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THE SPECTRA OF RANDOM PSEUDO-DIFFERENTIAL OPERATORS

JINGBO XIA

Abstract. We study the spectra of random pseudo-differential operators gener-

ated by the same symbol function on different L2 -spaces. Our results generalize

the spectral coincidence theorem of S. Kozlov and M. Shubin (Math. USSR-

Sb. 51 (1985), 455-471) for elliptic operators of positive order associated with

ergodic systems. Because of our new approach, we are able to treat operators of

arbitrary order and associated with arbitrary dynamical systems. Furthermore,

we characterize the spectra of these operators in terms of certain naturally ob-

tained Borel measures on R .

Introduction

The purpose of this paper is to compare the spectra of pseudo-differential
operators on different L2-spaces induced by the same symbol function. The

central question here is that do these operators have the same spectrum because
of their common symbol function? To illustrate what we will do, let us consider

the following problem. Suppose that we have an R"-flow on a probability space

{il, ¿S, p), i.e., a strongly continuous measure-preserving map {co, t) ^ co +1

from QxR" to Q. A differential expression

(0.1) 52"ada.

where aQ's are reasonably "nice" functions on Q, generates differential oper-

ators on L2{Rn) and L2(Q, p). That is, on L2(R"), we have a family of
operators

uum- X «,^<«+o'«-aff.:.fc"-*))
a.a„ 1 " s,= -=s„=0

parameterized by a>. Similarly, on L2(Q), we have a family of operators

{AyÇ){co)=    5]   aav..an{(o)
a, ,...,a„

d"> • • • da- exp{-i{{sx ,...,sn), y)X(© + {sx, ... , s„))

ds?l---ds%"
s,= -=s„=0
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parameterized by y e R". (Throughout the paper, R" denotes the dual of

R" . The benefit of making a formal distinction between R" and R" in this

paper will become apparent later on.) In the case where these operators are self-

adjoint, one asks what is the relation between the spectra a{Aw) and a{Ay) ?

Does a{Ay) coincide with a{Aa) ? Or, failing that, does one spectrum at least

contain the other? And of course one can ask such questions in the general

case where Aw and Ay are pseudo-differential operators generated by the same

symbol function. There are many articles in the literature which address these

questions [2, 3, 5, 10, 14, 16]. The roots of these questions can be traced
back to the study of Schrödinger operators with almost periodic coefficients.

But in recent years it becomes more and more apparent that the question of

the coincidence of these spectra should be understood in the context of the

representation theory of the group transformation C* -algebra (also known as

the crossed product C*-algebra) associated with the flow {(Q, 33, p), R"} . In
the case where Q is a compact Hausdorff space and the flow is topologically

continuous, the crossed product C(Q) x R" has natural representations nw on

L2(R") and ny on L2(fl). For an elliptic operator of positive order, we have

{Aw - z)~x e na{C{0) x R») and {Ay - z)"1 e ny{C{Q.) x R») [9]. Therefore

the relation between a{Aw) and o{Ay) is determined by the representations

71ft, and ny. For example, if the flow happens to be free and minimal, then

it is well known that a{Aw) = a{Ay). This approach to the spectra of A^

and Ay is heavily influenced by similar techniques employed in the study of

representations of Toeplitz C*-algebras [4, 5, 7]. Also see [12, 13].

But in the pure measure-theoretical setting, i.e., when (£2, 33, p) is only

a measure space, the relation between a{Am) and a{Ay) is much less clear.
However, there have been a number of articles devoted to this subject. The

article that is most relevant to the present study is that of S. M. Kozlov and

M. A. Shubin [10]. In that article, the authors introduced the family of oper-

ators {Aw : co e £2} on the space L2(R"/T), where T is the lattice of peri-

ods of the dynamical system. But of the family of operators {Ay : y e R"} ,

only A0 was considered in [10]. Under the assumptions that the measure

p is ergodic and that Aw's are elliptic, selfadjoint operators of positive or-

der, Kozlov and Shubin proved in [10] that a{Aw) = cr{A°) for almost ev-

ery co e Q. The proof of this spectral coincidence relies on the fact that

when the order of Aw is positive, for each <p e C^°(R), there is a nice ker-

nel function K9{co,s) suchthat {(p{Aw)f){t) = jKl/){co + t,s)f{t + s)ds and

{(p{A°)Q{co) = /Kç,{œ, s)Ç{co + s)ds . The ergodicity was used to show that

the time averages of both <p{Aw) and tp{A°) have j^K^co, s)dp{co) as a ker-

nel function on their respective spaces. Therefore <p{A°) = 0 if and only if

(p{Am) = 0 for almost every co. Here, the use of time mean and space mean of

the operators is reminiscent of similar techniques used in the earlier studies of

C*-algebras of almost periodic Toeplitz operators [4, 5, 7]. Of course in Kozlov
and Shubin's work, since they were dealing with measurable flows rather than

almost periodic flows, the computation of these means had to be handled more

carefully.
We will take one step further in the investigation of o{Aw) and a{Ay). In

this paper, we will not assume that the dynamical system {(Q, 33, p), R"} is
ergodic, nor will we assume that the orders of our pseudo-differential operators
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are positive1. The techniques employed in [10] will not help as much. This is

because, first of all, if the operators Aw are not assumed to have positive order,
then it is not clear that one still has a kernel function for cp{Aw), cp g Q°(R).

Secondly, even if the kernel function K? for <p{Aw) exists, without ergodicity,

its time average is only an invariant function and is not completely independent

of the «y-variable. Therefore such an average has little use for the purpose

of analyzing a{Aw) and a{Ay). Our approach to the question of spectral

coincidence is completely different from that of [10].
Because our dynamical systems are not assumed to be ergodic in general,

we can no longer expect cr{Aw) to be independent of co almost everywhere.

In fact one can give trivial examples where a{A(a) varies in co. But one can

still ask what is the relation between a{Aw) and a{Ay)1 We approach this
question in the following way. We will first impose a mild assumption on the

dynamical system which will eventually be dropped. That is, we first assume

that there is a closed subgroup F' c R" such that on any invariant set A € 33
of positive measure, the joint spectrum of the n partial derivatives along the

orbits of the flow is V . This condition is automatically satisfied in the case p is

ergodic [10]. But in general this is a much weaker assumption than ergodicity.

Then we introduce T = {t G R" : {t, y) G 2nZ for every y G F}. We will

introduce an operator A on L2(Q x (R"/r)) = L2(Q) ® L2(R"/T), which is
unitarily equivalent to both the direct integral of {Aw : co e £2} and that of
{Ay : y eT'} . In fact if Aw and Ay are induced by the differential expression

(0.1), then

{AÇ){co,t)=    52    íZ«.-^(tíJ)

dai ■ ■ ■ da"Ç{co + {sx,...,s„),t + {sx,..., sn))

ft Ka' ■ ■ ■ ft <!a"

We will prove that if A is selfadjoint, then a{A) = a{Ay) for every y g F.

Actually it is quite easy to show that a {A) D o{Ay) for almost every yeF with

respect to the Haar measure on F and that \Jy&r^Na{Ay) = a{A) with some

null set 7Y c T'. If y — y' is an eigenvalue of the dynamical system, i.e., if there

is a unimodular function ^ on Í2 such that £{co + t) = exp(z'(i, y - y'))Ç{co),

then obviously Ay and Ay' are unitarily equivalent and, therefore, o{Ay) =

a{Ay ). Recall the following elementary fact in operator theory: If {B„} is a

sequence of selfadjoint operators whose spectra are identical and Bn —> B in

the strong operator topology, then a{B) c a{B„). This simple fact of operator

theory tells us that if it happens that the eigenvalues of the dynamical system are

dense in P , then a{Ay) is independent of y and a{A) = a{Ay). But the fact of

the matter is that the dynamical system may not have any eigenvalue other than

0. Nevertheless, we are able to find an acceptable substitute for eigenvectors

of the dynamical system which allows us to establish the fact that a{Ay) is

independent of y G P. This substitute is what one might call approximate

eigenvectors of the flow. On the other hand, it is relatively easy to show that

a{A) D a{Aw) for a.e. co G Í2. Therefore we can assert that a{Ay) D o{Aw)

for every y £ V and almost every co G Q. This approach to the spectra of

random pseudo-differential operators is motivated by recent developments in

'One of the questions left open in [10] is what happens if the order of Am is not positive.
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the study of Toeplitz algebras associated with topological dynamical systems

where the technique of approximate eigenvectors (in the topological setting)

was first introduced [13].

Our second objective is to determine o{A) analytically. Let dm denote the

Haar measure on F . For each R > 0, let BR = {y G P : \y\ < R} . There is a
finite Borel measure VR on R such that

/ {(Ay - z)~x 1, l)dm(y) =1-1— dVR{t)
Jbr ÍrÍ-z

for every z G C\R. It is easy to see that if R < R', then VRi - VR is a

positive measure. We will prove that a (A) is the collection of X G R which

has the property that for each e > 0 there exists an R = R(e) > 0 such that

VR((X-e,A + e))>0.
Finally, after having obtained these results under the assumption imposed on

the dynamical systems earlier, we will work with arbitrary dynamical systems.

The trick here is that in the case where there is no such P associated with
{(Q, 33, p), R"} , we will consider the infinite product space Q# = Q x fí x • • •

with the product measure p* = px px-- . The flow on il naturally induces a

flow on £2# . As it turns out, if T is the lattice of periods for the original flow

{{£1,33, p), R"}, then P = {y € R" : {t, y) e 2nZ for every t eT) is the
joint spectrum for the partial differentiations on every invariant set A* c il*

of positive measure. In other words, there is always a P associated with the

product flow on (il*, 33*, p*). In a natural way (0.1) is a differential expres-

sion associated with the product flow {(Q#, 33*, p*), R"} . Therefore if we

replace {(Q, 33, p), R"} by the product flow and use (0.1) to define operators

A*y on L2(il*) instead of the space L2(il), then we still have a(A*y) D a(Aw)

for every yeP and almost every co eil.

The rest of the paper is organized as follows. In §1, we prove the existence of
the "approximate eigenvectors" of the dynamical systems. This is the technical

preparation for the study of the spectra of our pseudo-differential operators. We
introduce the pseudo-differential operators and state the main theorems in §2.

These theorems are stated under the assumption about the dynamical systems

mentioned earlier. Section 3 contains the technical details of the proof of these

theorems. In §4, we show that for a dynamical system which is completely

arbitrary, the theorems stated in §2 are still valid if we replace Q by fi* =

ilxilx •••

1. Dynamical systems

Let (il, 33, p) be a probability space; i.e., 33 is a er-algebra of subsets of

il and p is a probability measure on 33 . Suppose that (il, 33, p) possesses

a group of measure-preserving transformations {a, : t G R"} . For each t G

R", utf = f o at defines a unitary operator on the Hubert space L2(il) =

L2(il, 33, p). We make the following two assumptions on (il,33, p) and

{at : t G R"} which will be in force for the rest of the paper:

(1.1) The Hubert space L2(il, 33, p) is separable.

(1.2) The unitary group {«, ; t G R"} is strongly continuous.

By the second assumption, the unitary group {ut : t G R"} has the spectral
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decomposition

u,= f exp(i(t,y))de(y),       teR".
JVL"

Let 33o be the cr-subalgebra which consists of A G 33 such that

/»([A\at(A)]UMA)\A]) = 0

for every í eR". Then the collection of invariant functions in L2(Q) is

L\il,33o,p). Alternately, L2(il, 33Q, p) = {/ G L2(il,33, p) : utf = f for
every t G R"} . The orthogonal projection F0 : L2(il) -> L2(il, 330, p) is a

conditional expectation in the sense that Pogf = gPof for S € L°°(il, 33o, p)

and / G L2(Q). By the pointwise ergodic theorem, we have

lim  /  f(at(co))dt/\BT\ = (Pof)(co)
T^°° Jbt

for a.e. co G il. Here, BT = {t G R" : \t\ < T} and \BT\ is the Lebesgue
measure of BT . Hence F0 has the property that if / G L°°(il, 33, p), then

Pof G L°°(il,33o, p) and ||F0/||oo < 11/IU • On the other hand, the mean
ergodic theorem tells us that limr-^ JB ut dt/\Bj\ = Po in the strong operator

topology.
Suppose that A g 33o . Then the subspace L2(A) = x¿L2(il ,33,p) is invari-

ant under the unitary group {ut : t e R"} . Therefore L2(A) is also an invariant

subspace for the spectral measure e and, consequently, e\L2(A) = x&e is also a

spectral measure. Let S¿ denote the support of the spectral measure e\L2(A).
(As usual, the support of a Borel measure is defined to be the smallest closed

set on which the measure is concentrated.)

Theorem 1.1. Let G cR" be an open set. Then the following are equivalent:

(i) For every Ae330 with p(A) > 0, 5A n G ¿ 0.

(ii) The norm closure of C = {\fx\2 + ■ ■ ■ + \fk\2 : k G Z+, fx, ... , fk G
e(G)L2(iï)} in Lx (il) = Lx (il, 33, p) contains the constant function 1.

Proof, (ii) =*• (i). It follows from (ii) that for any invariant set A, %A is

contained in the L'-closure of {|gi\2 + ■ ■ ■ + \gk\2 : k e Z+ , gi, ■■■ , gk €
XAe(G)L2(il)} . Hence if Xa # 0 in L2(il), then e(G)L2(A) = XAe(G)L2(il) ¿

{0}.
(i) => (ii). Suppose the contrary. Then by the Hahn-Banach separation

theorem, there would be a real function h G L°°(il) = L°°(Q, 33, p) and a

ß eR such that

/ hdp> ß > / hi//dp
Ja Ja

for every y/ e C. Because 0 G C, we have ß > 0. On the other hand, since

ry/ G C whenever y/ g C and r g R+ , we have /n hyi dp < 0. Therefore we

can rewrite the above inequality as

/ hdp>0> / hy/dp.
Ja Ja

Notice that if / G e(G)L2(il), then foa, also belongs to e(G)L2(il). Hence
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y/dp

C is invariant under the composition with at, t G R" . Therefore

/    /   h o a, dt/\BT\   dp= i hdp>0
Ja YJbt J Ja

> /   \[ h(y/oa-t)dp] dt/\BT\= [ 17  hoatdt/\Bt
Jbt VJa J Ja Übt

for every y/ G C. Letting T —* oo, we have

/ hodp > 0 > / hoy/dp,
Ja Ja

where ho is the invariant function Poh ■ Write ho = h+ - h- , where both h+
and h- are nonnegative invariant functions and h+h- = 0. Since /n ho dp >

0, we have Jnh+dp > 0. Hence there is an e > 0 such that the measure of

A = {co G il : h+(co) > e} is positive. Because h+ e L°°(il, 33o, p), we have

A G 330. By (i), there is an fe e(G)L2(A) such that ||/||2 > 0. Hence

[ h0\f\2dp= f h+\f\2dp>e\\f\\22>0.
Ja Ja

This contradiction proves (ii).   D

Recall that for any / G Lx(il), the set of functions {g : g is a rapidly

decreasing C°° function on R", /R„ g(t)f oatdt = 0} generates an ideal in

Co(R"). Here, g(y) = JR„ g(t)exv(i(t, y))dt. The zero set of this ideal is

the spectrum sp(/; a) of / with respect to the transformation group a =

{at : t G R"}. For those who are not familiar with the spectral analysis of

functions associated with transformation groups, [1, 8, 11] are good references.

A function is invariant if and only if its spectrum is {0} . For any / G L2(il),

we have

(1.3) /Ge(sp(/;a))L2(£2).

For any tp e L°°(il, 33, p) and open set A c R" ,

(1.4) <pe(A)L2(il) c e(A + sp(<p ; a))L2(il).

Let S"(Rn) denote the collection of C°° functions on R" which together

with their derivatives are rapidly decreasing. For any / g S?(Rn) and £ G

L2(Q, 33, p), the convolution / * £ is defined to be

(/*«(»)= /  f(t)(u^)(co)dt= [ f(-t)^(at(co))dt.
Jr" jr"

Here, the integral is convergent in the L2-norm. Let ^o(R") be the collection of
/ G ̂ (Rn) whose Fourier transform has a compact support. Define ¿?6(£2) =

^tj(Q,33, p) = {/* tp : tp G L°°(il,33,p),f G ̂ o(R")}. Notice that for
tp G L°°(il), if sp(<p ; a) is a bounded set, then cp G ¿?6(£2).

For j = 1,...,«, let Ej e R" be the vector whose 7th component is 1
and whose other components are 0. Let <5; denote the infinitesimal generator

lims^,o(us£j - l)/y/—ls of the one-parameter unitary group {usej : s e R}.

Alternately, ôj = fa„(ej > 7) de(y). Therefore the joint spectrum of Sx, ... , Sn

is the support of the spectral measure e . Similarly, for any A G 33o, the joint

spectrum of the restriction of ôx, ... ,ô„ to L2(A) is SA.
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For §§2 and 3, we will assume that the dynamical system {(il, 33, p), {at :

t G R"}} has the property that there is a closed subgroup P of R" such that

S'a = F for every A G 33o with positive measure. It was shown in [10] that

such a condition is satisfied by every dynamical system where the measure p is

ergodic. Let
T = {t g R" : {t, y) G 2nZ for every yeV}.

For each A e 330, let TA be the collection of t G R" such that ut = 1 on
L2(A, p). For any t G T, we have ut = Jr exp(/(i, y))de(y) = 1. That is,
rA D r for every A G 33o. On the other hand, if to eTA, then

/ exp(í(ío, y))d(e(y)\L2(A)) = uk\L2(A) = 1.
Jr

Hence for a set A G 33o of positive measure, the assumption that SA = F

implies exp(/(in, y)) = 1 on F, which means to G T. Therefore TA = T for

every Ae330 with p(A) > 0.
Let dm and ¿t denote the Haar measures on the locally compact groups

F and R"/T respectively. For each / G S*(RH) and each m G L2(R"/F) =
L2(Rn/r, dx), we define the convolution f*u to be

(/*u)(i + r)= / /(s)M(í-í + r)^,       teR".
Jr"

Again, the integral is understood in the norm convergence in L2(R"/T). Let

^S(R"/r) = {/* u : f G <5^(R"), m G L2(R"/r) n L°°(R"/r)} . Finally, for / G
^5(R") and <^ G L2(Q x (Rn/T)) = L2(il x (R"/T), dp x dx), the convolution

/ * ¿; is defined to be

(f*Q(co,t + T)= [ f(s)Ç(a-s(co),t-s + r)ds,       coeil,teRn.
Jr»

Let

S%(il x (R»/D)

= {/*{: /e ^o(R"), f e L2(Q x (R«/r)) n L°°(Q x (R"/r))}.

Notice that the spaces S%{Sl), ̂ (R"/r), and 5%(ilx (Rn/Y)) are closed under

addition. This is because for any f, fie -?o(R") > there is an f e ^(R") such

that /,=/*/, and f2 = / * f2.

2. Random pseudo-differential operators

For 7 = 1.», let 9/ = dtj denote the partial derivative

(djf)(t) = lxml-[f(t + sej)-f(t)]
s—>0 S

for functions on R" . (Recall that z¡ is the vector in R" whose 7th component

is 1 and whose other components are 0.) If ■ / is a function on R"/T, then we

define

(djf)(t + T) = lim kf(t + ssj +D- f(t + F)],        t e Rn .
s—»0 S

As usual, for a multi-index ß = (ßi, ... , ß„), \ß\ means \ßi\-\-r-\ßn\ and

ft? stands for d,* ■ ■ ■ dfc .
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Definition. A measurable function a on il x R" is in the class Sm , m e R,

if there is a set A = A(a) e 33 of measure 0 such that for any multi-indices v

and ß, there is a constant Cvß > 0 such that

sup \dvxd? a(at(co), x)\ < Cvß(l + \x\)m'^ ,    teRn,xeR".
a>ea\A

Given a symbol function a e Sm, we will define three sets of pseudo-

differential operators on the spaces L2(Q),

L2(il x (R"/r)) = L2(il x (R»/r), dp x dx)

and L2(Rn/T) respectively.
Suppose that an a e Sm is given. We have a family of convolution operators

ayw*f)(t) = (2n)-n !   17 exv(i(t-s,x))a(co,x-y)f(s)ds
Jr» Ur»

dx,

where co e il,y e T', and / G S^(R"). Notice that for each pair of fixed
t eR" and y eT', the function co >-► (aya * f)(t) belongs to L°°(il). And for

any fixed y eT', íh esssup^c. |(a¿ * /)(í)l *s a rapidly decreasing function
on R" . For /* tp e <9*o(il), where / G 3%(Rn) and tp e L°°(il), define

(Ay(f*cp))(co)= I (ayû*f)(t)tp(a-t(œ))dt
Jr»

= [   \(2n)-" I   \ [ cxp(i(t-s,x))
Jr» l Jr» L Jr»

x a(co, x -y)f(s)ds  dx <p(a-t(co))dt,

where we consider the convergence of the integral in the norm topology of

L2(il). In order for Ay to be well defined as a linear operator from ¿?o(Q)

into L2(Q), we must establish that if f*y> = g* y/, then Ay(f*cp) = Ay(g* y/).
But this is routine; it is straightforward to verify that if h *¿; is another element
in S"0(il), then

(Ay(f*tp), A*0 = (f*tp,Ay*(h^)) = (g*y/,Ay*(h*¿;)) = (Ay(g*y/), A*{>,

where

(Ay*(h*Ç))(co)

= /   [(2k)-" I   \   ! txp(i(t-s,x))
Jr» L ^r« l ^R"

Z(a-,(a>))dt.x a(co + s -t, x -y)h(s)ds dx

Hence we have a linear pseudo-differential operator A1 from S%(il) into

L2(il). The above also shows that the adjoint of Ay has a domain that contains
S^o(H) and is, therefore, densely defined. This means that the closure of the

operator Ay defined on <9o(il) is also a linear operator. We will denote the

closure also by Ay. Naturally, we denote the adjoint of Ay by A7*.
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For f*i e S%(il x (R"/r)) with / g ^5(R") and £ G L2(Q x (Rn/T)) n
L°°(fi x (R"/r)). define

(^(/*{))(©, y+ D= / (a°w*f)(t)Ç(a-t(co),y-t + r)dt
Jr»

= /   \(2n)-n f   17 cxp(i(t-s,x))a(co,x)f(s)ds\ dx
Jr» L «'R" Ur" J

x£(a-t(co),y-t + r)dt.

As is the case for Ay, the operator A has an adjoint whose domain contains
S*o(Q x (Rn/T)). Therefore, the closure of A on ^(il x (Rn/T)) is also a

linear operator and we denote the closure also by A.
On the space L2(Q x (Rn/T)), define the unitary operator

(WZ)(co,t + T) = Z(a,(co),t + r),    coeil, teR".

This is well defined because of the fact that for a.e. t + T, the function co i->

í(a,((ü), t + T) is independent of the choice of t in its equivalence class. The
unitary operator W can also be defined in the following alternate way. If
we regard £ G L2(il x (Rn/T)) = L2(R"/r, L2(il)) as an L2(Q)-valued L2-

function on R"/T, then

(WQ(t+r) = u¿{t+r),     teRn.

By straightforward calculation,

(WA(f*t)){co,y + r) = {A(f*C))(ay(co),y + r)

= / (a0aAa>)* f)Mi<*y-t{a>), y - t + r) dt

(2.1)

/JR"

= /   \(2n)-" (   \f oxp(i(t-s,x))a(ay(co),x)f(s)ds
Jr» L JR" Ur"

¿x

xÇ(ay-t(co),y-t + r)dt,

f   \(2n)-n f   \ f exp(i{t - s, x))a(ay(co), x)f(s) ds
Jr» L Jr» Ur»

dx

x(rV^)(co,y-t + T)dt.

This brings us to the definition of a third class of pseudo-differential op-
erators. For each co e il which does not belong to the null set A = A(a),
define

(A(0u)(y + T) = [ (a°ay{w)*f)(t)u(y-t + r)dt
Jr»

= (   \(2n)-n !   \   f cxp(i(t-s,x))
Jr» L Jr» L Jr»

x a(ay(co), x)f(s)ds dx u(y-t + T) dt

when u e 5%(Rn/T). Once more, Aw is a closable operator on L2(R"/r) and

we denote its closure by the same symbol. Equation (2.1) tells us that for any

£ G 5%(il x (R»/r)).

(WAQ(co,y) = (A(û(W^))(co,y).
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If we decompose the space L2(il x (Rn/T)) as the direct integral

then

(2.2)

L2(il x (R»/D) = jj$L2(Rn/T)dp(co),

WA= 17 (¡}Awdp(co)   W.

This  formula  should  be  interpreted  in  the  sense  that  for  each   ¿;    G

S%(il x (Rn/T)), the function t + T h» (WÇ)(œ, t + F) belongs to ^(R"/r)
for a.e. co e il and for each such co, the function t + F i-> (WA£,)(co, t + T)

equals t + T» (Aw(WQ)(co, t + T).
The operators Ay  are also related to A by a direct integral.   Let y :

L2(R"/r) -» L2(F) be the Fourier transform

(7«)(3») = /     exp(/(5, y))u(s + T) dx(s + V).
jR»/r

Let us write

(F*Ç){(0,t + r)= f F(co,s)t:(a-s(co),t-s + r)ds
Jr»

when F e S"o(H x R") and £ G ̂ (Q x (R"/T)) ■ Then

((l®^)(F*{))(e»,y)

é/t(í + T)

t/s

= /      exp(i(*,y))   /   F(co, j)¿(a-i(ía), í-í + r)rfí
JR"/r Ljr"

= /   F(cy,5)exp(i'(5, y))
Jr»

x    i     exp(i(t-s,y))Ç(a-s(co),t-s + T)dx(t + r)
Jr»/f

= [ F(co,s)exp(i(s,y))((l®^K)(a-s(co),y)ds
Jr»

= [Fy(co, ■)* ((I® &-)!;)(■, y)](co),

where

Fy(co, s) = exp(i(s, y))F(co, s).

For / g ^S(R") and í G S%(il x (R"/F)), we have

((1 ®F)A(f*c:))(co, y) = ((1 ®y)(/> *i))(û), 7)

= tó*/)'*((l®^)(-j)]M>
where, by the definition of /Í,

Ff(co,t) = (al*f)(t).
Notice that

(a0w*f)y(t) = exp(i(t,y))(a°w*f)(t)

= (2n)-n exp(i(t, y)) Í   \[ exp(i(t - s, x))a(co, x)f(s)ds
Jr» Ur» J

= (27t)-" /     /  <£xp(i(t - s, x + y))a(co, x) exp(i{s, y))f(s) ds
Jr» Ur»

= {ayw*fy)(t).

dx

dx
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Hence

((1 ®F)A(f*l;))(co, y) = [(a°w*f)y * ((1 ®S?)Ç)(., y)](co)

= [(ay1*fy)*((l®^K)(-,y)](co)

= [Ay(fy*(l®F)c:)(.,y)](co)

= [Ay ((I ®F)(f *£))(., y)](co).

This implies that if we write

L2(ilxV) = j Ç$L2(iï)dm(y),

then A has the direct integral decomposition

(2.3) (1®&)A =
[/,©

Ay dm(y) (l®$~).

Before stating our theorems, we would like to give a more clear formula for

the operators A, Aw, and Ay in the case where the symbol function a is that of

a differential operator of order m . Suppose that a(co, x) = Y,\ß\<m Vßi0^)^ >

where cpß e C%°(il) and xß = xf1 ---xü" for x = (xx,... ,x„) and ß =
(ßi,...,ß„).Then

(A(0u)(y + r)=  J] tpß(ay(co))dfu(y + s + T)\s=o,
\ß\<m

(Ayn)(co)= 52 <Pß(co)dfexp(-i(s,y))n(as(co))\s=0,

\ß\<m

and

{AÇ)(œ,y + r)= 52 tpß(co)ds^(as(co),y + s + T)\s=o.
\ß\<m

We are now ready to state our theorems. The spectrum of a linear operator

T will be denoted by o(T). Recall that A G C belongs to the left spectrum of
T if there does not exist any bounded operator B such that B(T - X) = 1 on

the domain of T. Let o~t(T) denote the left spectrum of T. If T happens to

be selfadjoint, then o(T) = o¡(T).

Theorem 1. (i) For every y eT', a¡(Ay) = (Ji(A).

(ii) The operator A is bounded if and only if Ay is bounded for every y e F'.

(iii) In the case A is bounded, \\A\\ = \\Ay\\ for every y eT'.
(iv) In the case A is bounded, a(Ay) = a(A) for every y eV.

Remark 2.1. The crux of this theorem is the word "every". If one replaces

"every" by "almost every", then the proof of this theorem becomes much easier.

For instance, the "a.e." version of statement (ii) is a simple consequence of
(2.3). But for our purpose, the "a.e." version of the theorem has little value for
it would not pinpoint a single y for which the statements hold true.

Recall that the symbol function a(co, jc) is said to be formally selfadjoint if

for a.e. co e il, the operator Aw is symmetric.
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Theorem 2. The following are equivalent:

(i) There is a ye P such that A7 is a symmetric operator.
(ii) For every y eT', A7 is a symmetric operator.

(Hi) The operator A is symmetric.

(iv) Aa is symmetric for a.e. coeil.

Recall that the symbol function a e Sm is said to be elliptic if there exist C >

0, R > 0, and a set E e 33 with p(E) = 0 such that l/\a(co, x)\ < C\x\~m
whenever |.x| > R and co G il\E. It is well known that if a is formally

selfadjoint (i.e., if any of (i)-(iv) of Theorem 2 is satisfied) and elliptic, then

for almost every co e il, Aw is a selfadjoint operator [10, 15]. Hence in

this case (Aw - i)(Aw + i)~x is unitary for almost every co. We claim that

A is selfadjoint. To verify this claim, it suffices to show that the deficiency

indices of A are both zero. For this purpose, we think of L2(Q x (R"/r))

as L2(H, L2(Rn/r)), the collection of L2(R"/r)-valued L2-functions on il.

Suppose Ç e L2(il, L2(Rn/r)) = JnQL2(Rn/r)dp is a vector orthogonal to

rj(co)(Aw - i)f for all n e S^0(il) and / G ̂ (R"/T). Then

[ n(co)((Aa)-i)f,C(co))dp(co) = 0.
Ja

This means ((Aw - i)f, Ç(co)) = 0 a.e. Since (Am - i)So(Rn/T) is dense in

L2(R"/T) when Aw is selfadjoint and since L2(R"/T) is separable, we have

£(co) = 0 for a.e. co e il. Similarly, if £ is orthogonal to n(co)(Aw + i)f

for all t] e ^o(H) and / G ̂ o(R"/r), then { = 0 a.e. By (2.2), this means
the deficiency indices of A are both zero. It is known that for y e F, A7 is

selfadjoint if the symbol function a is elliptic and formal selfadjoint [6].

Theorem 3. Suppose that the symbol function a is elliptic and formally selfad-

joint. Then a (A7) = a (A) for every y e F.

Proof. Since Ay and A are selfadjoint operators, we have a(Ay) = a¡(Ay) and

a (A) = oi(A). By Theorem l(i), o¡(Ay) = a¡(A).   D

Theorem 4. Suppose that the symbol function a is elliptic and formally selfad-

joint. Then:
(i) For a.e. co eil, a(Am) c a(A).

(ii) If A is bounded, then so is Aw and \\AW\\ < \\A\\ for a.e. co eil.
(Hi) Suppose that the measure p is ergodic. Then a(Aw) = a(A) for a.e.

co eil. And in the case A is bounded, \\AW\\ = \\A\\ for a.e. co eil.

Proof. Suppose that U is an open disc such that U n a (A) = 0 . Then there is
a continuous function 0 < tp < 1 on C such that tp = 1 on U and tp = 0 on

a(A). Hence tp(A) = 0. By (2.2), there is a set E(U) e33 of measure zero such

that <p(A(o) = 0 for every co e il\E(U). This means that a(Aw)r\U = 0 if co e

il\E(U). Since C\o(A) is covered by such f/'s and since C\a(A) is second

countable, we can find a sequence of discs {U„} such that IJ^Li U„ = C\a(A).

Let E(U„) be the null set corresponding to U„ . If co e n\[U^, E(U„)], then

a(Aca) n U„ = 0 for every n , i.e., cr(Aw) n [C\c(^)] = 0. This proves (i). (ii)

is an immediate consequence of (2.2).

To prove (iii), we first show that there is a set E e 33 of measure zero such

that for any / G C0(R) and u,v e L2(Rn/T), the function co h-> (f(Aw)u, v)

is measurable on il\E. Let z G C\R, and let Bz = W(A - z)~x W*. If we
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think of L2(il x (R"/T)) as the collection of L2(R"/r)-valued L2-functions on
il, then it follows from (2.2) that W(A - z)W* commutes with the operators

of multiplication by functions in L°°(il). It follows from the identity
BZW(A - z)W* = 1 that Bz also commutes with such multiplication oper-

ators. Hence there is an ^'(L2(R''/r))-valued strongly measurable function

Bz(co) on il suchthat Bz = Ja($Bz(co)dp(co). Since

/ @Bz(co)(Am - z)dp(co) = BZW(A - z)W* = 1,
Ja

there is a set Eze33 of measure zero such that Bz(co) = (Am - z)~x for every

co e il\Ez . Let {zj, ... , zn, ...} be a countable dense subset of C\R, and let

E = (J^li Ez„ • Then for n = 1, 2, 3, ... , the function co >->• (Aw - z„)~x is
strongly measurable on il\E. On the other hand, since the linear combinations

of {(t - z«)-1}^!, are dense in C0(R), for every / G Co(R), the function

co •-> f(Aw) is strongly measurable on il\E.

Let 3° be the collection of pairs of open intervals {(a, b), (a', b')} where

the end points a, b, a! , and b' are rational numbers satisfying the relation a <
a' < b' < b. For each pair P = {(a, b), (a', b')} e 3s, choose a continuous
function 0 < tpp < 1 on R such that tpp = 1 on [a', b'] and tpP = 0 on

R\(a, b). For any F G 3°, if cpP(A) ¿ 0, then the set GP = {co e il\E :
<Pp(Ao)) ¥" 0} is measurable and has positive measure. For each 5 g R", let

Us be the unitary operator (Usu)(t + V) = u(t + s + F) on L2(R"/r). It

follows from the definition of Aw that UA^U-s = A^^ . If f e Co(R),

then f(Aas(w)) = f(UsAwU-s) = Usf(Aw)U-s. Hence as(GP) c GPVE, where
E is the null set introduced in the previous paragraph. Since the measure p

is now assumed to be ergodic and p(Gp) > 0, we have p(GP) = 1. Let G

be the intersection of all G/>'s where P e 3° and tpP(A) ̂  0. Since 3° is a

countable set, G is measurable and p(G) = 1. Suppose X e o (A). We can

find a sequence P„ = {(a„, b„), (a'„ , b'n)} , n = 1, 2, ... , in 3° such that X

is contained in every (a'n , b'n) and b„ - a„ —> 0. Since X e a(A) and tpPn = 1

on a neighborhood of X, <pP„(A) ^ 0 for every n . This implies that if co e G,
then <pPn(Aw) ̂ 0 for every n . Fix an coq G G. Since cpPn = 0 on R\(a„ , b„),

we have o(AWo) n (a„, b„) ^ 0. Because o(A(O0) is a closed set, we have

X e o(AWíí). That is, a(Aw) D a(A) if co G G.   G

Remark 2.2. Unlike Theorem 1, this theorem is obviously not true if one re-

places "almost every" in the statement by "every".

Remark 2.3. That o(A(J}) is independent of co for a.e. co e il was proved

in [10, Corollary 1 in §3] under the assumptions that the dynamical system is

ergodic, that the symbol a e Sm is elliptic and formally selfadjoint, and that

the order m of Aw is strictly positive. As commented in [10], the results of

[10] also yield the independence of a(Aw) in the case m < 0 if a is invertible.

However the techniques employed in [10] cannot be used to treat the case m = 0

and the case m < 0 if a is not invertible. By contrast, Theorem 4(iii) states

that the independence of a(Am) is valid as long as the dynamical system is
ergodic and A is selfadjoint. As far as our proof is concerned, the order m
of the operator and the invertibility of the symbol a are irrelevant. The main
reason for this improvement is that we do not rely on the kernel function of

tp(Am) (tp e ^o(R)), which was the main technical tool in [10].
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Remark 2.4. The main result of [10] is that if p is ergodic, a is formally

selfadjoint and elliptic, and m > 0, then tr(A°) = o(Aw) for a.e. co e il.

By comparison, our results are much broader. The operators A and A7 with
7^0 were not even introduced in [10]. If p is not ergodic, then obviously it

is not true in general that a(A°) = a(Aw) for a.e. co eil. The right theorem
is that a(A7) d a(Am) for every y and almost every co eil.

Our next theorem gives a characterization of the spectrum a (A) in the case

A is selfadjoint. For R > 0, let BR = {y e F : \y\ < R} . Consider the analytic
function

FR(z)= [ ((A7-z)-xl,l)dm(y)
Jbr

on C\R. (Here, (A7 - z)~xl is the image of the constant function 1 under

the operator (A7 - z)~x and ((A7 - z)_1l, 1) the L2(fí)-inner product of
(A7 - z)~x 1 with the constant function 1.) There is a positive Borel measure

Fu on R such that

The existence of such a measure VR can be proved using function theory and

the properties of FR . On the other hand, VR can also be obtained explicitly.

Let

gR(co,t + r) = gR(t + T)= Í exp(-i(t,y))xlo,R){\y\)dm(y),
Jr

which is a function in L2(il x (R"/T)) • It follows from (2.3) that

FR(z) = ((A-z)-xgR,gR).

Therefore if A = JRXdEx is the spectral decomposition of A, then

VR(A) = (E(A)gR,gR)

for every Borel set A c R. For R' > R, we have lmFRi(z) > lmFR(z)

if Imz > 0. Hence for any Borel set A c R, we have VR,(A) > VR(A).
Our next theorem asserts that a (A) is completely determined by the action of

{(A7 - z)~x :y eT', z e C\R} on the single vector 1 G L2(il).

Theorem 5. Suppose that A is selfadjoint. Then a(A) is the collection of XeR

which satisfies the condition that for every e > 0, there is an R = R(e) > 0 such

that VR((X-e,X + e))>0.

3. The proofs of Theorems 1, 2, and 5

By Theorem 1.1, the L'-norm closure of {|/i|2H-MAI2 '• k eZ+, fx,... ,
fk e e(G)L2(il)} contains the constant function 1 if G is open and GnT' ¿ 0.
Consequently if H is a dense subset of L2(il), then the L'-norm closure of

{|/i|2 H-1- \fk\2 : k e Z+, fx, ... , fk e e(G)H} also contains the constant
function 1. We claim that for every y e T' and every positive integer k,

there are functions flA,..., fk,Pk G [e(-y + Bi¡k)S%(H)] nS"0(il) (recall that

Br = {y e P : |y| < /-})' such that'

P-l/l.l2-i/LJ2Hi<ia-
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This is simply because

[e(-y + Bi/k)S%(il)]n^o(il) d f g(X) de(X)^0(il) D e(-y + Bx/2k)^0(il),
Jr

where 0 < g < 1 is a C°°-function on R" such that g = 0 on R"\(B2/ik - y)

and g = 1 on BX/2k — y . It is easy to see that for any y eT' and n e L°°(il),

Pk , / Pk \

lim52\\fyjn\\2=lxm /  [52\fkj(co)\2)\n(co)\2dp(co) =

Let L be a Banach generalized limit on /°°(Z+). Suppose that F is a

bounded operator on L2(il) and r\,yi e L°°(il). Then it follows from the
above equality and the well-known properties of L that

Pk

<i™?ll2||Vl|2.
J=x )k=v

Therefore there is a bounded operator &y(T) on L2(il) suchthat

Pk

(Oy(T)n,y/) = L[{52(TfkJn,fkJy/)
J=x >k=v

It is obvious that the map T <-+&y(T) is a linear transformation on J¿?(L2(il))
whose norm equals 1. In fact the argument in the previous paragraph shows

that O^l) = 1, an important fact to bear in mind. It is also obvious that <S>7

maps selfadjoint operators to selfadjoint operators and nonnegative operators
to nonnegative operators.

We will next define and compute <&y(Au). Suppose that n e <5*6(£2). Then

there is a bounded open set G such that n e e(G)L2(il). By (1.4), fk   rç G

e(-y + Bx/k + G)L2(il). Hence there is a C°°-function / whose Fourier trans-

form has a compact support on R" such that jj ¡n = f*(fk ¡n) for all possible

k and j. Hence

(A»fkJt1)(co) = (A»f*(fkJt1))(co)

= I (al*f)(t)(fkjn)(a_t(co))dt,
Jr»

where

(a^*f)(t) = (2n)-n Í   \f exp(i(t-s,x))a(co,x-v)f(s)ds   dx.
Jr» Ur»

The map tp(co) >-> JRn(a^*f)(t)(y>)(a-i(co))dt is a bounded operator on L2(il).

Hence there is a constant C(r\) > 0 such that \\AVfl Mi < C(n)\\fJ M2,

Therefore

Pk

L\{EW'Ji.jn./ijW)
*;=!>

<c{n)\\ih\\vh
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for every y/ e L°°(il). Hence there is an element which we denote by <^y(Av)n

in L2(il) such that

Pk

(<t>y(A»)n,y,) = L\\ 52{AvfkJtl, fkJy/)
■j=x >k=\>

Thus we have a linear transformation 07(AV) from S%(il) into L2(Q). Fora

bounded linear operator T on L2 (il), we similarly have a linear transformation

Oy(TAv) from S%(il) into L2(Q) such that

mTA")ri, V) = L[\ 52{TAvfkjn,fkjy/)
>! )k=\,

holds for all n e ^(Q) and y/ e L°°(il). Following the same line of rea-
soning, we can also define <&(AV*) and ^7(TA"*). It is clear that S%(il) is
contained in the domains of ®y(Av)* and <$y(A"*). Therefore both operators

are closable. We will use the same symbol to denote the closure of <P7(AV). On
the other hand, we treat <by(Av*) only as an operator defined on <9ó(il). This

is because in general we do not know whether the closure of <S>y(Av*) coincides

with the adjoint of <&y(A").

Lemma 3.1. (i) Let b(co, t) be a measurable function on ilxR" such that the

function 11-» ||¿>( •, í)||oo belongs to Lx(Rn). Let T be the (bounded) operator

on L2(il) such that (Tcp)(co) = /R„ b(co, t)cp(a-t(co)) dt. Then

®y(T) = Ty,

where

(T7cp)(co)= ( b(co,t)exp(i(t,y))tp(a-t(co))dt
Jr»

for tp e L2(il).
(ii) Let T and T7 be as above. Let B be a bounded operator on L2(il).

Then

®7(BT) = <l>7(B)Ty.

Proof, (i) Let yi e L°°(H). Then

(3.1)

(Tfk   W)(co)= f b(co,t)fk   (a-t(co))¥(a-t(co))dt
Jr.»

= I nb(œ,t)[fkj(a-t(co))-zxp(i(t,y))fkj(co)]y/(a_t(co))dt

+ fkj(co)(Ty¥)(co).
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Let C = /R„ \\b( ■, i)||oo dt. We have

(3.2)

/ I / b(co, t)[fk   («_,(©))-exp(i(i, y))fk   (co))y/(a-t(co))dt
Ja \Jr» 'j

< í Í \b(œ,t)\\[fk   (a-t(co))-exp(i(t,y))f¡  (co)]\2dt
JaJR» 'J

x I   \b(co,t)\\y/(a-t(co))\2dtdp(co)
Jr»

<C|IV2lloc /  ||¿>(- , Ollooll«-^^ -exp(/<í, ̂»/^^llií/í.
Jr»

Let

Ck(t) = max{|l -exp(/(i, X))\ : \X\ < l/k}.

By our choice, 7^ ,- G e(-y + BX/k)L2(il). Hence

(3.3)
\\u.tfkj-exp(i(t,y))fkj\\2

[        [exp(-i(t, X)) - exp(i(t, y))]de(X)fk
J-y+Bi/k

It follows from (3.1)-(3.3) that

WTJtjV-JïjTrifrWÎKCWy,2^ [  \\b(- , t)\UCk(t))2dt\\fk   ||
7Rn '■>

Because Ck(t) < 2 and lim^^ Ck(t) = 0 for every t e R" , we have

lim /  \\b(-,t)\UCk(t))2dt = 0.
k—»oo 7ri

Hence
Pk

}^52\\Tfl^-fljT^\\\

dp(co)

< Ck(t)\\fkJ\

j=i

< CH^Hoo lim  /  \\b( ■,t)\\O0(Ck(t))2dt52 \\fk j\\22 = 0

Therefore for any cp e L°°(il),

Pk

(T7y,,cp)-52(Tfkjy,,fkjcp)lim
k—»oo

J=X

= lim
fe—»oo

Pk

52U,jTy*K,rk,j<P)-{TfkJy>,rkJ<p))

Pk

<¡™52\\TfkjV'-fl,jTyn2\\rk,j<Ph
j=i

1/2 1/2

í^ihWjV'-fkj^y'ñ)    (iXyflli)    =o.
j-> u=k

This means ®7(T) = Ty.
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(ii) Let y/ and cp be as above. Then

lim
fe—»oo

Pk Pk

52(BfljTyv>fkj<p) - 52(BTfkjv, rkJf)
7=1 ;'=l

= lim
fe—»oo

Pk

52mfkJT7y,-TfkJy,),fkJcp))
j=x

Pk

< \\B\\ lim 52 \\Tfk   y, - fk jT7¥\\2\\fk   tp\\i = 0.   D
K—»OO ^^ ,J 'J 'J

7=1

Lemma 3.2. (i) For any y, v e P a«¿? rç G <9o(iï),

<&y(Au)n = Av+yn.

(ii) // B is a bounded operator on L2(iï), then for any n e ^o(ü),

Q>y(BAv)n = <Py(B)Au+yn.

Remark. This lemma implies that <&y(Av) = Av+y. But it does not necessarily
mean that the closure of W {Av*)\S%(0) is (Av+y)*. The fact is that S%(il)

may not be a core for (Av+7)* when the operator A fails to be elliptic.

Proof of Lemma 3.2. (i) Let n e <9o(H) be a function which belongs to

e(BR)L2(il) with some R > 0. Let S = 1 + |y| + R. Let 0 < g < 1 be

a C°°-function on R" such that g = 1 on Bs and g = 0 on R"\55+i. It

follows from (1.4) that f? ¡n e e(-y + Bx/k + BR)L2(il). Therefore

fkjV= í g(X)de(X)fkjn= [ g(t)u-,dtfkjn,
Jr Jr»

where g(X) = /R„ g(t) txp(-i(t, X)) dt. By the definition of A" , we have

ATkJn = TfkJn,

where

with

(Tcp)(co)= f b(co,t)cp(a-t(co))dt
Jr»

b(co, t) = (2n)~n I   \      txp(i(t-s, x))a(co, x -v)g(s)ds
Jr» YJr»

dx.

That aeSm ensures that /R„ \\b( • , i)IU dt < oo . Applying Lemma 3.1(i), we

obtain that for any tp e L°°(il),

Pk

(<t>7(Av)r¡,tp) = L\{52(Al'fkJn,fkjtp)

fe=i>
oo

Pk

L\{52(Tfl,Jn>fk,J<P)\
-i=x Jfe=l>
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By Lemma 3.1(i), we have

(<Py(T)n)(co)= f b(to,t)exp(i(t,y))n(a-t(co))dt
Jr»

= f   [(2*)-" I   I / cxp(i(t-s,x))a(co,x-v)g(s)ds
Jr» L Jr.» Ur»

xexp(i(t, y))n(a-t(co))dt

= /   \(2n)~n I   \      exp(i(t-s, x))a(co, x-v-y)
Jr» L Jr» Ur»

dx

x exp(i(i, y))g(s)ds

= [  \(2n)-n I   \   I cxp(i(t-s,x))
Jr» L Jr» L ^r«

xa(co, x - v - y)gy(s) ds

dx

dx

n(a-t(co))dt

r\(a-t(co))dt

= (A»+7(g7*r1))(co),

where

g7(s) = exp(i(s,y))g(s)

Since g = 1 on Bs = Bx+\y\+R, the function

gy(X)= Í g7(s)txp(-i(s,X))ds = g(X-y)
Jr»

equals 1 on Bx+R . This implies gy *n = r\. Therefore

<t>y(Au)n = <t>y(T)n = Au+y(g7 * n) = Av+7n.

(ii) Let T, n, and y/ be as above. According to Lemma 3.1 (ii),

mBA»)ri, <p) = L I J 52(BA»fkjn, fk }tp)
J=l fe=i.

= Lllf2(BTfkjr,, fkJtp)\      j =(<t>y(BT)n,tp)

= (<S>y(B)<&y(T)ri, y/) = (<&y(B)Av+yn, y/).   D

Proof of Theorem 1. (i) Suppose that S is a bounded operator on
L2(il x (Rn/T)) such that S(A - z) = 1. It follows from (2.3) that

(3.4) (l®F)S(l®9-)-x 17 ®(A7-z)dm(y)   =1

on L2(il x F). Fix a y0 e P . Let n e 5*0(0.) such that Jn \n\2 dp=l. Then

y h-> A7n is a continuous map from T' into L2(il) (see the definition of A7 in

§2). Let E„ = {y eT' :\y- y0\ < l/n} . Then r¡XEjy/m(En) is a unit vector
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in L2(il x P). It follows from (3.4) that

1= (i®^-)s(i®^rx 17 (¡)(a

- m* I [Jr ®{A? ~ Z) dm{y)\ nXE*ly/™^

z)dm(y) nXEn/\lm(En)

\\Sf
1

■n) Je„ \Ja
\((Ay-z)n)(co)\2dp(co))dm(y)

m(En) je„ \Ja

Letting n -» oo, we see that

1/||,S||2< \\{A* -z)ri\\22.

This shows that z ^ oi(A70). Hence we have shown that a¡(A) D o¡(A7) for

every y eT'.
On the other hand, if z £ oi(Av), then there is a bounded operator B

on L2(Q) such that B(AV - z) = 1. By Lemma 3.2(ii), <&y(B)(Av+7 - z) =
®7(B)AU+7 - z®7(B) = ®y(B(Av - z)) = 1 for every y e F. Hence for any

n e <9o(il), we have

|M|2 = \\<t>y(B)(A"+y - z)n\\2 < \\B\\ \\(A"+y - z)n\\2

for every y e P . It follows from this inequality and (2.3) that

Kh/\\B\\<\\{A-z)Z\\2

for every £ in the domain of A. Hence z ^ o¡(A). Thus we have shown

o¡(A) c oi(A") for every iv G P .
(ii) It follows from Lemma 3.2(i) that if one A7 is bounded, then every A7

is bounded. On the other hand, by (2.3), A is bounded if and only if A7 is
bounded for almost every y.

(iii) If A is bounded, the pseudo-differential operator B = A*A is self-

adjoint. It is easy to see that B7 = (A7)*Ay. By (i), therefore, we have

a(B) = cti(B) = a¡(By) = a(B7). This implies P||2 = \\B\\ = \\B7\\ = ||^||2.
(iv) If A is bounded, we can apply Lemmas 3.1 and 3.2 to A* and (A7)*,

since these operators are now closures of bounded pseudo-differential operators

induced by their common symbol function a* on the respective ^o-spaces.

Hence, by (i), ar(A) = a,(A*) = a,((A7)*) = ar(A7).   D

Proof of Theorem 2. Suppose that A is symmetric. Let n e 5%(il) and / G
S%(Rn/T). Then nf belongs to the domain of A . It follows from (2.3) that

/,
(Ayn, n)Wf)(y)\2dm(y) = (Anf, nf) e R.

Hence (Ayn, n) e R for almost every y e P . Since the map y i-> (A7n, n) is

continuous (see §2), (Ayn, n) G R for every y eT'. Hence if A is symmetric,
then so is every A7. Conversely, it follows from (2.3) that if A7 is symmetric
for almost every y e P, then A is symmetric. Therefore (ii) and (iii) are
equivalent. If we take the identity (2.2) and apply a similar argument, we see

that (iii) and (iv) are equivalent. Obviously (ii) implies (i). On the other hand,

that (i) implies (ii) follows from Lemma 3.2(i).   D

We will now turn our attention to the proof of Theorem 5. Recall that, in

a natural way, the space L2(il x (R"/T)) is identified with L2(R"/T, L2(Q)),
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the collection of L2(í2)-valued L2-functions on R"/T. Let 2 denote the

collection of functions in L°°(Rn/T, L°°(il)) whose supports are bounded in

R"/r. Obviously 3 is a dense linear subspace in L2(Rn/T, L2(il)). Since
ut = 1 for every t e T, we may use the expression us for s G Rn/T. Let

W2 denote the collection of bounded linear operators K on L2(il x (R"/T)) =

L2(R"/T, L2(H)) which has a kernel function k G L2(R"/T, L2(il)) in the
sense that

{Kt)(t)= f     k(s)u-sÇ(t-s)dx(s)
Jr»/t

for every £ e 3. If K e %, then K* e %. Indeed it is straightforward to

verify that K* has k*(s) = U-sk(-s) as its kernel function. Furthermore, for

C G L2(R"/T, L2(il)) and Ç e 3,

(KÇ,Ç) = (Ç,K*i)= [     (Ç(t), f     k*(s)u-sÇ(t-s)dx(s)\   dx(t).
Jr»/t \        Jr»it I ^

(Here, to avoid ambiguity, we use (• , ')ß to denote the inner product

on L2(il).)  Since the function t *-> jRn,r\k*(s)u-s£(t - s)\dx(s) belongs to

L2(R"/F,L2(Q)), _     _
(t,s)~Ç(t)k*(s)u-sÇ(t-s)

is an L1(Q)-valued L'-function with respect to the measure x x x. The oper-

ators {us : s G R"/T} are also isometries on Lx(il) in the obvious way. With
this in mind, we define

(VF)(s,t) = U-sF(-s,t-s)

for F e LX((R"/T) x (Rn/T), Lx(il).) Then V is an isometry on that L!-space

and preserves the integral. If we set F(s, t) = Ç(t)k*(s)u-sÇ(t - s), then

(VF)(s,t) = k(s)W)u-si:(t-s).

Hence, if we set

G(t) = f     k(s)u-sC(t - s) dx(s),
Jr»/f

then by Fubini's theorem,

(KC,t)= [     (G(t),t(t)),dx(t).
Jr»/t

Since G belongs to LX(E, Lx(il)) for every bounded measurable set E c

R"/r and £ is an arbitrary element in 3, the above inequality implies that

Ue 11^(011^,2 dx(t)]x'2 < \\Kt:\\2. Since E is arbitrary, G e L2(R"/T, L2(il)).
This means (AT£,Ç) = {G,Ç). Hence we have established the following:

Lemma 3.3. Suppose that k is the kernel function for K e'ê'i and

C G L2(f2 x (Rn/T)) = L2(Rn/T, L2(il)).

Then

(KQ(t)= [     k(s)u-sC(t-s)dx(s).
Jr»/t

Let yf be the closure of ^ in the weak operator topology.
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Lemma 3.4. ^ is an ideal in JV. More precisely, if k is the kernel function

for K G §2. then for any T e^V, Tk is the kernel function for TK.

Proof. Suppose that K e W2 with kernel k, and suppose that H e %. ■ Let

Ç,n G 3. Define [Cr¡](s) = /R„/rn(t)u-sÇ(t - s) dx(t). With Lemma 3.3

in mind, it is easy to verify that (HKÇ, n) = (Hk, [Çn]). This shows that
HK belongs to %. and has Hk as its kernel function. Suppose now that

T is an operator in jV . Then there is a sequence {Hn} e ^2 such that

HirXn^iHnk, [Çn]) = (Tk,[Çn]) and lim„_00(//„^, n) = (TKÇ, n). Since
(HnKÇ, n) = (H„k, [£n]), we have (TKÇ, t¡) = (Tk, [£>/]). It follows from
Fubini's theorem that

(TKZ,n) = (Th,m)

= !      Í    ((Tk)(s)u-sÇ(t - s), n(t))ß dx(s) dx(t).
Jr»/t Jr»/t

Since Ç e 3, the function t i-> jRn/r(Tk)(s)u-sÇ(t - s)dx(s) belongs to

L2(Rn/T,L2(il)). Hence (TK£,)(t) = )R„IT(Tk)(s)u-s^(t - s)dx(s). There-

fore Tk is the kernel function for TK.   D

For each s e R" , let Us be the unitary operator

(ÜsC)(co,t + T) = i:(a-s(co),t-s + T)

on L2(Q x (Rn/T)).

Lemma 3.5. (i) Let f e S*(Rn). Then the operator

(FQ((0,t + r)= f f(s)Ç(a-s(co),t-s + T)ds,     Ç e L2(R"/T, L2(il)),
Jr»

belongs to W2.
(ii) Suppose that g is a measurable function QxR" suchthat /R„ ||g( 'SjHoorfs

< 00. Then the operator G : 5%(il x (R"/T)) -> L2(il x (Rn/T)) defined by the

formula

(GQ(co,t + T)= [  g(co,sK(a-s(co),t-s + T)ds
Jr»

extends to a bounded operator on L2(il x (R"/F)) which belongs to Jf.

Proof, (i) Let

Ü, = /  exp(i(s, y))dEy
Jr»

be the spectral decomposition of the unitary group {Üs : s e R"} . Since Ü¡ =

1 for every s e T, the spectral measure dEy is actually supported on F . It is

easy to see that

F= í f(s)Üsds= i f(y)dÉy= í f(y)dÉy,
Jr» Jr» Jr

where / is the standard Fourier transform of / and, therefore, belongs to

^(R"). Consider / as a function on T'. Recall that & denotes the Fourier

transform from L2(Rn/T) to L2(T'). We also have

F= I    (F-lf)(s + T)Usdx(s + T).
Jr»/t
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That is,

(3.5) (FQ(co,t + T)= Í    ($-xf)(s + T)u-¿(t-s + T)dx(s + T)
Jr.» IT

for Ç e L2(R"/T, L2(il)). Hence F e%2.
(ii) First of all, it is trivial that  G extends to a bounded operator on

L2(il x (Rn/T)) and that

||G||< /  ||g(-,J)||oo<fr.
JR»

It follows from (3.5) that if g(co, s) = tp(co)f(s) with cp e L°°(il) and / G
S"(R"), then G e W2 . For an arbitrary g, there is an M > 0 such that for any

e > 0, there is a ge = £j=, tpjfj with tp, e L°°(il) and fj e S%(Rn) which
satisfies

/   \\ge(-,s)\\oods<M
Jr»

and

/    / \ge(co,s)-g(co,s)\dp(co)ds<e.
Jr» Ja

Each ge generates an operator Ge e %. by the formula

(GeQ(co,t + T)= [ gE(co,s)C(a_s(co),t-s + T)ds.
Jr»

Clearly, lim^o C7£ = G in the weak operator topology.   D

For each natural number k, let 0 < hk < 1 be a C°°-function on [0, oo)

such that hk = 1 on [0, k] and hk = 0 on [k + 1, oo). Then Afc(l7l) is a

compactly supported C°°-function on R" . Let

gk(t) = (2n)-"l2 I txp(-i(t, y))hk(\y\)dy.
Jr»

Then gk e <9>(R") and

hk(\y\) = (2n)~"l2 f exp(/(i, y))gk(t)dt.
Jr»

Define

Hk= I hk(\y\)dEy.
Jr»

It is obvious that

Hk = (2n)-"l2 ! gk(s)Vsds.
Jr»

That is,

(HkQ(co,t + T) = (2n)-n'2 f g(s)C(a_s(co),t-s + T)ds
Jr»

for Í G L2(il x (Rn/T)). By Lemma 3.5(i), HkeW2.
For the rest of the section, the symbol function a of the pseudo-differential

operator A will be assumed to be elliptic and formally selfadjoint.
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Lemma 3.6. For any tp e Co(R),  tp(A) e ¿V.   Consequently for any interval

/cR, xM)eJr.

Proof. Let us first show that for any n e S%(il x (R/T)),

lim\\An-HkAHkn\\2 = 0.
fe—»oo

Since the sequence {Hk} strongly converges to the identity operator, it suffices

to show that limjt_oo \\An - AHkn\\2 = 0. Suppose that

t1(co,t + T) = (f*Q(co,t + T)= [ f(s)aa-s(co),t-s + T)ds,
Jr»

where / G ̂ o(R") and Ç G L2(il x (Rn/T)) n L°°(il x (Rn/T)). Then

(Hkn)(co,t + T)

= (27r)-"/2 / gk(r) \ f f(s)ttoc-s-Aco) ,t-s-r + T)ds
Jr» Ur»

= [ f(s)\(2n)-"/2 [ gk(r)Ç(a-s-r(co),t-s-r + T)dr
Jr»        L Jr» J

= (f*(HkC))(co,t + T).

Hence by the definition of the operator A , we have

(AHkn)(co,y + T) = (A(f*(HkQ))(co,y + T)

= [ (a°0)*f)(t)(HkO(a-t(co),y-t + T)dt
Jr»

dr

ds

IR»

where

a°01*f)(t) = (2n)-n i   \¡ txp(i(t-s,x))a(co,x)f(s)ds
Jr» Ur»

dx.

Since / G ̂ o(R") and a e Sm , it follows from Lemma 3.5(ii) that a%*f is the

kernel function of a bounded operator in JV. Because lim^oo \\HkÇ — Ç\\i = 0,

we have lim^ \\AHkn - An\\2 = lim*^ \\A(f * (HkQ) - A(f * Ç)||2 = 0.
Since Hk(f * C) = (2&) "^^fe * (/ * C) » we also have

(AHk(f * C))(û>, y) = (2*)-"/2 / (al * gk)(t)(f * C)(a_t(û)), y -1 + T) dt.
Jr»

Because gk e y(Rn) and a e Sm, by Lemma 3.5(h), the function (co, t)

i-» (a% * gk)(t) is the kernel of a bounded operator in JV. That is, ^4//^
extends to a bounded operator which belongs to JV. Hence if z G C\R, then

(HkAHk-z)~x e JV". To complete the proof, it suffices to show that (A-z)~x e

jY for every z e C\R. For any neS%(ilx (Rn/T)), we have

\\[(A - z)~x - (HkAHk - z)~x](A - z)n\\2

= \\n - (HkAHk - z)~x(HkAHk -z + A- HkAHk)n\\2

= \\(HkAHk-z)-x(A-HkAHk)n\\i

<\lm z\-x\\(A-HkAHk)n\\2.

Since A is selfadjoint and S%(il x (Rn/T)) is a core for A, we have that

(A - z)S%(il x (Rn/T)) is dense in L2(il x (R"/r)).   Therefore the above
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estimate implies that (A-z)~x is the strong limit of {(HkAHk-z)~x) . Hence

(A-z)~x ejy if zgC\R.   d

Lemma 3.7. Let

Ék(t + T)= f exp(-i(t,y))hk(\y\)dm(y).
Jr

Suppose that H eA*, and suppose that Hgk = 0 for every k. Then H = 0.

Proof. Let Us denote the unitary operator (Usf)(t + T) = f(t - s + T) on

L2(R"/T). Then the unitary group {Us : s e R"} has the spectral decomposi-

tion

Us = I  exp(i(s,y))dEy.
Jr»

Again, because Us = 1 for every s e T, the spectral measure dEy is supported
on F. Hence

/     gk(s + T)Usdx(s)= f hk(\y\)dEy= I hk(\y\)dEy.
Jr.» IT Jr Jr»

Since hk(\y\) —» 1 for every y, the sequence {/Rn/r gk(s+T)Us dx(s)} converges

to the identity operator strongly.

To prove the lemma, let us first assume that H efê2 and that h is its kernel
function. We have

(Hgk)(co,t + T)= f     h(co, s + T)gk(t - s + T)dx(s + T)
Jr»/t

= [     gk(s + T)h(co,t-s + T)dx(s + T)
Jr»IR»/T

(Higk(s + T)Usdx(s + T)
/r

h )(co,t + T).

Hence lim^-n» \\Hgk - h\\2 = 0. If Hgk = 0 for every k, then h = 0.
Suppose now that H is an arbitrary element in JV. Since the operators

Hk = Jr hk(\y\)dEy converge to 1 strongly, if H ^ 0, there is a p such that

HpH / 0. Since HPH e %, (Lemma 3.4), by the previous paragraph, this is

possible only if there is a gk such that HpHgk ^ 0.   D

Proof of Theorem 5. Let / be an open interval in R. Then Ina(A) ^ 0 if and
only if Xi{A) / 0. By Lemmas 3.6 and 3.7, this happens precisely when there

is a k such that (Xi(A)gk, gk) > 0. Let vk be the measure vk((-oo, t)) =

(X(-oo,t)(A)gk, gk). Then / n a(A) ¿ 0 if and only if vk(I) > 0 for some
k; So the proof will be complete once we show VR(I) < vk(I) < VR>(I) for

R < k < R' - 1.
We have

({A - z)~xgk,gk) = ((1 ®F)(A - z)-'(l ®FTx(l ®F)gk, (1 ®5T)gk).

Since ((1 ®3r)gk)(co, y) - (^gk)(y) = hk(\y\), it follows from (2.3) that

■duk(t) = ((A-z)-x~gk,~gk)LRÍ-Z

=   i ((A7-z)-xl,l)(hk(\y\))2dm(y).
Jr
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Suppose that z = x + iy lies in the upper half-plane. Then

yLit-x)2+y2

j_
li
1

dvk(t)

I z—-dvk(t)- [ -—zdvk
Jr t - z 7R t - z

(t)

^j¡([(A-z)-x-(A-z)-x]gk,gk)

= Jr (h[{A7 ~z)_1 "{Ay ~ *r1]1 '!) ^i^i)2 ̂ w

= [ y(((A7-x)2+y2)-xl,l)(hk\y\)2dm(y).
Jr

Similarly, we have

JR {t-xy)2 + y2dVR{t) = Jr y{{{Ay ~ X)2 + y2r'l ' l)XB«{y) dm{7) ■

Since XBR{y) < (MM))2 < Xbr,(y) forR<k<R'-l,we have VR(I) <
vk(I)<VR,(I).   D

4. Operators associated with arbitrary dynamical systems

In the previous sections, we assumed that the transformation group {at:t e

R"} on (il, 33, p) has the property that there is a closed subgroup P c R"

such that for any invariant set Ae33 with p(A) > 0, we have 5A = P, where

5a is the support of the spectral measure of the unitary group utf = f o a,

on the subspace L2(A, dp) of L2(il, dp). As we have mentioned earlier, if
p is ergodic, then the dynamical system automatically has this property. But

obviously p need not be ergodic if the dynamical system has this property.

From now on we will drop this assumption. In other words, for the rest of the

paper, we assume nothing about the measure-preserving transformation group
{at : t e Rn) on (il, 33, p) except that it is strongly continuous, i.e., í « /oa(

is a continuous map from R" into L2(il) for every / G L2(il). The space

L2(Q) is still assumed to be separable.

Let (Q#, 33*, p*) be the product measure space of denumerable copies of

(Q, 33, p). Define a*t(cox, co2,...) = (at(cox), at(co2), ...). Then {a* : t e

R"} in a strongly continuous group of measure-preserving transformations on

the space L2(il*) = L2(il*, 33*, p*), which is again separable. For each t e

R", define u*f = foaf, f e L2(il*). Then {uf : t e Rn} is a strongly
continuous group of unitary operators on L2(Q#). Let

T={teRn: for every / g L2(il) ,foa, = f a.e.}.

Define

T' = {yeRn:(t,y)e 2nZ for every t eT}.

Theorem 4.1. Suppose that

u*= Í exp(i(t,y))de*
Jr»
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is the spectral decomposition of the unitary group {u* : t e R"}. Then the

support of the spectral measure de* is P.

Proof. Since u* = 1 for every t G T, it is clear that the support of de* is

contained in P . It remains to be shown that the support of de* contains F .

In other words, we must show that if tp e C£°(Rn) and jjB <p(y) de* = 0, then

tp vanishes on V. Let such a tp be given, and let (f2n)nl2cp be its inverse

Fourier transform. That is,

tp(y)= [ exp(i(t,y))tp(t)dt.
Jr»

We have

(4.1) / cp(t)u*dt= ! cp(y)de*y=Q.
Jr» Jr»

Suppose that nx, ... , nk, £i, ... , Çk e L2(il). Define

n(coi, ...,cok, cok+i,cok+2,...) = nx(cox) ■ ■ ■ nk(cok)

and

Î(ûji, ... , cok,cok+x,cok+2, ...)=Çx(cox)---Çk(cok).

Then

(u*Ç)(cox,... ,COk, COk+i , cok+2,...)

= £(a,(coi), ... , at(cok), at(cok+i), at(cok+2),...)

= Zi(at(coi))---Çk(at(cok))

= (u,ii)(cox) ■ ■ ■ (uÁk)(cok).

Hence, by (4.1), we have

(4.2) / 9{L)lMÁx,1\)"-(u¿k,nk)dt= f tp(t){u*,i,r\)dt = Q.
Jr» Jr»

Let si be the subalgebra of C¿,(R") generated by the functions {{utf, g) :

f, g e L2(il)} in the i-variable. Because the complex conjugate of (utf, g)

is (utf, g), the algebra s/ is symmetric. It follows from (4.2) that

(4.3) /  y,(t)G(t)dt = 0
Jr»

for every G e sf. Suppose that t - s £ T. We claim that there exist

f, g e L2(il) such that (utf, g) ^ (usf', g). For otherwise, we would have

(ut-sf, g) = (ut(u-sf), g) = (us(u-sf), g) = (f, g) for every pair of func-

tions f, g e L2(il). This contradicts the definition of T. Therefore the
functions in sf separate the points of R"/T.

Fix a yo € F, and let F(t) = sirx({t, yo)). Let 1 > e > 0 be given. Let h
be the continuous function on R such that h(t) = t for -2 < t < 2, h(t) - -2
for t < -2, and h(t) = 2 for / > 2. Let R > 0 be such that

(4.4) /       \<p(s)\ds<e/6,
Jr»\br



408 JINGBO XIA

where BR = {t e R" : \t\ < R} . Since F is a T-periodic function, by the Stone-
Weierstrass approximation theorem, there is a real-valued function FR e sf

such that

max\F(t)-FR(t)\<
teBR 4 + 2jBJy(s)\ds'

Since \F\ < 1, we have \FR\ < 1 + 1/4 < 2 on BR . Hence h o FR(t) = FR(t)
for every t e BR. Therefore

(4.5) xrxax\F(t)-hoFR(t)\<
'€** 4 + 2 jBR\y(s)\ds"

Applying the Stone-Weierstrass approximation theorem once more, we see that

h o FR belongs to the sup-norm closure of sf . Hence it follows from (4.3) that

(4.6) [ hoFR(s)f(s)ds = 0.
Jr»

Therefore it follows from (4.4), (4.5) and (4.6) that

/   sin((s, y0))y>(s)ds\< /   \F(s) - h °FR(s)\ \y>(s)\ds
\Jr» I     Jr»

<[  \F(s)-hoFR(s)\\tp(s)\ds + 3 f       \<p(s)\ds<e.
Jbr Jr»\br

Since e G (0, 1) is arbitrary, we have /R„sin((i, yo))<p(s)ds = 0. A similar

argument shows that /R„ cos((s, yo))<p(s) ds = 0. Hence

(p{yo) = /  exp(i(s, y0))y(s)ds = 0.
Jr»

This shows that tp vanishes on F,   D

Theorem 4.2. Let D e 33* be a set such that p*(D) > 0 and p*([D\a*(D)]) =

p*([a*(D)\D]) = 0 for every t e R". Then the restricted spectral measure

de*\L2(D) also has T' as its support.

To prove this theorem, we need the following simple measure-theoretical

lemma. For a measurable function / on the measure space (il*, 33*, p*),

define

(Skf)(CO'i, ... , 0)'k, COi, C02, ... , COq, ...) = f(COx , C02, ... , (Oq, ... )

for k = 1, 2, 3.It is clear that for every 1 < p < oo, S¿ maps Lp(il*)

isometrically to itself.

Lemma 4.3. Let E e 33* and f e Lx(il*). Then lim^^ ¡ESkf dp* =

p*(E)fn,fdp*.
Proof. First let us consider the case / G L°°(il). Let ^ be the algebra of sets
generated by Ai x-xAkxilxilxilx-- , where k is an arbitrary natural

number and Ai, ... , Ak e 33. Let e > 0 be given. By the definition of the
product measure p*, there is a sequence {Ek) c ^ such that Ek o E and

linifc^oo p*(Ek) = p*(E). That is, lim^^ \\xEk - Xe\\\ = 0. Hence there is a
Po such that

/ Skfdp* - [   SJdp*
Je Jed„

<e
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for every k and p*(EPo\E) < e. Suppose that EPo = B x il x il x ■ ■ ■ , where B

is a subset of the product of mo copies of il. Then p*(EPo) = p x • ■ ■ x p(B).

Furthermore, if k > mo, then

/   Skfdp*

=      \ f(cok,cok+i,...)dp(como+i)
Jb L Jaxax-

x ••• x p(cok) x p(cok+x) x • • •   dp(coi) x ••• x p(como)

= px---xp(B) / f(cok, ...)dp(cok)xp(cok+i)x---
Jaxax--

= p*(EP0) [ fdp*.
Ja*

Hence, for k > mo, we have

1/ Skfdp*-p*(E) [ fdp*
I Je Ja*

<   i Skfdp*- (   Skfdp* +(p*(EPo)-p*(E))\f fdp*
Je JeVk I ./ii»

<e + e||/Hi.

an

Hence lim^^ /£ Skfdp* = p*(E) J^fdp* when / G L°°(Q#). Suppose
now that / is an arbitrary function in Lx(il*). Let g e L°°(il*). Since

||S*S-S*/||i = ||g-/1i,wehave

\[ Skfdp*-p*(E) f fdp*
I Je Ja*

< I [ Skfdp* - [ Skgdp*\ + I / Skgdp*-p*(E) f  g dp*
\Je Je \    \Je Ja*

+ \l  fdp*- I  gdp*\
\Ja* Ja* I

<2\\f-g\\i + \[ Skgdp*-p*(E) [ gdp* .
I Je Ja*

Hence the desired result follows from the case / e L°°(il*).   o

ProofofTheorem 4.2. Suppose that <p is a function in C^°(Rn) suchthat

/ y>(y)de*\L2(D) = 0.
Jr»

To prove the theorem, it suffices to show that cp vanishes on F. In view of

Theorem 4.1, we only need to show that /g„ cp(y) de* = 0. Let (2n)nl2cp be the

inverse Fourier transform of cp , i.e., cp(y) = /R„ exp(/(r, y))cp(t)dt. Then for

every / g L2(il*),
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Xd I  (¡>(t)u*tfdt = XD i  <P(7)de*f= I  <p(y)de*xDf = 0.
Jr» Jr» Jr»

By the preceding lemma, for any f, g e L2(il*), we have

p*(D) ̂ tp(y)de*yf, g^ = p*(D) (J  tp(t)f °a* dt, g^j

= [  tp(t)}^(xD(Skf)oa*,Skg)dt.
Jr»       fe—»oo

Here, we used the fact that Sk(foa*t) = (Skf) oaf. By the dominated conver-

gence theorem, we have

P*(D)([  <p(y)de*f,g)= lim  ( cp(t)(XD{Skf)oa*, Skg)dt
\Jr» I     fe-»oo7R„

= lim (xd [ <¡>(t)u*Skfdt, Skg) =0.
k^°° \     Jr» I

Therefore Jg„ tp(y) de* = 0.   D

It follows from Theorem 4.2 that {(il*, 33*, p*), {a* : t e R"}} satisfies
the condition that we imposed on our dynamical systems in §1. Therefore the

theorems stated in §2 are valid for the pseudo-differential operators associated

with this new dynamical system. Suppose now that a is a function on flxR"

which belongs to Sm for some m e R.  That is, there is a set A e 33 of

measure 0 such that for any pair of multi-indices v and ß , there is a Cvß > 0

such that

sup  \d^dfa(at(co),x)\ < Cvß(l + \x\)m~^ .
coça\A

Define
a*((coi,... , cok ,...), x) = a(coi, x)

for x e R" and (coi, ... , cok, ...) e il* = ßx-'XÜx-, Then a*

belongs to the class Sm on il* x R" . In exactly the same way we defined

A on L2(il x (Rn/T)) and A7 on L2(Q), we can now define the pseudo-

differential operators A* on L2(il* x (R"/F)) and A*7 on L2(il*) using the

symbol function a* . Therefore if we apply Theorems 1-5 and 4.2, we have the

following theorems on the spectra of various pseudo-differential operators with

a* or a as their symbol.

Theorem 1* . (i) For every y eT', o¡(A*7) = o¡(A*).

(ii) The operator A* is bounded if and only if A*7 is bounded for every y eT'.

(iii) In the case A* is bounded, \[A*\\ = \\A*7\\ for every y eT'.
(iv) In the case A* is bounded, a (A*7) = a (A*) for every y eT'.

Theorem 2* . The following are equivalent:

(i) There is a ye T' such that A*7 is a symmetric operator.

(ii) For every y eT', A*7 is a symmetric operator.

(iii) The operator A* is symmetric.

(iv) Aw is symmetric for a.e. co eil.

Theorem 3* . Suppose that the symbol function a is elliptic and formally selfad-

joint. Then a(A*7) = o(A*) for every y eT'.
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Theorem 4* . Suppose that the symbol function a is elliptic and formally selfad-
joint. Then:

(i) For a.e. coeil, o(Am) c a(A*).

(ii) If A* is bounded, then so is Aw and WA^W < \\A*\\ for a.e. co eil.

Theorem 5#. Suppose that A* is selfadjoint. Let BR = {y e F : |y| < JR} for
R > 0. There is a positive Borel measure v£ on R such that

f {(A*7-z)-xl,l)dm(y)= f -±-dV*(X).

Furthermore, a (A*) is the collection of X e R which satisfies the condition that

for every e > 0 there is an R = R(e) > 0 such that VR((X - e, X + e)) > 0.
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