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WRITING INTEGERS AS SUMS OF PRODUCTS

CHARLES E. CHACE

Abstract. In this paper we obtain an asymptotic expression for the number of

ways of writing an integer N as a sum of k products of / factors, valid for

k > 3 and / > 2. The proof is an application of the Hardy-Littlewood method,

and uses recent results from the divisor problem for arithmetic progressions.

Notation. The symbol " := " indicates that the statement is a definition. The

notation f'{x) means {f{x))1. The symbol " <®C " or " (-) " means the same

thing as " < " or " 0{-) " except that the implied "constant" may contain e-
powers of the variables involved; e.g., logx <^C 1. If E{a) is an expression
involving a, then the expression E{a~) means lim£_o E{a - e).

1. Introduction

Let v{N\k, I) denote the number of ways of writing the positive integer TV
as a sum of k terms, each of which is a product of / factors. In this paper we
prove the following

Theorem. Suppose k > 3 and / > 2. Then

v{N; k, /) = fi{N; k, l)+E{N;k, I)

where the main terms satisfies

H{N; k, I) x Nk~x logk{'-l) N,

and the error term satisfies

INk-l-v2yk     ifk = 3orl = 2or3;
E{N;k,l)<^^

NK     (*-ik!+2)     ifk and I > 4

The main term ß{N; k, I) is unfortunately rather complicated. It is a sum

of terms of the form Sif where the 5? are the "singular series" and the <f

are the "singular integrals" which occur in applications of the Hardy-Littlewood
method; actually, only the "top" singular series (see §7) and integral deserve the

name in the classical sense. The singular integrals satisfy JF x Nk~x log,J N

for varying values of J ; the largest value of J being k{l - 1). By imitating

the argument used for the singular series in Waring's problem in Chapter 5 of
[D], we show that the corresponding singular series is bounded away from zero

Received by the editors October 22, 1993.
1991 Mathematics Subject Classification. Primary 11P55, 11D85.
Key words and phrases. Additive divisor problem, Hardy-Littlewood method.

© 1994 American Mathematical Society
0002-9947/94 $1.00+ $.25 per page

367



368 C E. CHACE

independently of N, which shows that the main term is of the order stated in

the theorem.
The proof of the theorem is a straightforward application of the Hardy-

Littlewood method (cf. Chapter 3 of [V]). In §2 we define the major and minor

arcs, and in §3 we obtain a bound for the contribution from the minor arcs. In
§4 we recall some results from the divisor problem for arithmetic progressions,

which we use in §5 to calculate the contribution from the major arcs, isolating
the main term and estimating the remainder. In §6 we define the singular series

and integrals and give the order of the latter. Finally, in §7 we study the "top"

singular series and show that the main term is of the required order.
This problem was considered by Estermann in the cases when k — 2 or 3, and

1 = 2. In [El] he obtained the result E{N; 3, 2) «£ TV3/2 with the main term

H{N; 3, 2) roughly on the order of yV2log37V, and in [E2], E{N; 2, 2) «£

TV7/8 with n{N; 2, 2) roughly on the order of TV log2 N. His result is stronger

than ours in the case k = 3, / = 2 (ours is E{N ; 3, 2) «£ TV5/3) ; his proof uses

functional properties of Dirichlet L-functions and does not easily extend to the
case of larger k and /. The most interesting (and difficult) case is when k = 2
and / > 3 . Here the Hardy-Littlewood method gives a heuristic expression for
the main term, since the singular series and integrals converge; as yet, no one

has been able to find a smaller bound for the error term. For a discussion of

these binary additive divisor problems, see Chapter III of [L].

This paper consists mainly of improvements of results from my doctoral dis-

sertation, and I wish to acknowledge the inestimable help (and inexhaustible

patience) of my advisor, P. X. Gallagher. I also wish to thank William Duke
and Keith Pardue for helpful suggestions on the material in §7, and an anony-
mous referee, whose careful reading and suggestions substantially improved this

paper.

2. Definition of major and minor arcs

Let v{N; k, I) be the number of ways of writing TV as a sum of k products,

each containing / factors. Then

v{N;k,l)= ISiia, N)ke{-Na)da

where / is an interval of unit length and

(2.1) S,{a,N):=52dl{n)e{na).
n<N

We will denote S¡{a, N) by S¡{a) or just S{a) when the meaning is clear. The

major arcs will be short intervals around rational points of small denominator;

a typical such arc will have the form

a_ J_   a    J_\
a   qQ'q + qQJ

where {a, q) = 1 and q <D. We shall see later that it is convenient to choose

the parameters D and Q such that

(2.2) DQ = N and D < Nx/l.
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If we take / = [-¿, 1 — -U) then the union of the major arcs is given by
Ô'       qQ

«-i

-=.u y [s-¿.=*¿)q<D    a=0
(a,9)=l

and the union p, of minor arcs is just the complement of Jf in /,

3. The integral over the minor arcs

In this section we estimate

/:= I S{a)ke{-Na)d{a).
J n       J/i

[ <max\S{a)\k~2 f \S{a)\2d{a)
J/i      <*£>* Jo

We have
r rx

«)

and then from the definition (2.1) of S{a) and Parseval's identity we see that

/ \S{a)\2d{a)<^lN,
Jo

so it remains to estimate S {a) on p..
First we show

(3.1) %)<«,    52    minj^.ll/iair1}.

To prove this we recall that S {a) = S¡{a, N) and use induction on /. When
/ = 1 we see from its definition that

Sx{a, A0«min{/V, INI-1}.

Now suppose (3.1) is true with / replaced by / - j, where 1 < j < I - I.
We write

S¡{a,N)=    52    ̂ ("i •••"/")
B|"-»/<iV

and by an inclusion-exclusion argument this becomes

Sl{a,N)=52i-iy-l(l)     52     S^jL-.-nja,-^—)
j=x v/ „,...„,<„,/,        V "i ■••";/

♦ (-l)'"1       J]       *(»,.•• »ja).

By induction we have

B,-n,<A"/'

(3-2)

EV^ mJrJ-, ||n«i ■■■nJa\\~x \
_   s-\TUI_IX1II- _   «l-l/l-ll V ' J 'nr--iij<7V1//n<(7\r/(n1...^))i-i/('-J)
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and for the summation conditions nn\---n¡ < Nx~x/I and so

(3.3)
**i   52   ^+i(w)min| — > II"1«!!-1} ;

here we have replaced the sum on the right-hand side of (3.2) with a larger

sum, by setting m = nnx--nj and summing over all ways of writing an integer

m < TV1-1/' as a product of j + 1 factors. Similarly we can write

52      e{nx---n¡a)= 52        Sx{nx---n¡_ia, Nx/l)

(3.4)
<«     J]    ^-i^min^/'JI/wall-1}.

m<7V'-'/'

Note that ¿,(/n) <^C/ 1 for j < I and that Nx¡1 < N/m when m < /V1-1/',
so the contribution from (3.4) is dominated by that of (3.3), and (3.1 ) is proved.

We now require the following

Lemma 3.1. Suppose \a - a/q\ < l/q2, where {a,q) = 1, and let X and
Y>1. Then

52 minify«-1, \\na\\-x} «£ XY{q~x + Y~x + q{XY)~l).
n<X

Proof. See Lemma 2.2 of [V].   D

If a e p then there is a rational number in lowest terms a/q with D < q <Q

and
a

a-
q

1<1S

by Dirichlet's theorem. We apply Lemma 3.1 with X = Nx  '/' and Y = Nx¡1
to (3.1) and get

¿(cO^z/VTr'+yV'-'/' + O-

Using the conditions (2.2) on D and Q, we then have

(3.5) / <«/ Nk~xD-
Ju

k+2

4. The divisor problem over arithmetic progressions

For ae/,we write a = a/q + ß with {a, q) = 1, q < D and \ß\ <
{qQ)~x • Then we write

S{a) = 52e(^)     52    d,{n)e{nß).
b=\      ^ ^   '       n<N

n=bmodq

The inner sum can be expressed as a Stieltjes integral

:)dD,{x;b,q)II-e{ßx)
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where

D,{x;b,q):=     ^    d,{n).
n<N

n=bmodq

We now make use of a "main term plus remainder" expression for this sum.
The main term has the form

/-i

(4.1) Ml{x;b,q):=52cj+i{b,q)Lj{x)
/=o

for some coefficients Cj{b, q) given explicitly in equation (2.13) of [C]; here

Lj{x) is an antiderivative of log-'x/y!. The error term has an upper bound of
the form

A,(x;£,?)«£/ (|J

provided q < xx/1 ; here g = {b,q). The values for n which we will use are

(4.2) , = ^j,

a result of K. Matsumoto [M] valid for g = 1, to which we apply a technique
of Heath-Brown from §8 of [H] for removing the restriction on g, and

(4.3) ,-£»

provided / > 4 ; see Theorem 2 of [C].
To figure the contribution from A¡{x; b, q) to S{a) we integrate by parts

and estimate

E:=       e{ßx)dA,{x;b,q)^i{l+N\ß\)  max  \A,{x ; b, q)\.
Jl- l~<x<N

Suppose q < Nx¡1. Then for x > ql we apply the estimate above, and for
x < ql we apply the elementary estimate

A¡{x;b,q)^:lxx-x^ + ql-x

to obtain

F<«/(1+7V|)?|)^/-1 + ^.

Summing over b and assuming D < Nxll we see that the contribution to S{a)
is

(4.4) {Dl + NiD).

The contribution of M¡(x ; b, q) to S(a) can be written as

/-i

(4.5) 52Aj{q)Ij{ß)
j=0

where

(4.6) Aj{q):=52e(^)cj{b,q)
b=\    v q '
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and

(4.7) Ij{ß):= f e{ßx)X^dx.
J\ J-

For {a, q) = 1, Aj{q) is independent of a. The coefficients Cj{b, q) are
sums of terms of the form

52   /(*>)
bib2=bmodq

for some function / ; the number of terms in the sum depends only on /, and
we have

¿«(f)   £  m)-±m)±*(*p).
6=1      v H ' ¿>,è2s6mod« bx = \ ¿2=1

Since (a, #) = 1 the inner sum vanishes unless bi = q, and so Aj{q) is a sum

of terms of the form qf{q).
We use this to estimate ^4,(<7). From equation (2.13) of [C] we see that /

has the form

f^:=ql        52       5V («i.«)"" M (fl/, q )
ai-û/samodi

where 1 < i < I, and the ym{a, q) are Laurent coefficients of the Hurwitz zeta

function

E 1-*-"     ns
«>i

n=amod?

Using an expression analogous to one for the Laurent coefficients of the Rie-

mann zeta function, it is not difficult to show that ym{a, q) <^C a~x. Elementary

congruence arguments then give the bound

(4.8) Aj{q) <^, q~x ;

for full details, see §3 and §4 of [C].
Finally we estimate Ij{ß) trivially, and then after integrating by parts to see

that

(4.9) Ij{ß)<&imin{N,\ßr1}.

5. The integral over the major arcs

We now consider the integral

Í  := I S{a)ke{-Na)da.

From the preceding section, we can write S{a) = X + R, where X is given by

(4.5) and R is bounded by (4.4). Hence

S{a)k = zZk + 0{R[S{a)k~x + X^1]).

Now

\S{a)\k-xda <«/ Nk~2I
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by the same argument used in §3, and the fact that S {a) <SC/ N.  One then

shows that

/  \l\k-xda<g:iNk-2
Jjt

using the definition of major arcs, the assumption (2.2) on D and Q, and the
bounds (4.8) and (4.9) on Aj{q) and Ij{ß). Hence

(5.1) /  = / I,ke{-Na)da + {RNk-2).
Jjt     Jjt

Consider the integral on the right-hand side. From the definitions of Jf and
X this is

52Aj{q)Ij{ß)
j=0

52 c^w /'
q<D J-

1/qQ

1/iG

e{-Nß)dß

where

w-¿''(f)
a=l

is Ramanujan's sum. We now extend the sum to all q and the integral to all ß .
This effectively allows us to disentangle the "arithmetic" part, i.e. expressions
involving q, from the "continuous" part, involving ß . The former will become

the singular series, the latter, the singular integrals of the problem. Convergence

is assured by the bounds (4.8) and (4.9), provided k > 3. These bounds are

also used to estimate the error introduced. The error from extending the integral
to all ß is on the order of

/-i

52Aj{q)Ij{ß)    dß;
j=0

from extending the sum, it is on the order of

/■OO

q<D     Jx/"Q

/a

q>u
52Aj{q)Ij{ß)
j=0

dß.

Estimating and using (2.2), both of these are {Nk  XD k+2), which is the same

as the bound (3.5) on the integral over the minor arcs. Hence we have

v{N;k,l) = p{N;k,l) + E{N ;k,l)

where the main term is given by

i-1

52Aj{q)Ij{ß)
7=0

OU -(

(5.2) p{N;k,l):=52Cq{N)
q=\

and from (5.1) and (4.4) the error term has the bound

E{N;k,l)<&: Nk~2{ND-k+2 + Dl + N"D).

Taking D = Ns where

á = min{r^7TrFr7}

e{-Nß)dß,
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we obtain

(5.3) E{N;k,l)^:kíiNk-2{N^r^+N,¡it^±i)

and the restriction Ô < l/l is more than satisfied for k > 3. Using the values
(4.2) and (4.3) for n give the bound stated in the theorem.

6. Singular series and integrals

Expanding the integrand in (5.2) we can write

p{N;k,l)= 52        Stf
j=0'i,-,A)

0</i,...,A</-l

where a typical singular series is given by

oo k

(6.1) ^=5]Q(7V)n^,(9)
9=1 1=1

(absolute convergence being assured by the estimate (4.8) for Aj{q)), and the

corresponding singular integral is

/oo    *]lji{ß)e{-Nß)dß.
■oo .■_,

1=1

We can simplify this last expression considerably. In the definition (4.7) of Ij

write

h[x'     j\

for convenience. If we set

I \
*w-é /■"/   X\ljÁXi)dxi---dxk

\<X\ ,...,Xk<N /

then
k »oo

Hh(ß)=        e{ßx)S?{x)dx
,=i J-°°

and so J¡ = J¿?{N) by Fourier inversion.  The following lemma provides a

neater expression for 5?.

Lemma 6.1. Let k > 2 ôe an integer and let

f(x)=   /•••/  0(xi,...,**)<**i ■■■<*■**

X\+-+Xk<X

x\ , — ,Xk>0

for some continuous function <f>. Then

f'{x)=    /•••/   <i>(xi,...,xk-i,x-{xl + ---+xk-l))dxi---dxk-l.

Xl+-+Xk-i<X

x\ ,...,**_i>0
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Proof. We first prove the case k = 2, and then induct on k. Let

fix) =    / /   (¡>{xi, x2)dxx dx2 = /  0(x, xx)dxx

X,+X2<X

x, ,xi>0

where
rX-X,

<D(x,Xi) := /       4>{xi,x2)dx2.
Jo

We use the fact that

d    fx fx d
■¿¿I   g{x,y)dy = g{x,x)+ I   —g{x,y)dy,

with g = O, and note that <P(x, x) = 0 and that

—0{X, Xi) = (j>{Xi , X - xx),

so

f'{x)=  /    </J(Xi,X-Xi)ß?Xi
JO

which is the lemma when k = 2.
Now let

f(x) =       ■•     4>{xi,..., xk)dxi ■•■dxk

x,-t-!-**<*

X\ , — ,xk>0

=   /    <P(x,Xi)(
Jo

_)dx
Jo

where

<P(x,x>) =      /'••/     <p{xi,x2,...,xk)dx2,...,dxk,

As before we have

X2-i-yXk<X—X\
xi,... ,xk>0

/'(x) = 0(x,x)+ /   —4>(x,xi)í/xi

and 0(x, x) = 0. Then by induction,

¿O(x,x0

=     /'"/     <t>{xi,x2,...,xk_i,{x-xi)-{x2 + ---+xk_i))dx2---dxk_i

Xi-\-\-xk_,<x—X\

x1,...,xk^l>0

and the lemma is proved.   D

Applying the lemma we have

(6.2)       J¡=        [■■[       (n/y,(x/))/A(iV-¿x!Ux1-í/xfc_1
Xl+...4_I<>V_fc+2 v<=>      /   V    <='  /

Xl,...,JCt_i>l



376 C. E. CHACE

from which we see that

Si~kjNk-xloêJ N

where J = Ylk=i h ■ Since all of the singular series can be bounded above

independently of N, the order of the "top" singular integral, where all j¡ = 1-1,

will be the order of the whole main term p{N; k, I) if the "top" singular series
is also bounded below independently of N.

7. The "top" singular series

The top singular series is S" = <9¡ where j¡ = 1-1 for all i, i.e.

oo

& = 52Cq{N)A,_x{q)k.
q=\

To show that the main term has the order stated in the theorem, we must show

that this is bounded away from zero independently of N. The argument is

much like that for the singular series for Waring's problem, given in Chapter

5 of [D]. The idea is to write the series as an Euler product and to estimate
the factors in two different ways. The first is a straightforward estimate which

shows that the product over large primes is bounded away from zero. The
second involves interpreting the factors as local densities of solutions to the

polynomial equation which describes writing N as a sum of products, and then
showing that there are enough solutions to bound the factors away from zero.

From the definition of Aj{q) given in (4.6) and the fact that

ci-xia,q) = j,        52        1
a, • • •£/_ i =atnodq

where the sum is taken over ax, ..., a¡-i mod q (see (4.1), and equation (2.13)

of [C]), the argument which shows that Aj{q) is independent of a shows that

ai ■"<!(_ i=0mod4

If we write

(7.1) sj{q):=q       ]T       1
a,-aj=0modq

then
oo

^ = 52T{q)
?=i

where

(7.2) T{q):=Cq{N)s,.l{q)kq-kl.

In order to write S? as an Euler product and estimate the factors, we must

show that T{q) is multiplicative and obtain an estimate for it. We require the

following
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Lemma 7.1. For Sj{q) defined as in (7.1) we have sx{q) = q, and for j > 1

Sj{q) = 52<t>{d)(j)JSj-i{d).

Proof. We have

d\q

sj(q) •= q 52     £      » ■
a¡=\  \<a¡ ,...,a¡-[<q

q\ax-a¡

We then write a¡ = cq/d where q/d = (a,, q). The condition q\ai •••Oj is
then equivalent to d\ax ■ ■ -aj-X. The sum over a¡ mod q can then be written
as q/d copies of a sum over a, mod a". Hence

«hl-iS X (ff     X     '
rf|?     c=l l<a.a¡-\<d

(C'd>x d\a,-aj-,

which gives the stated result.   G

Since the lemma is a recursive statement, we can prove easily by induction

that Sj{q) is multiplicative in q , and that qj < Sj{q) <@c qJ . Using this, and

multiplicativity and estimates for Ramanujan's sum Cq{N), we see that T{q)

is indeed multiplicative and that T{q) <%& q~k+x independently of N. Hence

we can write

^ = l[F{p)
p

where
oo

(7.3) F{p) = 52T{Pn.
i/=0

By the preceding bound on T{q) and the fact that k > 3 we have \F{p) — 11 <ggc

p~k+x and so we can find a prime po such that

(7.4) \<WF^<\-
P>Po

Taking a more general view, let / be a polynomial of degree D in m vari-
ables, with integer coefficients. If we consider the "generic" additive problem of
counting solutions x in Zm (or some subset) to the equation /(x) = N, then

we define the singular series as follows:

*-±± è»(-=)E'frw).
9=1 H r=\ V     H ' xmod«     VV '

(r,q)=l

where the innermost sum is over all x in (Z/oZ)m . This corresponds with the

singular series defined above for our particular problem. By a straightforward

generalization of the proofs of Lemmas 6, 7, and 8 of [D], one can show that

the factors F{p) in the Euler product for S? can be written

FW=limM^'/'Ar)
i/-»oo        n"(m-X)
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where M{q, f, N) is the number of x in {Z/qZ)m with f{x) = Nxrxodq.

We can thus obtain lower bounds on F{p) by showing that there are sufficiently

many solutions to the polynomial congruence.

Lemma 7.2. Let f be a polynomial of degree D in m variables, with integer
coefficients. Suppose there is some a in {Z/pvZ)m such that /(a) = N mod p"

and the gradient vector V/(a) is not zero mod/?. Then there are at least pm~x

distinct elements b of {Z/pv+xZ)m which satisfy /(b) = N modpu+x.

Proof. Let b = a + p"y, where y is in {Z/pZ)m . Then

/(b) = /(a) + />"(V/(a) -y) mod/>"+1.

Since /(a) = N + cpv for some integer c, every y for which

V/(a) • y = -c mod

gives a vector b which satisfies the required congruence. If V/(a) is not zero

mod/J, there are pm~x choices for y.   D

Returning to our particular case, let

/(*)=¿n*.v
1=1 j=\

If N is sufficiently large (for example, bigger than k), let a = ( 1, 1, ... , 1, N-

k + 1 ). Then /(a) = N, and we can use the lemma to construct solutions to
the congruence /(x) = N mod pv . The gradient condition is fulfilled since

V/(a) is not zero mod/? for any prime p, and from the construction in the

proof of the lemma, we see that all solutions are congruent component-wise to

a mod p. Distinctness of solutions is also guaranteed by the construction, so
we have M{pv, /', N) > p("-D(W-D > and so F{p) > l/pkl~x. This and (7.4)

give what we want, namely a positive lower bound for S? independent of N.

We may also obtain a more explicit expression for the factors F{p). First,
we use Lemma 7.1 to derive an expression for Sj at primes powers:

(7-5) ^pa)=paj52(a~l + i)^-^

for a > 1. We then compute F{p) using (7.2), (7.3), and Theorem 272 of

[HW], which implies that

{4>{pa)     iia<v,

-pv       ifa = i/ + l,

0 if a > v + 1,

where N = Y[pn . We distinguish two cases: p\N and p\N.

If p \ N, then the local factor is

,«_,_ (i-(i-i)'~')'

since the sum in (7.5) is just a partial sum of a geometric series when a = 1.
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When p\N, the local factor is much more complicated:

379

(7.6)

F{p) = l + 52p-J{k-l)y
i=x

_ p-(v+X)(k-X)-

1-2

X
Li=0

1-2

Li=0

j - 1 + i

V + Ix.* y
where for convenience we write y = I — l/p .
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