

:05095(015%) (515 150) + 345 1s) )

(
1
27
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s 1 5
(- Z(_l)” { q10n+l B q10n+3 B 4q On+

1 — gl0n+! 1 — glOn+3 1 — g10n+5

= q q q
7 1
B q10n+ N q 0n+9
1- q10n+7 1- qIOn+9

39 = T+ @)1 = a1 + g1 +49)

n=1

(5192 0[57) — 192(0|1))

= 302010030010 (5510 - 350

i—t.h|»—-

N

10n+l 10n+3 10n+7 10n+9
q q q
1 +Z( 1 { 1-— q10n+1 + 1 - qun+3 + 1 - q10n+7 + 1 _q10n+9}

(3.10) ﬁ(l —g")(1+¢")(1+¢)(1 = ¢*)(1 =" " )1 +4'")
n=1

A
= S =8:093(000) (5510 + 330

i n(qn _ q3n _ q7n + q9n)

— gl0
n=0 1 ™

3.11)
1 5

- % (320510005 - 20083005

R NEAWLL 9\ 3nt

—;{(6—1) s - (§) e )}

00 , (5n+l) Sn+1 (5n+2) Sn+2
l-go(—l) { [ — gon+l [ — g5n+2
(5n+3)g°**3  (5n +4)g°"**
T T =gy T 1 — gone

(3.12) H(l —g")(1 — g1 — g’")(1 — g'0n—5)2

=43-{<‘9'>'<?::|z> (%) @}

= 2 (584(012)83(0157) — B3(012)4(0157)) ,
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i( )n q10n+1 q10n+3_ q10n+7 q10n+9
-1 { On+l 10n+3 ons7 T 10 9}
— 1+qln+ 1+q n+ 1+q n+ 1+q n+
_ i(_l)"-l {qn _ q3n _ q7n +q9n}
10
n=1 1 +4q "
(313) — qH(l _ q2n—1)(1 _ an)2(1 +q5n)3
n=1
1
= 5 (8%(151) - 83(017))
- 30:015094(0150) (3550 - S Fisn) )
o0 qIOn+l q10n+3 q10n+7 q10n+9
I—Z(—l)”{ Ton+1 T ione3 T ions7 T T0n+9
s 1+q n+ q n+ q n+ l+q n+
e n 3n n 9n
=1+ (-1)" {q +q1 :ﬂo,, 4 }
(3.14) n=1
= [0 - a1+ 421 - ™) (1 +¢'9)?
n=1
= 5:0301509u(0157) (G (5150) + 55 Isn
T2 2 9 2
(3.15)
0o (—1)"(q”+% _ q3n+§ _ q7n+§ + q9n+§)
’go 1 — gl0n+5
= q%Hu - g")(1- ¢ (1 +¢™)(1+¢°")(1+¢""%)(1 - ¢'")
= 30:01598:(0150) (25150 - 2(5is9)
9 2
oo Sn+§ 5n+§ q5n+5 q5n+§
Z 1+ q10n+1 1+ q10n+3 1+ q10n+7 1 4+ q'0n+9
(3.16) =q*H(1 +g™)(1 = ") (1+ ¢*")(1 + ¢'7"=3)

n=1

= 30200050)8300057) (25150 + 210
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(3.17)
© " q5n+§ q5n+§ q5n+§ an+§
Z%(_l) 1 + g!0n+l 1 + q10n+3 + 1 + ql0n+7 1 + ¢'0n+9
n=

— q%H(l _ q2n—1)(1 +q2n)(1 _ qIOn)Z(l 10n l)( 10n 2)(1 +q10n 3)
(1 + qIOn—4)(l + qIOn—S)(l + qun—6)(1 + qIOn—7)(1 _ qIOn—S)(l _ qIOn—9)

=—192(0I51)z94(0|5r)(‘94("2T|5) 194(372n|5 )

(3.18)

i(_l)” g+t N q5n+§ ~ q5n+% ~ q5n+§
= 1+ q10n+l 1+ qun+3 1+ q10n+7 1+ q|0n+9

(oo}

— q%H(l _ q2n—l)(l +q2n)(1 _q10n)2(1 +q10n—1)(1 +q10n—2)(1 _ qIOn—.B)

(1 lOn 4)(1 +qIOn 5)( lOn 6)(1 lOn—7)(1+q10n—8)(1+q10n—9)

= 39:015994(0057) (5 Fis0)+ 345 1s0) |

o 10n+l q10n+3 q10n+7 q10n+9
Z qun+1)2 (1 + q10n+3)2 - (1 +q10n+7)2 + (1 +qun+9)2

n=|

_ Z(_l)n—ln(qn _ q3n _ q7n +q9")

l — qun
(3.19) !
— qH(l _ qn)(l _ q2n—l)2(1 + q2n)2(1 + qIOn—S)Z(l _ qIOn)S
_1 m (%) (me
(3.20)
(Sn+ 1)@ (Sn+2)g%"*2  (5n+3)g>*3  (5n+ 4)g>+*
Z 1- q5n+l - 1 - q5n+2 - 1- q5n+3 1- q5n+4
oo 5(01%)
(1-gn5 1 [ % 2 3T 5t
=I5 = 15 | —— - 5930159013
— g3 2
i 170 16 503 e

&) - (F) )
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et n q2n+1 _ q4n+2 + q6n+3 _ q8n+4
D g0 = 3 (03(0157) ~ 93(0/))
(3.21) =q[J(1 -1 - @)1 + 47
n=1
i Y 7wt ﬁ 3nt
= 5192(0I51)l94(0|51)( (5 157) - 193( 513t ))
e " (q2n+1 + q4n+2 _ q6n+3 _ q8n+4)
Z(_l) 1 + g10n+5
n=0
(3.22) =q[J(1 - aM(1+4* (1 - g (1 +¢')
n=1

= 5:0:00050)840157) (S 5150 + 35150

i 5n+§ q5n+§ 4q5n+§ q5n+% q5n+§
1+ q10n+1 1+ q10n+3 1+ q10n+5 1+ q10n+7 1+ q10n+9

= q%H(l —g") (1 + g™ (1 + > )(1 +¢'%)
(3.23) nei

(192(O|51) 592(0]57) )

02001084017 53510 - 351 -

NI'—-AI

(3. 24)
q5n+§ B 5n+§ q5n+7 q5n+§
Z 1 4 g10n+! 1+ qlon+3 1+ q10n+7 1 4 g10n+9

= q%H(l - qn)(l _ q2n—1)(1 +q2n)(l _ an)(l +q5n)2(1 +qun—5)

191 3n 191
= 004010 (S0 + S5
et q5n+l q5n+2 q5n+3 q5n+4

[+ q10m2 T 11 qi0nd T T g10n36 T T4 g10n48

n=

2n+1 + q4n+2 +q6n+3 + q8n+4

— Z( 1 n 4
(3 25) n_o 1 —_— qun+5

= ql'[<1 +@" (1 + @) (1 - g1 + ')

n=1

8,(0[57)95(0]57) (‘92 Zise) + 25 ise ))
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i(_l)" q2n+l _ q4n+2 _ q6n+3 + q8n+4
— g10n+5
s 1 q n+
(3.26)  =q[[(1-g"1 -1+ )1 = @)1+ (1 +4"")
n=1

= 30:01509500150) (25150 - 2(Fis)

ot " q5n+l q5n+2 q5n+3 q5n+4
g(_l) {1+45n+1 - 1+q5n+2 T 14 gon3 + 1+45n+4}
i )n l( q3”+q“")
prd 1 + an
(3.27) 00
=qH 2n 1 (1+q5n)(1_ )2(1_q10n—l)
=1
( qIOn—Z)(l qIOn—S)(l qIOn—9)
1 O mt 5t, U4, 3m7 57
= 30030003 (G - F &),
nq + q2n + q3ﬂ + q4n)
an_o( 1) T g
(3.28) = [T =" O+ (1 - (1 - ¢'"7)
n=1
. (1 qIOn—4)(1 qIOn—())(l lOn—7)
1 Oy mt 5T, U4, 3m1 57
= g0 003D (S G0 + 5 D)
5n+l q5n+2 q5n+3 q5n+4
z 1+ q10n+2 1+ qun+4 1+ qun+6 1+ q10n+8
(3 29) — H 1_ n) 2n 1)(1+q2n l)(l n)(1+q5n)2(1 +q10n)
" 04(0|7)
_ _ 92 4
= 3 (83010 - 83(0150)) (0|5T)
1 194 3n
= 5020103010 (5351 - S )
o q5n+l q5n+2 q5n+3 q5n+4
- Z] + q!0n+2 _+ 1 + g!On+4 + 1+ ql0n+6 + 1 +q10n+8
n=
(3:30) = [T ="+ g1+ 7)1 +¢'7)

NI-—-ﬁ

= 38:0010)94(017) (G (fgl0 + 350

19(10|)
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el 5n+l q5n+2 q5n+3 q5n+4

g 1+ q5n+l)2 (1 + g5n+2)2 - (1 + g5n+3)2 + (1 + g5n+4)2
- z(_l)n—l n(g" —g*" —g*" +4*)
l_an
(3.31) — qH(l —gM(1 - q2n—l)2(1 _ an)3(1 +q5n)2

= $04(01094(0157) (93(017) - 93(0I50))

4@ @)

i (5n+ 1)q5n+l (5n+2)q5"+2 (5n+3)q5"+3 (5n+4)an+4

1—qlons2 | —gl0n+d T _ 41046 1 — gion+8
o0
(3.32) =q[J(1 - a1 +4)(1 - g*)(1 +¢°)
n=1

4}{('93) 0~ (B) (oie )}

5n+l q5n+2 q5n+3 q5n+4
nz_o 1 — qun+2 l — qun+4 1 — q10n+6 1 —_ qun+8
_ el q2n+l _ q4n+2 + q6n+3 _ q8n+4
- 1 —_ q10n+5
(3.33) n=0
B ﬁ (1 _ qIOn)3(1 _ an—l)(l + an—Z)(l + an—3)(1 _ an—4)
- (1= ¢
n=l
9,3 [
_192(0|51 85(0|57) ( ‘ ’”|5 7) - 3t ’”|5 ))
e q2n+l + q4n+2 _ q6n+3 _ q8n+4
— gl0n+5
n=0 1 ™
(3.34) _ qﬁ (l _ qIOn)3(1 + an—l)(l _ an—Z)(l _ an—3)(1 + an—4)

(1-g%)

20150)93(0157) (55 150) + 535150

n=l
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(3.35)
i e g+l B g+l ~ 4g5n+3 _ g1 N gsn+3
( ) 1 - q10n+1 1-— q10n+3 1 - q10n+5 1- qun—7 1- qun+9
n=0

=g [[(1+¢")(1 = g*)(1 + g (1 +¢'™)

n=1

= 5 8a(0[2)85(0f) 19‘(3"|) (2l
10 10

(3.36)
© " q5n+% q5n+% q5n+% q5n+§
Z(_l) 1 — q10n+1 1z q10n+3 iz q10n+7 1z q10n+9
=0

=g J(1 - g +¢M 1+ g )1 = g*)(1 - ¢ %)(1 + ¢')
n=1

191 191 3n
= 28,0800 (Je(Tg10 + 5350
(3.37)
00 q2n+l _ q4n+2 _ q6n+3 + q8n+4
= 1 + qun+S
rp(1—q')3 10n—1 10n—2 10n—3 10n—4
= W(l—q J1=g™" )1+ )1 +q777)
n=1
( + qIOn—6)(1 + q10n 7)( 10n 8)(1 10n—9)
1 %, 3nt % w1
= 30a001s40157) (2(3EC150) - 2550
(3.38)
oo q2n+l +q4n+2+q6n+3+q8n+4
par 1 + q10n+5

= (1 - qIOn l 10n—1 1 10n-2 1 - 10n-3 1-— 10n—-4
=q | | —g 1t J1+g™ ) (1 —g ™)1 =q7"7)
=1

( lOn—6)(1 _ 10n—7)(1 +q10n—8)(1 +q10n—9)

- 30:00050184(015) (52 5F1s0) + 25 1s0)
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5n+1 Sn+2 Sn+3 Sn+4
Z(__ q _ 4 4q
l — q5n+1 1 — q5n+2 1 — q5n+3 + 1 — q5n+4
i q3n +q4n
= 1 + 5n
(3.39) n=l 1
_ H (1-¢°")?
- (1 — gq10n=3)(1 — g10n— 4)(1 — q10n=6)(1 — g10n=T7)

93,3zt 5t, O, mt 5t
s (R - 2ERD)

oo qn+q2n+q3n+q4n

1+
n=1 1 + an
(3.40) -1 (1-g>)?
el (1 —_ qun—l)(l —_ qun-Z)(l — qun—S)(l —_ qun—9)
1 93 mt St O3 3nt 5t
= 30050030 (21D + 2T
Z(_l)" { q5n+l N q5n+2 _ q5n+3 B q5n+4 }
— 1 + q10n+2 1 + q10n+4 1 + qun+6 1 + qun+8
(341) = a0 -a")1+ (g1 4
9.3
— S 0009000 (7510 - 23510
i q5n+1 q5n+2 q5n+3 q5n+4
1+ Z( D { T g10m+2 ~ T4 qiond T T4 gl0n#6 4 g10n+8
(3.42) H(l - ")2(1 +q ) (1 _qIOn—S)
n=1
l 93 3= (2P
= 38:0109(0%) (F 510+ ({510
i n(qn _ an _ q3n + q4n)
— 1 _ q5n
= g’")’ _ 1 (93(0|57) 3
(3.4 H e L R XCR DY

1 194 37[‘E|5‘t (ﬂ (E S‘r)
4 4 LA 4'27°(°
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(5n+ D)@' (5n+2)g>"*?  (5n+3)g>*3  (5n+4)g>r+4
1 — ql0n+2 1—qlontd = "1 _g10n+6 | _ 410n+8

ﬁ 1 +an 1)2 q2n)3(1 _ an)(l _ qIOn—S)(l +q10n)2
1
\/_

{(") (Elo) - (g—%;)’@gm}.

4. PARTITION IDENTITIES

We will single out three identities (3.1), (3.39), and (3.40) for discussions.
First, using an observation originally due to Bailey and communicates to the
author by Professor F. G. Garvan, we see that (3.1) yields the following identity:

) ,0 . o0 (1 —(15”)2(1 +q10n)2(1 +q10n—5)
@h - dptent e = I ——— gy

where p?:°(n) = the number of ways an integer n can be written as a sum of
distinct odd positive integers.
The proof goes as follows: In (3.1), we write

n=1

oo

a[J(1+a* "1+ )1 - ¢*)*(1 +¢')

n=1

0 [o <]
= H + an)(l )2(1 + q'O")Zpd"’(n)q"“
n=1 n=0
st i 4 o0
= I+ &)1 =21+ 4> > p?o(5n + m)gsrtm+!
n=1 m=0 n=0
and )
© 3n Tn 9n oo
" 9" -q"+q" _ s _
Z 1+ qlon = Z ZA5n+mq mm, A, =0.
=1 m=0 n=0
We now sum over only the terms associated with ¢, n =0, 1, 2, ..., of the

above two power series. It is elementary to see that

H(l +q5n)(1 _ an)Z(l +q10n) Zpd,O(Sn +4)q5n+5
n=0 n=0

o X 5n 15n 35n 45n
_ 5n _ " —q"—q7"+¢q
=D Asng”™ =3 1+ ¢%"

- qSH(l + qIOn—S)(l + q25n)(l +q25n)2(1 + qSOn)
n=1
From the first part and the last part of the above identity, we obtain the desired
result after replacing ¢° by ¢.
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Similarly, following the identical argument as above, one sees that the iden-
tities (3.39) and (3.40) yield, respectively,

(4.2)
Y p(5n+4;3,4,6,7)g"
n=0
B ﬁ(l _ an)Z ‘ 1
= 1 (1- qn)2 (1- qun—3)(1 - qIOn—4)(1 — qun—6)(1 _ q10n_7) ’
Y p(sn;1,2,8,9)q"
4.3) ™0

I 1
'[Il (1- qn)z — q10n—1)(1 — ql0n-2)(] — g10n—8)(] — g10n-9)’

where p(n; a, b, c, d) denotes the number of ways an integer n can be written
as a sum of positive integers =a, b, ¢, d (mod 10).

We note that (3.39) x (3.40) = (3.43) and (3.43) yields one of the most
celebrated identities (1.14) of Ramanujan which we have mentioned earlier.
And it is interesting to see that the product of (4.2) and (4.3) is

ip(5n+4 3,4,6,7)q Zp(Sn 1,2,8,9)q" H(-l-‘—qs'z
(1-¢")°
n=0 n=0 =1

which “almost” equals (1.14).

5. CONCLUDING REMARKS

First, we give a brief comments on the identity (1.1). This identity follows
immediately from the general identity

S(u—-b)d(a—-s)0(u—-s+y)%(a-b+y)
(5.1) -0 (u-5)%(a-b)d(u-b+y)d(a-s+y)
=0, (u—-a)hb-s)h(u-b+a—-s+y)

by choosing y = n/2 and letting x =u—b, y=s—-u,and z=a-s. Itis
worthwhile to note that there is also a version of (5.1) for the theta functions
on the Riemann surfaces. It is the so-called “the trisecant identity of Fay” (see
[2, p. 34, (45)]) which plays a vital role in the study of Riemann surfaces; when
the genus of the Riemann surface is 1, it reduces to (5.1). It will be interesting
to see if any of the identities discussed in this work can be formulated in terms
of the theta functions for the Riemann surfaces.

In a recent work [4], the identity (5.1) is also used to study the properties
of the Green’s function and the Szegd kernel for an annulus and, as a conse-
quence, several extremal problems are solved. And most surprisingly, (5.1) and
its generalization for multiply connected domains provided a very elegant proof
to the Nevanlinna-Pick interpolation problem in [3].

The proof of (5.1) is very elementary. It goes as follows: Let F(u,a, b, s)
be the ratio of the quantities on both sides of the identity (5.1) with the numer-
ator the difference of the four theta products and the denominator the product
of the four theta functions. We will show F = 1. To this end, we first fix a, b,
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and s and consider F as a function of u. First, we show that F is entire.
Since F is doubly periodic, it suffices to show that F is analytic at ¥ = a and
u = b—a+s—y which are the locations of the possible poles of F . We observe
thatat u=a and u=b —a+s -y, the numerator of F is equal to zero and
since the poles of F are all of multiplicity one, F is analytic at ¥ = a and
u=b-a+s—y. Therefore F is analytic in the entire complex plane. From
the fact that a doubly periodic entire function is constant, we conclude that F
is independent of . Repeating the same argument for the variables a, b, and
s, we conclude that F is independent of u, a, b, and s, so it is a constant.
Now let a = s, we see that this constant is 1. This establishes (5.1).

We conclude the paper by bring the reader’s attention to Chapter 19 of the
recent book Ramanujan’s Notebook. 111 by Professor Berndt [1] in which many
identities of this paper are established using the notation as well as the methods
which Ramanujan might have employed. It is, however, the opinion of this
author that the traditional notation of theta functions and their well-known
properties seem to provide greater clarity as well as simplicity and cohesion to
this subject.
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