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KINEMATIC FORMULAS FOR MEAN CURVATURE POWERS OF
HYPERSURFACES AND HADWIGER'S THEOREM IN R2"

JIAZU ZHOU

Abstract. We first discuss the theory of hypersurfaces and submanifolds in

the m-dimensional Euclidean space leading up to high dimensional analogues

of the classical Euler's and Meusnier's theorems. Then we deduce the kinematic

formulas for powers of mean curvature of the (m - 2)-dimensional intersec-

tion submanifold So n gS\ of two C2-smooth hypersurfaces Sq , S\ , i.e.,

fG(fs n„s H2kda) dg . Many well-known results, for example, the C-S. Chen

kinematic formula and Crofton type formulas are easy consequences of our

kinematic formulas. As direct applications of our formulas, we obtain ana-

logues of Hadwiger's theorem in R2" , i.e., sufficient conditions for one domain

Kß to contain, or to be contained in, another domain Ka .

0. Introduction

Let Mp , Nq be submanifolds of dimensions p, q, respectively, in a homo-

geneous space C7/77 and let 7 be an integral invariant (e.g., volume, surface
area, etc.) of the submanifold Mp n gNq . Then many works in integral geom-

etry have been concerned with computing integrals of the following type

(0.1) / I{MpngNq)dg,
J{geG:  Mi>ngNi¿0}

where dg is the normalized kinematic density of G. For example in the case

that G is the group of motions in an «-dimensional Euclidean space R" , Mp
and Nq are submanifolds of R" and

I{Mp n gNq) = Vol{Mp n gNq)

evaluation of (0.1) leads to the formulas of Poincaré, Blaschke, Santaló and

others (see [1]). R. Howard [10] obtained a kinematic formula for

I{Mp n gN9) = Vol{Mp n gN9) in a homogeneous space. If I{M n gN) =
X{Mf)gN), where #(•) is the Euler-Poincaré characteristic of the intersection

M n gN of domains M and N in R" with smooth boundaries, then (0.1 )

leads to S. S. Chern's kinematic fundamental formula [2]. Next, assume that

I{MP n gNq) = p{Mp n gNq) is one of the integral invariants from the Weyl
tube formula. Then (0.1) leads to the Chern-Federer kinematic formula [22]
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for submanifolds of R" . This integral also leads to the C-S. Chen kinematic

formula [15] if we take I{MngN) - ¡Mn N K2{Mf)gN) da, the total square of

curvature of the intersection curve Mr\gN of two compact closed surfaces M,

N in R3. T. Shifrin [24] also obtained a kinematic formula of type (0.1) by
letting I{MP n gN9) be the integral of a Chern class. R. Howard [14] achieved

more general kinematic formula in the case that I{Mpf)gNq) is a homogeneous

polynomial of the second fundamental form of Mp n gNq in a homogeneous

space.

As is evident by the above examples, many known kinematic formulas are in-
trinsic. Only a few of them deal with the extrinsic invariants, for example, C-S.
Chen's formula. In fact, Howard [14] gives some extrinsic kinematic formulas.

In this paper, we will give kinematic formulas for powers of mean curvature

in the case that M, N are hypersurfaces of Euclidean space R" . One of our
results is the following.

Main Theorem. Let S¡ {i = 0, 1) be compact smooth hypersurfaces of class C2

in R" . Denote by 77 the mean curvature of the {n - 2)-dimensional intersection

submanifolds So n gS\ and by krn{Si) {defined in equation (4.15) below) the

rth integral of the principal curvatures of S¡, respectively, where g £ G, the

rigid motions in R" . Then for any integer k with 0 < 2k < n - 1 we have the

kinematic formula

(0.2)        /(/       Hlkda)dg=    £    cijklnkln+2J{So)k'n+2i{Si),

i.l.l
i+j+l=k
I (even)

where dg is the kinematic density for R" , da is the volume element and the

c 's are constants depending on the indices.

In the first part of this paper we seek formulas for submanifolds of R" in
which the integrand in (0.1) can be expressed as a homogeneous polynomial

in the components of the curvature tensor of the submanifolds. If {M, N)

is a pair of hypersurfaces in R" , we obtain kinematic formulas in which the

right-hand side of (0.1 ) is expressed explicitly in terms of the total principal
curvatures of the given hypersurfaces. Many well-known results (for example,

the C-S. Chen formula [ 15] and Crofton type formulas) are easy consequences of

our theorems. It is possible to use the ideas of this paper to obtain the general

kinematic formula for p-dimensional submanifolds Mp and ^-dimensional

submanifolds Nq , i.e., for integrals of type JG \jMPngNq Hk da) dg, (0 < k <

p+q-n), in which the right-hand side of (0.1) can be expressed as a polynomial

of the curvatures of the submanifolds.
In section 1 we give some basic concepts of differential geometry of hyper-

surfaces in R" which are generalizations of the results of classical differential
geometry (for example, Meusnier's and Euler's theorem). Some preliminaries
of integral geometry are introduced in section 2. The basic concepts are in

Santaló's book [1]. We obtain our kinematic formula ( Theorem 1) and its con-

sequences (for example, C-S. Chen's formula, Crofton type formulas) in section

3 and the proof of Main Theorem is given in detail in section 4. The methods

used in this part are mostly based on those of Chern [26] and Howard [14].
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In the second part of this paper we derive the analogues of Hadwiger's con-

tainment theorem. The general principle underlying this investigation can be
briefly described as follows:

Containment problem. Let Ka , Kß be two suitable domains in the Euclidean

space R" , for example, two convex bodies with interior points. Let G be the
group of rigid motions of R" and let m be its (suitably normalized) kinematic
measure. Then

(0 3)    mS"S E G ' gKß C Ka °r gKp D Ka^

[ ' ' =m{g£G: KangKß^0}-m{g£G:dKangdKß ¿ 0}.

(If Ka, Kß are not convex, one assumes that their boundaries are connected.)

By integral geometric methods it is possible to estimate the measure m{g £ G :
Ka n gKß ± 0} from below and the measure m{g £ G : dKa n gdKß / 0}
from above in terms of geometric invariants of Ka and Kß . This will result in
an inequality of the form

(0.4)   m{g£G: gKß c Ka or gKß D Ka} > f{Axa, •• • , Aka; Axß, ■■ ■ ,Akß),

where each A\ is an integral geometric invariant of Ky {y — a, ß). One can

then state the following conclusion: If f{Axa, ■■■ , Ak ; Alß, ■ ■ ■ , Akß) > 0, then

there is a rigid motion g such that either gKß is contained in Ka or gKß

contains Ka.

The first classical result is due to Hadwiger (see [1, 5, 6], 1941) who was

the first to use the method of integral geometry to obtain some sufficient con-

ditions for containment problem in Euclidean plane R2 and later in projective

plane RP2 and hyperbolic plane 772. Since then many mathematicians have
been interested in getting a version of the containment problem in space R" ,

that is, getting sufficient conditions to insure that a given domain Kß of sur-

face area Fß , bounded by a piecewise smooth boundary dDß , of volume Vß

may be moved 'inside' another domain Ka of surface area Fa , bounded by a
piecewise smooth boundary dKa , of volume Va . Grinberg, Ren and Zhou (see

[4, 28]) obtained a variation of Hadwiger's theorem in the plane of constant

curvature e and reinterpreted those sufficient conditions by the isoperimetric
deficits of domains involved. But there was no general result or analogue of

Hadwiger's theorem in space R" {n > 3) until works [7, 9, 10, 11, 12, 17] ap-

peared, even if some very strong restrictions are put onto the domains involved
(for example, the domains are supposed to be convex bodies and some topolog-

ical conditions are put onto their boundaries and intersection). The situation of

«-dimensional space R" {n > 3) is much more complex and difficult than that

of 2-dimensional plane R2 . None of the formulas and methods in R2 can be

parallelly carried out in higher dimensions. One also hopes that analogous re-
sults may be achieved for hyperbolic and projective spaces of higher dimension.

We have some results in a later paper [29].

By restricting the domains Ky to the convex category, the author [9, 10, 11]

obtained some sufficient conditions in R" (« > 3) which are the generaliza-

tions of Hadwiger's theorem to R" . Zhang [7] derived a sufficient condition in

R3 for the domains belonging to the convex category. Goodey [13] obtained

some related results by putting topological restrictions on the convex domains
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involved and their intersection dKa n gKß . Later we removed the convexity

restrictions and obtained analogues of Hadwiger's theorem in R3 [12, 17].

In section 5 of the second part of this paper we will give direct applications of
our kinematic formulas and obtain the R2" analogues (Theorem 4 and Theorem
5) of Hadwiger's theorem. It is surely possible to obtain analogues of Hadwiger's

theorem in R2n+X. But for this purpose we must seek new kinematic formulas.

In fact, we can only obtain kinematic "inequalities".

I would like to express sincere thanks to my dissertation advisor, Professor E.

Grinberg, who guided me into this area and encouraged me with his teaching,
discussions, and suggestions. I would like to thank Professor R. Howard for a

great deal of valuable suggestions and discussions, especially his paper [14], and

for e-mail correspondence which benefited me a great deal and improved my

manuscript. I am indebted to Professor S. S. Chern and Professor P. Goodey
for sending me their papers and valuable comments, and to Professor E. Lut-

wak for some discussions during his visits to Temple. I would also like to thank

Professor Ren Delin and Professor Yang Wenmao for their teaching and con-

tinuing support while I was at Wuhan University during 1974-77 and 1984-87.

I appreciate G. Zhang's comments. Finally I thank the referee for many useful
comments.

1. Differential geometry of the hypersurface in Rm

Let M be an «-dimensional submanifold of Rm . The second fundamental

form of M at x £ M is a symmetric bilinear mapping

(1.1) hx:MxxMx^MxL,

where Mx is the tangent bundle of M and Mx is the normal bundle of M at

x. If e\, • • • , em is a orthonormal basis of Rm such that e\, ■■■ , e„ is a basis

of Mx and en+\, ■■■ ,em is a basis of Mx , then the components of hx in this

basis are the numbers (A*)?- = {hx{e,., e¡), ea), 1 < í, j < n, « + 1 <a < m,

where ( , ) is the usual inner product in R". Associated to the bundle of

orthonormal frames {e^} over M we have the coframes, which consist of m

linearly independent linear differential forms {coa} > such that the metric in M

is

(1.2) ¿52 = 5>2.
;

Restricted to M, we have coa = 0 and 0 = dcoa = £, (oai A <y,. By Cartan's

lemma, we get

(1.3) coia = Yihfj(Oj,    h°j = hji,
j

the second fundamental form of M with respect to frames {ea} and coframes
{coi} is

(1.4) 77= £ (A«a>,a;>Q.

i,j,<*

The mean curvature vector is defined by

(1-5) ^ = E(^EA«)^
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The square of mean curvature of M is

(1-6) "2 = ¿£(£^)2.

Let X" c Ym ç Rn+^ be two submanifolds. If we choose the frame

(1-7) {x; ei, • • • , e„, en+i ,■■■ ,em, em+x ,■■■ , en+p)

such that e\, ■■ ■ ,en £ T{Xn) and e., • • • , em £ T{Ym), then we have the

mean curvature vector H x of X" , the mean curvature vector 77 Y of Ym ,

respectively, are

(!-8) ^x = \ E ÍE*sWi E (E*ä)^ = ̂  + ̂ -
a=n+l V   í / ß=m+\  \   i J

,      n+p     i \

0=m+l  \  i /

where G ym is defined as the mean geodesic curvature of Ym at x e X" and

Ny- is the «tea« normal curvature  of Tm al x£l".  Their lengths, i.e.,

\Gy"\ = Kg{Ym), |Vym| = K„(Tm), are called, respectively, the geodesic cur-

vature, normal curvature of Ym (at x £ Ym in the direction X" ). Of course

they are invariants. It is obvious that two submanifolds X and X' of same
dimension which are tangent at x have the same normal mean curvatures. This

actually is the classical Meusnier's theorem when X is a smooth curve in a

surface Y2 of 3-dimensional Euclidean space R3.

Let £ be a hypersurface in an m-dimensional Euclidean space Rm. For

each point x £ X, choose the frames {x ; e\, e%, • • • , em-\, em} such that
e\, ■ ■ ■ , em-i £ TXÇL), and em £ NX{H), the normal vector at x £ X. Then we

have the fundamental equations

m-l

dx = ^2 wiei '
;=1

m-l

(1.10) de,; = Y^ °>iiei + wimem ,    <Oij = oiji,

7=1

m-l

dem = - E œ'me' >

and the integrability conditions

m-l m-l

]T] (Oi A (Oim = 0,      dcOi = ]T œJ A Wij >
i=l j=\

m-l

(1.11) doJij = ^2 (JOik A (Dkj + 0)im A (Omj ,
fc=l

m

dcojm = ^aijj Aœjm.
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From the above equations, there are functions A,7 such that

m-l

(1.12) coim = ^2 hijWj,    hij = hji.

Now we get

m-l

(1.13) l = {dx,dx)='£{œi) \*»i)
(=1

m-l m-l

(1.14) II = -{dx, dem) = Y cojOjjn, = ^ hijcoiCOj,

;'=i ',7=1

which are called, respectively, the first and second fundamental form of X (II

is only defined up to a sign). The principal directions are the directions which

diagonalize (Aiy), i.e., the eigenvalue directions of (A,;). It is known that at

each point of a hypersurface X in Rm there are m - 1 principal directions and

m - 1 principal curvatures K\, ■ ■■ , /cm_i.
Assume that e\, ••• , em-\ are m - 1 principal directions, for each unit

vector v £ Tx{1), v = ¿^Vjej. Then we have the normal mean curvature at

x £ X along the direction v ,

ft 151 ic,(v\ - U{V) - ZKitfiv) _ Vl      2
(1.15) KZ{V) - — -    Eftj2(v)    - ^ K,V, .

This is Euler's formula for higher dimensional hypersurface. In particular, the
normal curvatures along the directions of frames e¡ are

(1.16) Kl{ej) = ^à = hjj = Kj,       ¿»I,••■ ,m-l.

If v £ TX(L), a unit vector, then v can be expressed by the spherical coor-

dinates

(1.17)
V = (COS 01 COS 02 • • • COS <f>m-i COS 4>m-2 , COS 0) COS 02 ■■ • COS 0m-3 sin <t>m-2 >

cos <f)\ cos <f>2 • ■ • cos </>m_4 sin 0m_3, • • • , cos (¡>\ sin 4>2, sin 0i ),

with

(1.18) O<0,<27t;    0<4>2,--- ,4>m-2<n,

where 0/ are the angles between v and the principal directions e¡. Then we

have

Kz{v) = K\ COS2 01 COS2 02 ■ ■ ■ COS2 0m-3 COS2 0m_2

+ k2 cos2 0i cos2 02 • • • cos2 <t>m-i sin2 0m_2

+ K3 COS2 0i COS2 02 • • • COS2 0m_4 SÍn2 0OT-3 H-

+ Km-2 cos2 0i sin2 02 + Km-1 sin2 0i.
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This is Euler's formula in classical differential geometry when m — 3. The
mean curvature of X is

(1.20)

i i     m~x i     m~x

77z = —!-TTr(n) = ——r E h« = ~^T E *<•
m-l m-l ¿-^ m-l ¿~>

(=i /=i

Now for the frame e\, • • ■ , en and e{, ■■• , e'n attached to So and Si the

mean curvature vectors of So, Si, respectively, are

(1.21)

(1.22)

/!-!

;=1

The mean curvature vector of S0 n gSi is

Tn-2

77 =
1

(1.23)

«-2

1

«~^2

n-2

£A?. '^-i+Jä^
L/=l

>i-2

;=1

B-2

EA'"<-l+EA^n

Let f7,  F be an orthonormal basis of the normal space of So n gSi and

770 , 77[ be the mean curvatures of So, Si, respectively. We choose U in the

direction of 77 , the direction of the mean curvature of Sb n gSi. Then

(1.24)

Let

(1.25)

then

(1.26)

Hence

(1.27)

Thus

(1.28)

Tr((7, d2x) = (« - 2)770,    Tr(K, d2x) = 0.

en = cos 6 U + sin 6 V,

{en , d2x) = cos 6{U, d2x) + sin 0{V, d2x).

Tr(e„, d2x) = hxx + ■■■ + A„_2„-2

= K{ei) + ■■■ + K{e„-2) = {n-l)H0- K{e„-i).

{H, en) = (77 • e„) = ^[(« - 1)770 - *(*„_,)]

is an invariant, where K{en-i) is the principal curvature of ^o in the direction

en-i. Similarly,

(1.29) (H,e'n) = (77 .e'n) = -^[{n - 1)77, -/c'(^_,)]

is also an invariant and where K'{e'n_{) is the principal curvature of Si in the

direction e'n-l
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By the following formula

P\

(1.30)

(fll + -" + a«-l)P= ¿2 TT^i-}aÍl---am-2am-\
i,+-+im.i=PlX-       lm~X-

=     E     civ..im_,a\..-ain^2<
lm-1     'm-l

m—2   m-l'

. im-1

we have

(1.31) K{{V)=       52       Cll...lm_lvf^..V^K^Kii...K
'm-l

m-l '

. 'm-l

where

P\
(1.32) c-, .../„_, = -¡---,        h +••• + /„_!= P.

If da denotes the area element of X, we define the rth homogeneous mean
curvature as

(1.33) ^•,B_1(£)=(Mr"1) 'jf(*!'■•■*£!)<**,

where (kj1 • • • K^lJ) denotes the rth homogeneous polynomial of the principal

curvatures. In particular, M° is the area and Mx is the total mean curvature
of X.

When m = 3, all the results here agree with those in classical differential
geometry.

2. Preliminaries on integral geometry

Let So and Si be two piecewise smooth hypersurfaces in R" of class C2 .
We assume So fixed and Si moving under the rigid motion g of R" with the
kinematic density dg. Consider generic positions gSi so that the intersection

So n gSi is an (« - 2)-dimensional manifold. Let x £ So n gSi and con-
sider the orthonormal frames {x ; ei, ■■ ■ , e„) such that span{ei, ■• ■ , ^-2} =

Tx{So n gSi), the tangent (« - 2)-space to So D gSi at x. Let e'n_l, e'„ be
the unit vectors that are, respectively, tangent and normal to Si at x , so that

{x; ei, ■■■ , e-„_2, e'n_x, e'n) is a second orthonormal frames of origin x. We

denote the kinematic density dT0 on So (i.e., the density for sets of frames

{x ; ei, • • • , e„) such that e„ is the unit normal to S0 ) by

dTo = f\{dx-e¡)f\ {eh .de,) A (</x • e¿_,) A (¿<>i ■ <_,)
(2.1) i h<j

A • • • A (</e„_2 • e'n_x),        i, A, j = 1, 2, • •■ , « - 2.

Similarly, the kinematic density on Si (density for frames {x;ei,--- , e„-2,

e'n_x, e'n) such that e'„ is the unit normal to Si ) is denoted by

(2.2) dTi = /\{dx • e¡) f\{eh • de¡),    i, h, j = 1, 2, •■• , « - 1,
i A<y

so that the kinematic density for R" is

(2.3) dg = dTi A {dx • e„) A (rfe, • e„) A • • • A {den-i • e„).
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The kinematic density on So n gSi (i.e., density for frames {x ; e\, • • • , e„-2)

attached to So n gSi ) is defined by

(2.4) dT0i = /\{dx-e¡)f\{eh-dej),    i, A, ; = 1, 2, ••• , n - 2.
i h<j

Then we have the basic formula (see [1, pp. 262, (15.35)])

(2.5) dT0iAdg = smn~l(j)d(l>AdTo/\dTi,

where 0 is the angle between S0 and Si (i.e., between e„ and e'n ).

If Li is a hyperplane, assume that dLn^i[X] is the density of the (« - 1)-

plane about x and that dLn_i is the density for sets of (« - l)-plane in R" .
Then we have (see [1, pp. 244, (14.64)])

(2.6) da{x) A í/L„_i = smn~l<f>d(f) A dai0){x) A dLn-X[x],

where da{x) is the volume element of the intersection submanifolds S0 n gLi

and í/ct'°'(x) is the volume element of So ■

Denote by

k„{So) = (S,e„) = -\[(« - 1)770 -*(<?„_,)],

(2.7) "    2
«„(S,) = (H,e'H) = ^[(« - 1)77, - *'«_,)],

the normal mean curvatures of So, S\ > respectively. Then by the laws of sines

and cosines we have

Lemma 1. Let H be the mean curvature of the intersection manifold So n g Si
of two compact hypersurfaces So and Si. Denoted by 0 the angle between So
and Si, i.e., cos0 = {e„ , e'„). Then we have

(18) 772sin20 = (7?.é>„)2 + (7?.O  - 2(7? • e„) (Ê ■ <)cos0

= K2n{S0) + k2„{Si) - 2Kn{S0)Kn{Si)cos<f>,

or

(2.9) 77sin0 = (K2(So) + K2(,S,)-2K„(5o)K„(S,)cos0)1/2;    O<0<^.

When « = 3, (2.8) becomes a formula of classical differential geometry in
R3.

Lemma 2. Let Kn^ (/ = 0, 1) be the normal curvatures of surfaces S¡ in 3-

dimensional Euclidean space R3. Denoted by k the curvature of the intersection

curve So n g Si of two compact surfaces S0 and Si and by 0 the angle between

So and Si, i.e., cos0 - {e-¡, e'^). Then we have

(2.10) Ksin0 = [{k„0))2 + (41J)2 - 2K{n0)4l) COS0]1'2.

From the formula

(2.11) {al+a2 + a3)k=     ^     j^a^a?,

h,h,h
j\+h+h=k
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for 0 < 2k < n — 1 we have

T^k^n2k,_ ,2,

(2.12)

H" sin" 0 = {kUSo) + <(S,) - 2k„{So) k„{Si) cos0)

=    E   i=r^^2'(So)K^(5i)cos'0.
I.J.I

i+j+I=k

i\jU\

From (2.5) and (2.12), we come to

(2.13)
H2kdT0iAdg

=    E    {j^4+2'(So)Kln+2J{Si)cos'cl>sinn-2k-1cl>dcl)AdToAdTi,

i.1,1
i+j+l=k

with

(2.14) O<0<tt,

the angle between So and Si and dg the density for Rn . Also

(2.15)

/"Jo

Let

(2.16)

(/-!)!!(« -2A- 2)!!

I    („_Ar- i-y- 1)!!

cos' 0 sin"-2^1 0d(b = {  (/-!)!!(« -2k- 2)!!

(n-fc-j-i-1)!!
I 0,

it,    I even, « odd ;

2,    / even, « even ;

/odd.

' 2'A!(/ -!)!!(« -2k- 2)!!

C/y/fcn - <
«/!/!(«-ik-i-j-1)!!
2/+1A:!(/- !)!!(« - 2A - 2)!!

[    i\j\ll{n - k - i - j - l)\\   '

7T,    « odd ;

n even.

Then we have

Lemma 3. Let S, (/' = 0, 1) be smooth compact hypersurfaces of class C2 in

an n-dimensional Euclidean space R" . Then for any k with 0 < 2A < « - 1

we have

(2.17)

/ ( [H2kdToi)dg
J{g:SongS,ft0} \J J

E    Gjikn j<+2i(S0)dT0J'Kln+V{SX)dTX.
i.j.l

i+j+t=k
I    even

3. Kinematic formulas for hypersurfaces

Let S be a smooth hypersurface of class C2 in an «-dimensional Euclidean

space R" and k„{S) be the normal mean curvature of S. Denoted by krn{S)

the rth total normal mean curvature of S, i.e.,

(3.1) kn{S) = JsK„{S)da,
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where da is the volume element. Let

C(«) = 02_20„_3 •••0i,

(3-2) J¡^in_x = ^-^ch..,n_,I{ii,... ,in_i),

Jh-jn-l   =   \l + 2j) Cjl-j"-1 W* '  " '    ' •/"-1) '

(3.3) h + --- + in-i=l + 2i,    ji + ---+j„-i = l + 2j,

(2i, -!)!!• ••(2/„_1-l)!!
(3.4) I{h, •••,/„_!) = 0„-2

{n-l){n + l)---{n + 2p-3)

,n-l
where p = Xjt=i '* • Om is the surface area of the m-dimensional unit sphere

and its value is

2n(m+l)/2
(3.5) Om =

r«m+l)/2)'

where T denotes the gamma function. Then we have the following kinematic

formula (3.6) which can be explicitly expressed as integrals of the principal

curvatures of So and Si, i.e.,

Theorem 1. Let S, {i = 0, 1) be two compact smooth hypersurfaces of class

C2 in an n dimensional Euclidean space R". Then for any integer k with

0 < 2k < n - 1 we have the following kinematic formula

I Hlkda) dg
G \JS0r\gSi

= C{n)52CijMn   52   jp.,n_M^usi)
tl," ,'n-l

x    E   J¡0)¡   ^lñ   (So).

(3.6)
1,7,/ 11,"  ,'n-l

7i ,— ,7/1-1

Let X be a C2 -smooth hypersurface in R" , and let i?z , H^ be, respectively,

the scalar curvature, the mean curvature of X. Denote by Rz and 77j.2) the

total scalar curvature and the total square of mean curvature of X, i.e.,

(3.7) RT= Í RTda,    H™ = í H¡ da.

If k = 1 then we have

Corollary 1. Let S, {i — 0, 1) be C2-smooth closed hypersurfaces in R" . Denote

by Fj the surface area of S,. Then we have

(3.8) JG\Js0ngs, ) (« + 1)(«-1)

x {3(« - l)2{F0H[2) + FiH0:2))-4{FoRi+FiRo)}.

When k = 1 and « = 3, the scalar curvature is Gaussian curvature. Then

C-S. Chen's kinematic formula [15] is an easy consequence of our Corollary 1.
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Corollary 2. Let S, (/ = 0, 1) be compact C2-smooth surfaces in R3. Denote

by Hi, R¡, H¡ ' and R¡, respectively, the mean curvature, Gaussian curvature,

the total square of mean curvature and the total Gaussian curvature of S¡. Then

we have'

(3.9)       / ( I       K2ds) dg = 27r3(377¿2) - Ro)Fx + 2tc\3H[2) -Ri)F0,
Jg \JSongSi /

where k is the curvature of the intersection curves SoC\gSi, ds is the arc element

of So n gS¡ and F¡ are the surface areas of S,.

Let

r7l
t

C„k =  /   sin"-       0i/0
Jo

(3.10)
( n-2k-2   n-2k-4     4   3   „

2,    « even,
= < n-2k-l   «-2A-3      5   2

n-2k-2   n-2k-4     3   1
n,    « odd,

(3.11) <-,.-, = (V)

^ n-2k-l   n-2k-3     4   2

«-1\     {2k)\        (2/1-l)!!---(2/„_i-l)!!

2k Jiil-- /„_,! {n - 1)(« + 1) • • • (« + 4k - 3) '

we also have

Theorem 2. Let Lx be a hyperplane and let So be a closed hypersurface in R".
Denote by M¡ ...¡ _ the rth homogeneous mean curvature of So and H the

mean curvature of submanifold of S0 n gLx. Then for any k (0 < 2k < « - 1),
we have

(3.12)

¡((        H2kda]dg
Jg \Js0ngL¡ /

= oi_2on-i -01^52   52   <..,„_, ̂U_,(So).
«It—  ><n->

I'l +-+«,,_ 1=1

Theorem 2 can be restated as follows:

Corollary 3. Let AG{n, n - 1) be the Grassmannian manifold of all affine
hyperplanes in Rn. Then for any compact hypersurface S in Rn and for

k (0 < 2k < « - 1), we have the following Crofton type formula

(3.13)

/ (7    H2kda)dL
JAG(n,n-\) \JSnL )

cnkoi_2on^--0152   52   4,..,„_,K..,„_,(s).
'i,- .'n-i

»l+—+l._l=l'

1 The formula was first proved by C-S. Chen in 1972 (see [15]) and reproved by this author in

1992 (see [ 12]) by a different method.
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4. Proofs of theorems

Proof of Theorem 1. Equation (2.2) may be written as

dTi = /\{dx • et)¡\{eh ■ dej) = da™ A dgl,
(4.1) i h<j

i,h,j =1,2, ■■■ , « - 1,

where ¿er(1) is the volume element of Si at x and dgi is the kinematic density

for Si, i.e., for SO{n - 1). Then for any positive integer p we have

(4.2)

JKp{Si{v))dTi = JKp{Si{v))da^ Adgi

=      E      «.■■*-./(*!' •••<-.) d°W    S    v'Íl--vn^dgi
i,+-+z„_,=p s¡ SO(n-l)

= Vol(S0(«-2))     52      ̂ ~iyil...i,_lMfi...inJSi)I{h,-- ,in-l),
«It- ,'n-l

where -i

are the pth homogeneous mean curvature of Si,

p\
(4.3) <V-i._, = 7i—■—r    h + ---in-i=p;

i v2i> ■■■v2jr: dgi=Vol{SO{n-2)) f    v2i> ■ ■ ■ v2^ da
(4.4) JsO(n-l) JS"~2

= Vol {SO{n- 2)) /(i,,--. ,/„_,).

Equality (4.4) follows from the fibering of S0(« - 1) over Sn~2 with the fiber
SO{n - 2), and the values of the integrals are known (see, for example, H.
Weyl [18]),

/(/,,.•• ,/„_i)= /    v^-'-v^da
(4 5) Js"~2

^     ' n        (2/1-l)!!.-.(2/J_i-l)H

(«- i)(/i + i)...(/i + 2/?-3)
i-i ,
fc=l '*: •

So we have
where p = ££j ik .

(4.6)       jKp{Si{v))dTi=Yol{SO{n-2))     ^     ^V.^-v,^')'
ii,- .«'»-I

where

(4-7) tr^1)^./,-, /(/i. -./.-i).

Similarly, for any # we have

(4.8)    J K9{So{v))dT0 = Yol {SO{n-2))     ^     ^.,,.,^..^,(4),
7l.- ,7»
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where

(4-9) €i^=^~aX)C^-J(h,--,Jn-&,

(4.10) C/i-y—i = 71—1—r    7i+-" + 7«-i = í;
JV----Jn-\-

and the I{j\, ■■■ , jn~\) are computed as in (4.5). Also we have

(4.11) Vol(SO(«-2)) = 0„_2 ■■ Oi.

Putting formula (4.6), (4.8) and (4.11) into (2.17) we obtain

a-3--Oi / (7        H2kda]dg
Jg VS'ong.S'i /

(4.12) =(a-2---0,)2Ec^  E  €in-MlJsi)
i,j,l h,- ,'(i-l

x   52   Ji0)i  M'ñ i*).
¿—I ]Vjn-\        7r"7n-lv    u/ '

7l.- ,7(1-1

i.e.,

(4.13)

1(1       H2kdo)dg
Jg \Js0ngSi /

= 02n_2.On-3.-Oi52Cijkln     52     JJ^M^lJSi)
i.i.l '1 .— ,7(1-1

x   y   /}°>.  m/+2{ (So),
¿^ 7l—7(!-i      7i—7ii-iv   u/

71 ,•• .7(i-i

with

(4.14) li H-r-I„_i =l + 2i,      ji+---+jn-l=l + 2j.

We complete the proof of Theorem 1.

Let

Cijkln - C(«) Cijkin »

4+2i'(s,) =   E  Ä-,^-,«,-,(*),
(4.15) '1,-,'d-i

*l+2Hs0)=   E   ^,,n-,<2^7„-^).
7i.- ,7(i-i

and we obtain our Main Theorem.

Proof of Theorem 2. If Si = L is a hyperplane, then all principal curvatures of

L vanish. Then (2.9) becomes

(4.16) 772 sin2 0 = k2{S) ,

where 77 is the mean curvature of submanifold S n L and 0 is the angle

between S and L. From (2.6) we have

(4.17) H2kda AdLn-i =K2k{S) sin"-2*-1 <pd<?Ada^ AdLn-X[x],
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and thus

¡(I      H2kda]dg
Jg \JsngL /

<4-18) =CnkOl_2On^-Oi52      52      cl^Ml^iS).
H,- ,'n-l

«'l+-+i(i-l=i

This proves Theorem 2.

In particular, we have the following kinematic inequality.

Theorem 3. Let S¡ {i = 0, I), F¡, R¡, 77,, A,, and H(2) be as in Corollary
1. Then we have

(4.19)

j (j ^     H do) dg<7iAn {b„F0Fi [(3(« - 1)277<2) - 4R0) Fx

+ (3{n-l)2H¡V-4Ri)Fo\y

= 7iAn [b„FoFi [3(n - l)2 (h(2)Fx + H{2)F0) - 4 [RQFX + RXF0)] }* ,

where An = On-2On^ ■ ■ ■ Ox and Bn = 0„0„_20„-_1,/(«2 - 1).

Proof of Theorem 3. By Holder's inequality we have

/       Hda<([        l2-doY-([       H2da]

= (Vol(S0nsSi))*-(7 H2doY
\JSongS, /'SongSi

The Santaló kinematic formula [1] for the volume of intersection SoHgSi reads

On-QXOn-2

I2
'n-\

(4.21) / Vol(S0n^S,)^ = °n'"°x0n-2FoFi.
Jg 02_,

Integrating (4.21) with respect to kinematic density dg and using Holder's
inequality, (3.8) and (4.22) we come to

(4.22)

[([        Hda)dg
JG \JSongS¡ /

< / (Vol(So ngSx))l>([       H2da)   dg
Jg \Js0ngst /

<([ Vol(So n gSi) dg) 2 - ( [ ( /        772 da) dg)
Klo )       \Jg \JsangS¡ J       J

= nAn\B„FoFi [3(« - l)2 {H{2)FX +77<2) F0) - 4 (TV. +JR,F0)]}1.

This proves Theorem 3.

When « = 3, we have the following
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Corollary 4. Let S, {i = 0, 1) be two simply closed surfaces of class C2 in R3.

Assume that F¡, R¡, 77,, R¡ and H¡2' are as in Corollary 1. Then we have

I   (f Kds)dg
(4.23) G \Js°n8si        '

< 2n3 {f0Fx [(3/Y,S2) - TW, + (377,(2) - RX)F0] }*.

5. Analogues of Hadwiger's theorem—sufficient conditions for
one domain to contain another in r2"

It is known that at each point of a hypersurface X in R" there are « - 1

principal directions and « - 1 principal curvatures Ki, ••• , k„-X . Let da

denote the volume element of X, then the rth integral of mean curvature

(5.1) Mr{T)=(^~iyj    jfte,,- , Kir)do,

where {*,,, ••• , K,r} denotes the rth elementary symmetric function of the

principal curvatures. In particular, Mo is the area, M„_i is a numerical multiple

of the degree of mapping of X into the unit hypersphere defined by the normal
field and Mi is the total mean curvature of X.

In this section, we will use indices a and ß for the two domains and their

integral geometric invariants. We assume that Ka and Kß are bounded by the
simple hypersurfaces dKa and dKß , respectively, which we assume to be of

class C2. One restriction we put on domains is that for all g £ G, the group

of rigid motions in R2" , the Euler-Poincaré characteristic #(ÄTQ n gKß) of the

intersection Ka n gKß is at most «o, a finite integer, i.e., x{Ka n gKß) < «0.

Denote by Mf, Mf the rth integrals of mean curvatures of dKa, dKß,
respectively. Then Chern's kinematic fundamental formula [1,2] reads

(5.2)

Lx{KangKß)dg

n-2

- On-2        O On-i{VaX{Kß) + VßX{Ka))+l-52(hn+\MahMl2_h
A=0

where /(•) is the Euler-Poincaré characteristic and Vy {y = a, ß) are the

volumes of Ky.
Let

rs-v t 2/+1fe!(/-l)!!(2«-2Â:-2)!!
[     } ^ijkin-    ñjm{2n - k - i - j - l)\\   '

f{ij,k,i,n, M!ß+2i, mW) = 52 cijkln   52   TiV,M!r2LJdKß^
i.j ,1 '1 , ■■ ,'2ii-l

x   y   j\a).   m\+2],   {dKa).
¿-J 7l  "72n-l        7r"72(l-lv °"

7i , ••■ ,72(i-i

Denoted by krn{dKy) the rth integral of homogeneous mean curvature of dKy.

As a direct application of our kinematic formula (0.2) or (3.6) we have an

analogue of Hadwiger's theorem as follows
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Theorem 4. Let Ka, Kß be domains in 2n-dimensional Euclidean space R2n

bounded by connected hypersurfaces dKa, Kß, respectively, which we suppose

to be C2-smooth. We assume that for all g £ G, the group of rigid motions in
R2", the Euler-Poincaré characteristic satisfy X{Ka n gKß) < «0. Then either

of following inequalities gives a sufficient condition for Ka to enclose Kß or for
Kß to enclose Ka :

(5.4)
02„-i{VaX{Kß) + VßX{Ka)) + Tn 52 (h lx)MahMl

- no 52 Cijklnk'n+2i{dKa) kln+2i{dKß) > 0;
i.j.l

(5.5)
02n-i{VaX{Kß) + VßX{Ka)) + li 52 (/+\V<_2_A

A=0   V '

-n0f{i,j,k,l,n, M'ß+2i, Mi+2J) > 0.

Moreover, if Va>Vß, then Ka can enclose Kß .

Proof of Theorem 4. Let M be an «-dimensional closed submanifold in Eu-
clidean space Rm and H be the mean curvature of M. Then B-Y. Chen's

formula (i.e., the generalized Fenchel's theorem) [8] says

(5.6) / \H\nda>0„,
Jm

the equality of (5.6) holds if and only if M is imbedded as an «-sphere of Rm .
Now, we estimate integral

(5.7) / dg.
J{g : dKangdKßit0}

For almost every rigid motion g £ G in R2" , the intersection submanifold
dKa n gdKß may be composed of several components, i.e., dKa n gdKß =

U,ii X,, where X, is a connected imbedded closed (2« - 2)-dimensional sub-
manifold and Ng is always finite and only depends on g. By using B-Y. Chen's

formula (5.6) to the generic (2« - 2)-dimensional submanifolds dKa n gdKß
we have

(5.8) / H2"-2da > (hn-2.
JdKangdKe

The above equality holds if and only if dKa n gdKß is composed of only one

component and is a (2« - 2)-sphere in R2" . If the equality in (5.8) holds for

almost all rigid motions g £ G, that is, the intersections dKa n gdKß of the

boundaries of two domains Ka and Kß are always balls (or empty). Then the

two domains Ka and Kß must be balls (a consequence of a result of P. Goodey

[13,25]). Therefore

(5.9) (hn-2 i dg< Í ( / H2n'2da) dg,
J{g: dKangdKß?0} JG \JdKangdKß )
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and thus by (0.2) we have

(5.10) / dg < C„52 Cijkln k!n+2i{dKa) k!+2J{dKß),
J{g:dKangdKfi¿0} ¡jk

where C„ = 02n-2 • • • Ox. From

(5.11) / dg<n0 / X{Kaf)gKß)dg,
J{g : KangKß?0} JG

(5.2), (5.10) and (5.11) we have the kinematic measure of one domain moving

into another under the group G of the rigid motions in R2" , i.e.,

(5.12)
m{g £G: gKßcKa or gKß d Ka}

[ dg- f dg
J{g : KangKßJi0} J{g : dKangdKßJi0}

>-j-c„
"0

2n-21 /   O       \

^i{VaX{Kß) + VßX{Ka) + - 52 (h lx)MahMl_2_h

-C„52 Cijklnkln+2i{dKa) kln+V{dKß).
i.j.l

Equality holds above if and only if the two domains are balls. Hence a sufficient

condition for Ka to contained, or to be contain in, Kß is

(5.13) m{g £ G : gKß c Ka or gKß D Ka} > 0.

Therefore (5.2) or (5.3) is a sufficient condition for Ka to enclose, or to be

enclosed in Kß . We have proved Theorem 4.

If Ka and Kß are convex bodies in R2" , then we have X{Ka) = X{Kß) =

X{Ka n gKß) = «o = l for almost all g £ G. So we have

Theorem 5. Let Ka, Kß be two C2-smooth convex bodies in In-dimensional

Euclidean space R2n . Then either of the following inequalities is a sufficient

condition for Ka to contain, or to be contained in, Kß :

02„-i{Va + Vß) + ^52 (Ä2^)jM]fJI/¿.

(5.14)

(5.15)

-2-h
h=0

- E CiJklnkln+2i{dKa) kln+2J{dKß) > 0;

1,7,/

2n-2

'2n-2-hOi«-xiVa + Vp) + -52 (h + l)Mh*Ml

-f{i,j,k,l,n,M'ß+2i,Ml;2J)>0.

Moreover, if Va>Vß , then Ka can contain Kß .

Remark. Of course, these conditions are not necessary. It would be very in-
teresting to remove the 'smoothness' restriction to the convex bodies involved

in this paper. All the notations except krn{dKy) (or Mry) are well-defined for

nonsmooth convex bodies. If we could find substitutes for krn{dKy) (or My ),

the conditions in this paper can be interpreted for arbitrary convex bodies. This

is definitely worth investigating.
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