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DIFFERENTIAL EQUATIONS FOR
SYMMETRIC GENERALIZED ULTRASPHERICAL POLYNOMIALS

ROELOF KOEKOEK

ABSTRACT. We look for differential equations satisfied by the generalized Jacobi
polynomials {P,‘,"B M. N (%)}32, which are orthogonal on the interval [-1, 1]

with respect to the weight function
INa+p+2)

20+8+1T(a + )I[Y(B + 1)

where a > -1, f>—-1, M>0,and N>0.

In the special case that f = a and N = M we find all differential equations
of the form

(1-x)%(1 +x) + M6(x + 1) + N6(x — 1),

Zc y(l) (x) = y(x)=P,‘,""'M'M(x),

where the coefficients {c;(x)}2, are independent of the degree 7.

We show that if M > 0 only for nonnegative integer values of a there
exists exactly one differential equation which is of finite order 2a + 4.

By using quadratic transformations we also obtain differential equations for

the polynomials {P,‘,"i'/z’o'N(x)}f;‘;o forall a >—1 and N>0.

1. INTRODUCTION

In the late thirties (see [10] and [11]) H. L. Krall classified all sets of orthog-
onal polynomials {P,(x)}32, with degree[P,(x)] = n which satisfy a fourth-
order differential equation of the form

pa(x)y@(x) + p3(x)yP)(x) + p2(x)y” (x) + p1(x)y'(x) + Po(x)y(x) =

where {p;(x)}{_, are polynomials with degree[p;(x)] < i and {pi(x)}{, are
independent of the degree n. These sets of orthogonal polynomials include
the classical Legendre, Laguerre, Hermite, Bessel, and Jacobi polynomials. He
also found three other sets of orthogonal polynomials satisfying a fourth-order
differential equation of this type. In [8] A. M. Krall studied these new sets of
orthogonal polynomials in more detail and named them the Legendre type, La-
guerre type, and Jacobi type polynomials. These polynomials are generalizations
of the classical Legendre, Laguerre (with o = 0), and Jacobi polynomials (with
B = 0) in the sense that the weight function for these orthogonal polynomials
consists of the classical weight function together with a Dirac delta function at
the end point(s) of the interval of orthogonality.
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Later L. L. Littlejohn (see [12]) studied a generalization of the Legendre type
polynomials and named them after H. L. Krall: the Krall polynomials. These
Krall polynomials are orthogonal on the interval [—1, 1] with respect to the
weight function

%6(x+1)+%6(x—1)+€, A4>0,B>0, and C > 0.

In general (4 # B), these polynomials do not fit in the class of polynomials
which satisfy a fourth-order differential equation of the above type. The Krall
polynomials satisfy a sixth-order differential equation of a similar form.

A. M. Krall and L. L. Littlejohn did some work on the classification of higher-
order differential equations having orthogonal polynomial solutions. They tried
to classify all differential equations of the form

r
Y pix)y(x)=0, re{2,3,4,..},
i=0

where {p;(x)}/_, are polynomials with degree[p;(x)] < i and {p;(x)}|_, are
independent of n having orthogonal polynomial solutions {P,(x)}52, with
degree[P,(x)] = n. See [14] and [9].

In [7] T. H. Koornwinder found a general class of orthogonal polynomials
which generalize the Legendre type, Jacobi type, and Krall polynomials. These
polynomials are orthogonal on the interval [—1, 1] with respect to the weight
function

INa+ B +2)
2048+ + DI(B + 1)

where a > -1, 8> -1, M >0, and N > 0. For these generalized Jacobi
polynomials we will use Koornwinder’s notation: {Pg#-#-¥(x)}e .

As a limit case he found the polynomials {L3’*(x)}22, which are orthogonal
on the interval [0, co) with respect to the weight function

1 -X
- _x“ - > 0.
l..(a_‘_l)xe + Md(x), a>—-land M >0
These polynomials generalize the classical Laguerre polynomials.
In [5] J. Koekoek and R. Koekoek showed that the polynomials {Lg** (X)}2,
satisfy a unique differential equation of the form

(1-x)*(1 +x)f + MS(x +1)+ No(x - 1),

oo
MY ai(x)yD(x) + xy"(x) + (@ + 1 = x)y'(x) + ny(x) =0,
i=0
where {a;(x)}$2, are continuous functions on the real line and {a;(x)}2, are
independent of n. It turns out that the coefficients {a;(x)}{2, are polynonials
and the differential equation is of infinite order in general if M > 0. However,
only for nonnegative integer values of a did the order reduce to 2a + 4.
We note that it is well known that all sets of polynomials named before satisfy
a second-order differential equation with polynomial coefficients depending on
n but of bounded degree. See for instance [7], [13], and [15].
In this paper we look for differential equations satisfied by the polynomials
{pg-#-M-N(x)}o  with f = and N = M . Until now, only two special cases,
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due to H. L. Krall and L. L. Littlejohn, are known. In [10] H. L. Krall showed
that the polynomials {PY-%¥-M (x)}2, satisfy the following fourth-order (if
M > 0) differential equation:

- LM =000 + aMx(1 - Xy x)
£ (6M + D(1 = ¥y (x) - 2x'(x)

+ %n(n + D)[(n = 1)(n +2)M + 2Jy(x) = 0

and later L. L. Littlejohn found the following sixth-order (if A > 0) differential
equation for the polynomials {P,-'*-M(x)}e

3—16M (1-x%°yO(x) - %Mx(l — x2)%y)(x) - %M(l ~ x2)(1 = 3x2)y@(x)
40

+ TMx(l - xH)y®(x)+ 10M + 1)(1 — x?)y"(x)

—4xy'(x) + %n(n +3)[(n-D(n+1)(n+2)(n+4)M +36]y(x) =0

both in a different notation. The latter sixth-order differential equation has not
appeared in the literature yet.

In this paper we will derive all differential equations for the polynomials
{P,‘,’"”M’M(x)};,”;0 for every a > —1 and M > 0, which are of the form

3 i)y O(x) =0,
i=0

where the coefficients {c;(x)}$, are continuous functions on the real line and
{ci(x)}2, are independent of the degree n.

So we consider the polynomials {Pg***-¥(x)}2 which can be defined by
(see [7], in a slightly different notation)

a,a d a,x
(1) P M M(x) = QR (x) = Cix o B0 (x),

where

2
Co=1+M 2n <n+2a+l)+4M2(n+2a+l),

2) (a+1) n n—1
Ci = (zj_f‘jl)<nt12a) +(2_Ale5<nn+_21a> (n+2na+ 1>'

As Koornwinder already remarked (see [7]) the case 2a + 1 = 0 must be un-
derstood by continuity in a.

Further we will show that for M > 0 these differential equations are of
infinite order in general and only for nonnegative integer values of a we find
exactly one differential equation of finite order 2a + 4. This answers one of
the questions raised in [4] by W. N. Everitt and L. L. Littlejohn.

Finally, we will also derive differential equations for the polynomials
(P V20N (x)yo  forall a > -1 and N >0.
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2. SOME CLASSICAL FORMULAS

In this section we give the definition and some properties of the classical
ultraspherical polynomials {P,ﬁ""’)(x)};,“;o . For details the reader is referred to
[2] and [16]. We will only give those properties we need in this paper. Further
we list some other classical formulas which we will use later on.

The polynomials {P,f”"”')(x)};,";0 can be defined by their representation as a
hypergeometric function as

l-—x
).

a,o n+a _n,n+2 +1
P = (M)A i
n=0,1,2,....

a+1
A simple consequence of this definition is the differentiation formula

= (15) () £ e (154)

(3)

k=i
@ = (n+a) (_l)i o= (=) ri(n + 200+ Dy (1 —x>k
" 2) & k'(a+ gy 2 ’
i=0,1,2,....

Further we have the well-known symmetry relation
(5) Pe9(=x)=(-1)"P**(x), n=0,1,2,....

The ultraspherical polynomials satisfy a second-order linear differential equa-
tion given by

(1 =xHy"(x) — 2(a + 1)xy'(x) + n(n + 2a + 1)y(x) = 0.
By using induction it is easy to show that this differential equation implies that
(1 — x2)D*2P{* 9 (x) — 2(a + i + 1)xD* P{* ¥ (x)
+(n=in+2a+i+1)DP*x)=0, i=0,1,2,....

We also need the following formulas for the even- and odd-order ultraspher-
ical polynomials:
x2) ,

a,a " 2n + —n,n+ +l
Py ®(x) = (_Z) < n a)zFI( 1 *Tz
@) n=0,1,2,...,

p)
and

(6)

a 1\" (2 -n,n+ 43
(8) PZ(:-;-I)('X)= (_Z) ( n:a)(2n+a+ l)-XZFI ( " né “T2 x2> s
2

n=0,1,2,...,

respectively. These formulas can be found in [3] in a slightly different notation.
We will often use the Vandermonde summation formula:

9) zﬂ(‘mb1)=“‘mh n=0.1.2,....

c

(€)n

and the Saalschiitz summation formula:
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1) _ (c=a)n(c—b)n

T (O)nlc—a-b),’
n=0,1,2,....

-n,a,b
(10) 3F2(c,—n+a+b—c+l

These summation formulas can be found in [3] for instance.

Finally, we remark that the Taylor series at the point zero of a hypergeometric
function of the form ,.F, has a radius of convergence 1 unless it terminates.
Moreover, such a series also converges absolutely at 1 if the sum of the numera-
tor parameters is less than the sum of the denominator parameters. For details
the reader is referred to [1].

3. THE DIFFERENTIAL EQUATIONS FOR P2 M:M(x)

In order to find all differential equations of the form

(11) MZa, )y O (x)+(1=x2)y" (x) = 2(a+ 1)xy'(x) +n(n+2a+1)y(x) = 0
=0

for the polynomials {Pg'®M M (x)} 220> Where the coefficients {a;(x)}$2, are
continuous functions on the real line and where {a;(x)}2, are mdependent of

n,we set y(x)=P&*M M(x) in (11) and use the definition (1) to find

MCy " ai(x)D' P %) (x) qula, )D' P (x)
i=0 i=0

—MCix Y ai(x)D*' P (x)
i=0

d2 a,a d2 a,a d3 a,a
+(1-x?) [COWP,f "(x) = 2C1 5= P (%) = Cix 5= P\ )(X)]

dx? dx3

d L d @ @
= 2t 1x [ Coge P (x) = G P x) - g P )
n(n+22a+1) [COP,,""“)(x) - Clx%P,,""“)(x)] =0

Now we use (6) with i =0 and i =1 to obtain

oo
MGy ai(x)D' ™) (x)
i=0

- MC [Z ia;(x)D'P ) (x) + x Y ai(x) D+ P (x)l
i=0 i=0

d2 a,a
=2CIWP,(, "9 (x).
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We consider both sides to be polynomials in M . Comparing the coefficients of
equal powers of M on both sides leads to

NS (D Py = 4 (P20 @ e
M L ap o = gy (M) P

X 2n n+22a+1 iple,a) n+2a
Mz'(a+l)( n )Z (DB ) — 55 +1)( n )

x [i ia;(x)D' P\ (x) + x Z a;(x) DP9 (x)

i=0 i=0
_ 4 n+2a\/n+2a+1\ d (a,q)
_(a+l)(n—l)< n >dx2P (x)

M3:4(n+2a+l) Za,(X)DIP(a a)(x)
i=0

_ (_(;_f__i_)(nn-l-_21a> (n+2na+ l)

[o ] [o ]

x {Z ia;(x)D' PV (x) + x Y a;(x) D PV (x) | .
i=0 i=0

It is clear that the third relation is a linear combination of the first two relations

which can be simpliﬁed to

i pla,a) _ 4 n+2a _4_2_ (a,a)
(12 ga(x)DP 0= e (57 7P )

and

[o <] [o o]
> iai(x)D' P (x) + x > a;(x) D' P (x)
i=0 i=0
_ n+ 2a + 1\ d? (a,a)
o
Since we demand that the coefficients {a;(x)}$2, are independent of n, we
introduce the following notation:
(14) {ao(x):=ao(n,a,x), n=0,1,2,...;
ai(x) :=ai(a, x) i=1,2,3,
In order to find the general form of the coefficients {a, (x)}s2, we will prove
the following theorems.

Theorem 1. The polynomials {P2* MM ( (x)}22, satisfy the infinite-order differ-
ential equation given by

(15) i bi(x)y?(x) = 0

i=0

(13)

and

bO(x):=b0(n’a9x)=%[l_(—l)n]> n=0’192a---;
(16)

i—1

b;(x)::bi(a,x)=3i'—(—x)i, i=1,2,3,....
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Note that the coefficients {b;(x)}$2, do not depend on «. The proof of
Theorem 1 can be found in the next section.

Theorem 2. The polynomials {PS*M M (x)}2, satisfy the differential equation
given by

(17) M i ci(x)y D (x)+(1=x2)y"(x) = 2(a+ )xy'(x) + n(n+2a+)y(x) =
i=0
where the coefficients {c;(x)}$2, are defined by

(18) co(x) := co(n, o, x) = 4(2a + 3) (”’;2_"‘2*2) . n=0,1,2,...,

and
(19) ci(x) = 2a+ 3)(1 = x*)c} (x), i=1,2,3,...,

where
(20)
cj(x)=cf(a, x)=0,

) . 2032/ a+1 \(i-2a-5\ (1-x\*
d=clen =32 ;_k-2)\ &« )73 )
" k=0

i=2,3,4,.
The proof of Theorem 2 will be given in §5.
Now we will show that the general solution {a;(x)}2, of (12) and (13), where
{ai(x)}$2, are continuous functions on the real line and where {a;(x)}$2, are
mdependent of n,is

(21)
{ao(n,a,x) =ay(l, a, x)by(n, a, x) +co(n, a, x), n=0,1,2,...,
ai(a, x) =ay(l, a, x)bi(a, x) +ci(a, x), i=1,2,3,...,

where ag(1, o, x) is an arbitrary continuous function on the real line and
where the coefficients {b;i(x)}$2, and {ci(x)}2, are given by (16), (18), (19),
and (20).

The proof is based on the following lemma.

Lemma. Let {ai(x)}$2, be a set of continuous functions of the form (14) which
satisfies the homogeneous system

i ai(x)D'P{*®(x) =0
(22) =0

Zta )Di P+ x)+xZa (x)DH*1 P (x) = 0
i=0
with ap(1, a, x) =0 for all real x. Then we have

ai(x) =0, i=0,1,2,...,
for all real x.

In order to prove this lemma we substitute small values of »n in the homo-
geneous system (22). Then we obtain for n =0 and n=1:

a)(0,a,x)=0 and (a+1)[xay(l, a, x)+a(a,x)]=0
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forallreal x . Since ayp(1, a, x) =0 and a > —1, we conclude that g;(a, x) =
0 for all real x . If we substitute n =2 in (22), we obtain

d aa
=P (x) =0,

a(2, a, x)P," ) (x) + arler, %) 7

d2 a,a d a,x
2a2(a,x)WP2( ) (x) + xa0(2, a, x) =P (x) =

dx
Hence 4
[2P57(x) = x =P ¥ (x)]a0(2, @, x) = 0
a(a x)d—zP(""’)(x) =—ay(2, o, x)P{*(x)
*dx2? » S 202 :
Since J |
2P{*%)(x) — xaPz(a‘“)(x) = —5(@+2)#0,

we conclude that ayg(2, a, x) = 0 for all real x and therefore that a;(a, x) =
for all real x, since
d?
ax2
In the same way we obtain for n = 3:

P (x) = z(a+2)(2a+3) £ 0.

NI'—'

a,q d a,a
BP9 (x) = x P ¥ (x)lao(3, @, x) = 0

d3 (o, ) (a, )
a3(a’x)WP3 (x)= —00(3, a,X)P3 (x)‘

Now we find a((3, a, x) =0 for all real x except for x = 0 being the only
zero of

3P3(a,a)(x) _ x;Lnga,a)(x) = —-%(a + 2)(a + 3)x-

The continuity of a¢(3, @, x) implies that ay(3, a, x) = 0 for all real x.
Then we also have a3(a, x) =0 for all real x, since

%P ) (x) = %(a +2)(@+3)(2a+5) #0.
If we proceed in this way we also find for each n > 4 that ag(n,a,x) =0
for all real x except for the possible zeros of nP{**®(x) — xj‘;P,ﬁ""’)(x) . The
continuity of ag(n, a, x) then implies that ag(n, o, x) = 0 for all real x,
and finally we have a,(a, x) =0 for all real x, since

dar (a,a) 2n + 2a
0= (12) o
This completes the proof of the lemma.

For the moment we introduce the term continuous sequence. A sequence
{ai(x)}$2, is called a continuous sequence if {a;(x)}$2, are continuous func-
tions on the real line of the form (14).

In §4 (proof of Theorem 1) we show that the continuous sequence {b;(x)}%2,
defined by (16) is a solution of the homogeneous system (22). This implies that
the general solution {a;(x)}$2, of (22), being a continuous sequence, is

ai(x) = ao(1, a, x)bi(x), i=0,1,2,....
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This can be shown by using the lemma as follows. We define

a; (x) :==ai(x) —ap(1, a, x)bi(x), i=0,1,2,.

Since ao(1, a, x) is continuous, {a;(x)}2, is a continuous sequence which is
a solution of (22) too where

ay(1, a, x)=ap(l, a, x) —ap(l, a, x)bp(l, @, x) =0

for all real x. Now the lemma gives us the desired result.

In §5 (proof of Theorem 2) we show that the continuous sequence {c;(x)}%2,
given by (18), (19), and (20) is a solution of (12) and (13). In order to prove that
the general solution {a;(x)}$2, of (12) and (13), being a continuous sequence,
is of the form (21), we simply note that {a;(x) — ci(x)}$2, is a continuous
sequence and a solution of the homogeneous system (22). Hence

ai(x)—ci(x)=a0(1,aax)bi(x)a i=031,2’- .

This shows that we have found all differential equations of the form (11),
where the coefficients {a;(x)}2, are continuous functions on the real line and
where {a;(x)}2, are 1ndependent of n.

In [6] we conjectured that the polynomials {P2>®™ ¥ (x)}2  satisfy a dif-
ferential equation of the form (17) where the coefficients {c;(x)}2, are given
by (18) and (19) where

(23)
(. 4(-1)*! (a+1 —i+1l,a+3-i
c2i(a’x)=Ti)!_<i—l 2Fy 1 x

2

¢ fa,x)=0

1)+ [« —i+1l,a+3—1i
Gin(@ %)= (éz )).(i—l)(a+l)x2F‘( ;o

x2) ,

2

\ i=1,2,3,...
By using the formulas (7) and (8) we can prove that (23) is equivalent to
(o, x)=0;
(24) P
(o, x) = -2511(2'2”3’“ x), i=2,3,4,....

Here we remark that the parameters a — i + 3 in the Jacobi polynomial might
be smaller than —1. However, the ultraspherical polynomial P{*'®(x) is also
a polynomial in «. Instead of the definition (3) we may define

Pl (x n'z( )(n+2a+1)k(a+k+1)n k( 21) ;

n=0,1,2,....

By using this definition of the ultraspherical polynomial we see that (24) is
equivalent to (20).
Since by using (21), (16), (19), and (23) we have

0:(0) := azi(a, 0) = (2 +3)4(—1)'+1(°‘+1)¢0 i=1,2,3,...,

(20)!
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if « is not a nonnegative integer, we conclude that if M > 0 the order of the
differential equation given by (11) can only be finite for nonnegative integer
values of a. From the form (23) we easily see that for nonnegative integer
values of a we have

{degree[c,-(x)]=i, i=2,3,4,...,2a+4;
ci(x)=0, i>2a+4.

Hence, for M > 0 the order of the differential equation given by (11) can only
be finite if we choose ay(1, a, x) =0 in view of (21) and if o is a nonnegative

integer. In that case the order of the differential equation given by (17), (18),
(19), and (20) equals 2a + 4.

4. PROOF OF THEOREM 1
To prove Theorem 1 we have to show that

3" bi(x)D'Pf ) (x) =0,

i=0
3 ibi(x)D' PV (x) + be YD+ Pl (x) =
i=0 i=0

To do this we first note that we have in view of (16)

Y bi(x)DIP ) (x) = %{1 — (=1)"1P D (x) + 3 bi(x)D P (x)

i=0 i=1
and
o 1 (i p@ @y _ Lt ey 4 pasa) =, sl plasa)
gbz(x)D P 0(x) = 501 = (-1)"] - P (x)+§b,(x)]_) P ().

Now we use (4), (5), and (16) to obtain

3 bi(x) D) x)

i=1
1 (n+a) =X o= (=n)(n+2a+ 1)
“2( )ZFE (a+ (k=)

1 =i

-
I

\ k-
)k
(") S

(5
e (e ()

e S G RC)

[P (=x) = P (x)] = =51 = (=D)"P" (),
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oo

Z; ibi(x)D' Py (x)
(TS E e (1)
(n+a)z(z)i(;z+zaj)1')k (llc-l)x,<12x>
<n+a) Z((Z)i(;l+2a_-&-l)l')k<l-|2-x)

= (-1)"x7 P‘“ D),

and

Y bi(x)D*! P (x)

i=1

X xi & (—n)(n+2a+ 1), (1-x\ !
EF (a+l)k(k—i—1)!( 2 )

zz( ()

U (n+a\ X +2a+ ) [T\ 1-x\E!
‘_Z< n Z; (@ + Dk — D) [( 2 ) —(—2 ) ]
= 1 n d (a,a)

=51+ (=15 P (%)

This proves Theorem 1.

5. PROOF OF THEOREM 2

In this section we will give a proof of the main Theorem 2.
In view of (12) and (13) we have to show that

3 ipla,a 4 2a\ d* .
(25) ’Z:(:)ci(x)DP,ﬁ >(x)=m(”+ )TP( )(x)

and

Z iCi(X)DiP,sa’a)(x) +x Zci(x)DiHPpsa’a)(x)
(26) i=0 i=0

=4(n+2a+1) d?

n-1 ) aatn
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Now we write by using (18), (19), and (20)

f: ¢i(x)D' Py (x)

i=0

_4(2 +3) <n+2a2+2)P'Sa,a)(x)+zci(x)DiP'$a,a)(x)’
i=2

Y ic()D P (x) = Y ici(x)D' P O(x),

i=0 i=2

and

ZC (x)DH-lP(a Cl)(x) 4(2a+3) (n+2a2+2> % 'sa,a)(x)
i=0

o0
+) " ci(x) D P (x).
i=2

Now we obtain by using (20)

3t (x)D' PV (x)
i=2
2ii—2 1 i —20—5 l—xk o
K (,f]:- 2) (l ]? ) (—2 ) D'P{*%)(x)
" k=0
: k
Z'_ <,f; ; 2) (1_21?—5> (—1 ;x) D'P(x)

2i+k+2 (a+1)(i+k—2a—3)(l—x)k
(G+k+2)\ i k 5

Dl+k+2P,$a ,a) (x)

~

iy btlfz EMs

i+2 el

S fa+l =20 +i =2k ,1  kpyiske2 plasa)
_,g;( i )(z+2)'z a3y, (LX) DR (x).

By using (4) we find

Di+k+2P,$a’a)(x)

()

- (=n)m(n+2a+ 1), 1 — x\ " i—k-2
g (m-i-k—Z)!(a+1)m( 2 )

m=i+k+2

_ (n+a) (_l)i+k+2 i (=M)meiv2(N + 20+ Dpyiv2 (1 _x)m—k'
k

n 2 (m—k)a+ Dmyiz2 2
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Now we use Vandermonde’s summation formula (9) to see that this leads to

= (“2a+i-2) _ \k nitk+2 pla, @)
2 RT3, X DTRTX)

n+a (—2a+i-2)
( )ZZ k'(’+3)kk

(- n)m+x+2(n+2a+l)m+,+2( 1)l+k( x)m
(m = k) (a+ Dmyiz2 Sirmi2

_[(n+a 200+1i—-2)
_< )ZZ k'l+3)kk

m=0 k=0
(=M)myir2(n + 20 + Dmyiva (= m) m

X 22 (o + 1) pyisa ( )'(1-x)

_(n + @) 1y Z (=) mriv2(n+ 204+ )myiza (1 = Xx)™
= 2ot Dimyis m!
-m, 2a+i-2

x 2F ( i+3 1)

_ (n + a) (=1)f i (=M)m+i+2(n+ 20 + Dmyiv2 (1 = X)™ (20 + 5)m
n 2m+i+2(a + l)m+i+2 m! (i + 3)m

_ (n+a)( 1),(1;41;3)!

z (=)myiv2(n + 20+ Dmyiv2 20+ S)m (1 - x)m
(m+i+2)a+ )myis2 m! 2

Hence
3 e (x)DIP(x)
i=2
_ ) a+1 2i+2 ( —2a+1-— K pyitk2 plasa)
‘Z}( i ) t+2)|Z k'(z+3) k(1 - x)t Dk P )

= (") ze ()

y i (=M)mir2(n +2a + Dmyir2 (20 + 5)m <1 - x)m

—~ (m+i+2)(a+ Dmsis2 m! 2
_(n+a o~ (=) mr2(n + 20+ Dy 22+ 5)m (1 -x "
- ( n ) 2 (m+2)(a+ Dms2 m! ( 2 )

—-n+m+2,—-a-1,n+2a+m+3
X3F2 1).

m+3,a+m+3
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Now we use the well-known fact that

1
3F2(adbec Z>=—C a3F (a,l:i,c;’+ ‘z)

and the Saalschiitz summation formula (10) to find for n > m + 2

m+3,a+m+3
_(n+2a+m+3) F (—n+m+2,—a—l,n+2a+m+4’1)

3F2(—n+m+2,—a—l,n+2a+m+3‘1>

2n+2a+1) m+3,a+m+3
(n—m-2) F (—n+m+3,—a—1,n+2a+m+3 1
2n+2a+1)>"? m+3,a+m+3 )
_(n+2a+m+3)(@+m+4),_pms(—n—20—1)p_m2
~ (2n+2a+1) (M +3)p-m—2(=1 — @)n-m—2
(n-m-=2) (a+m+4)n_m-3(—n—20)n-m-3
2n+2a+1) (m+3)p—m3(-n—a+ 1)p_m-3
_T(n+2a+1) 1 (m+2)!
B n! (a+m+3)T(m+2a+4)

x [n(n+ 20+ 1) + (a + 1)(2a + m + 3)].

+

+

Note that the same result also holds for n = m + 2. For n < m + 2 we have
(=n)m+2 = 0 and the 3F,(1) exists since

(—n+m+2)+(—a-1)+(n+2a+m+3)<(m+3)+ (a+m+3).

This implies that

Zc )D' P\ (x)
i=2
_ <n+a) F(n+2a+ 1) & Z (=1)ms2(n+2a+ Dpya (2a+S5)m
n m!(a+ 1)me3 I'm+2a+4)

x[n(n+2a+ 1)+ (a+1)(2a+ m+ 3)] (;X)m

2
B (2ai Ds (n:a) (nzza)

— (=M)mi2(n+2a+ 1)pm2
Y et Do

(m+2a+4)

x [n(n+2a + 1) + (a + 1)(m + 2a + 3)] (1"—")'"

2




SYMMETRIC GENERALIZED ULTRASPHERICAL POLYNOMIALS 61

Since we have

n(n+2a+1)+(a+1)(m+2a+3)
=(a+m+3)(m+2a+3)+(n-m-2)(n+2a+m+3)

and
(m+2a+3)Y(m+20+4)=mim-1)+2Qa+4)m+ (2a+3)2a+4)

we obtain

Y e (x)D' P V(x)

i=2

“an () ()

y [i (=) mea(n + 20+ Dmgs (1 _ x)’"“

mi(a + Dmea 2

m=0

(=M me3(n + 20+ Dpys (1= x\™
+2(2a+4)z '"m'(a+1)m+3 m 5

(=MWm+2(n+20+ Dmy2 (1 -x "
+(Za+3)(2a+4)mz=% (ot Doea ( 3 )

_ i (=) mea(n + 20+ 1)pmyq (1 _x)m+l

m\(a+ mia 2

2a+4)z( N)me3(n+ 20+ 1)mys3 (l—x)m]

ml(a+ 1)my3 2

4 (n+2a)
“Qa+1a\ n
1-x\2 d¢ o, a
x[4<T) Tkt )
1-x\ 43 (a,a)
—4(20+4) (T) TSP )

a2
dx?

— 4 3
- 4(lTx) L (x) + 220+ 4) L P (x)]

“wn ()

[~ - g i

+ (2a + 3)(2a + 4)— P> (x)

P (x)

d2
+(2a+3)(2a+4) dsz,S""’)(x)] )




62 ROELOF KOEKOEK

Now we use (6) for i =2 to find

i pla,a) 4 n+2a
ZC (D' P (x) = 75 ( )

P + 1)4 n

|

P (x)
d2
+[(n=2)(n+2a+3)+Qa+3)(2a+ 4)]WP,§"’°‘)(x) .
Hence, by using (19) and (6) for i =1 and i =0 we find

3 ()P B (x)

i=2

1 n+ 2o
= (a+1)(a+2)(2a+1)< n )(1—x2)

|

+ [(n=2)(n+2a+3) + 2a + 3)(2a + 4)] = P (x)

]d2

_ 1 (n+2a)
T (a+ De+2)2a+1) n

x [4(a+1)(a+2) 2 4% ple. 9 (x)

dx Ax2

2
x) P (x)

—n(n—1)(n+2a+ 1)(n+2a+2)P*%(x)

—(n=1)(n+2a+2)1-

+ [(n=2)(n + 20+ 3) + 2o + 3)(2a + 4))(1 - xz)dd—;a&“’“’(x)]

__ 4 (n+2a) d? 9 (x)
T 2a+1) n dx?""

_n(n=1)(n+2a+1)(n+2a+2) (n+2a) pa,a
(a+1)(a+2)2a+1) ( n )P,. (x)

_ 4 n+2a d2 (a,a)
’(2a+1)( n )dsz" (x)

—4(2a+3) (" * 2ot 2) P (),

Finally, this implies that

i ple.) 4 (n+2e) & e
%c(x)DP 0 = s (M52 P00,

which proves (25).
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The proof of (26) is much easier. We start from

R .
Y ic; (x)D' PV (x)
i=2

e fa+1) 272 E(2a+i-2) k pyi+k+2 pla,a)
‘g( i )(i+l)'z ) A

We use Vandermonde’s summation formula (9) again to obtain

—20+i-— _ Yk pi+k+2 pla,a)
ZO k'(l+2 (1 x) D Pﬂ (x)
n+a (—2a+i-2
- (") mE S

m=0 k=0

(=M)myir2(n + 20+ 1) myiyz (- m)k m
2m+1+2(a+ Dmyiv2 (=1 (1 X)

— (n +a) (- 1)1 E (=M)miv2(n +20‘+ Dmiiva (1 = X)™

2m+i+2(a + Dmtiva m!

-m, —2a +i-2
x2£i ( ) 1)
_[(rte) _ = (=Mmyixa(n + 20+ Dmyis2
B ( n ) ( 1) m2=% 2m+i+2(a+ 1)m+i+2
(1=x)"2a+4)m
m! (i4+2)m

n 2i+2 (m+i+ DY a+ Dmyis2

et (152)"

_ <n +a) l)' (i+1)! Z (=M)myiv2(n + 20+ Dpmyiz2

This leads to

w .
3 et (x)D' PV (x)
i=2

(g )

% i (=M)m+ir2(n + 2a + Dmyiv2 20+ 4)m (1 - x)m

= (m+i+ DNa+ Dmyis2 m! 2
(n+a>z( Mme2(N+ 20+ 1) py2 2o+ 4)y, (l—x)m
(m+ Dl a+ 1)ms2 m! 2

m+2,a+m+3

-n+m+2,—-a-1,n+2a+m+3
x 3F 1).
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Now we use the Saalschiitz summation formula (10) again to find for n > m+2

m+2,a+m+3
_(at+tm+3)p_m2(-n—-2a—1)p_m—2
(Mm+2)p—m—2(—n — Q)n-m-2
_T(n+a+1) (m+1)! T(n+2a+2) Mla+m+3)
" T(a+m+3) T'(n) Tm+2a+4) T(n+a+1)
_(m+ 1) T(n+2a+2)
T(n) T(m+2a+4)

F (—n+m+2 —a-1, n+2a+m+3’ )
3172

Since (—n)m+2 =0 and the 3F(1) exists for n < m+ 2, this implies, by using

(4),

3 ict(x)D' P (x)

i=2

_(n+a > (=M)ms2(n+ 20+ 1)my2 a+4)m
B ( n )mz=0 (m+ 1) (a+ 1)m+2+ m!
(m+ 1) T(n+2a+2) <l—x)'”
T(n) T(m+2a+4)\ 2
_ <n+a) ['(n+2a+2) i (=M me2(n+ 20+ 1)pmy2 (1 —x)"'
n )TmTQRa+4) = mila+ D 2

_ 4 <n+2a+1)d_2
T (2a+3) n—1 dx?

P'Sa ,a) ( .X) ,
and therefore we have

3 ici(x)D' PV (x)
i=2

_4(71";!2_0‘}‘1)(1_ 2)d 2P(a a)( )

Now we look at the second sum on the left-hand side of (26). Now we have

Y crx)DH AT (x)

i=2

00 i+2 :
- (a{rl)(? $ 204 =2k e pisksaple) )
k=0

k(i + 3)x




SYMMETRIC GENERALIZED ULTRASPHERICAL POLYNOMIALS 65

As before we find by using the Vandermonde summation formula (9)

—2a+i-2 j a,a
Z( ISR )k(l—x)kD'+k+3P,£ ) )(X)

(n+a)zz( 2a+1—2),c

m=0 k=0

(=) myir3(n + 2a + 1)m+1+3 (= m)k i+l m
X 2m+’+3(a + Dmyis3 =071 =x)

_ (n -rll— a) (=1)i+! i (—n)m+i+3(’l + 20+ Dmyiz3 (1 = x)™

2m3 (@ 4 D maivs m!
-m, 2a+i-2
x 2Fi < i+3 | 1)
_ (n + a) (—1)i+! i (=) msir3(n + 2+ Dpaigs (1 = X)" 2o+ 5)m
n - 2m+it3 (o + )myiss m! (i+3)m
+ i+2)!
_ <n a)( l)z+1( 2i+3)
% z (=M)m+i+3(n + 2a + Dmyiv3 2+ 5)m (1 - x)m
(m+i+2)a+ Dmyiss m! 2 ’

and therefore we obtain

w N
3 et (x) D P (x)

i=2

-3(") e (77)

Z “Mm4i+3(M+ 22 + Dmyiv3 20+ 5)m (1 - x)m
o (m+i+2)(a+ 1)miiv3 m! 2

__1 (”"'0‘)2( Mm+3(n+ 20+ 1)me3 22+ 5)m (l—x)m
2\ n (m+2)(a+ )me3 m! 2

).

By using the Saalschiitz summation formula (10) we have for n > m + 3

% +F -n+m+3,—-a-1,n+2a+m+4
372 m+3,a+m+4

3F2(—n+m+3,—a—l,n+2a+m+4’1)
m+3,a+m+4
_(a+m+4)p_mi3(-n—20—1)n—m-3
- (M +3)n-m-3(—n — Q) n-m-3
_In+a+1) (m+2) T(n+2a+2) Nat+m+4)
" Ta+m+4) T(n) Tm+2a+5T(n+a+1)
_(m+2) T(n+2a+2)

T(n) T (m+2a+5)
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which gives us by using (4), since (—n),+3 = 0 and the 3F(1) exists for
n<m+3:

Ze;f(x)D"“P,S“"’)(x)
i=2

=-3 n+a Z( Mm+3(n +2a + 1)me3 20+ 5)m
B (M +2)(a+ Dmes m

(m+2!T(n+2a+2) (1-x\"
T(n) r(m+2a+5)< 2 )

m
m
l(n+a) F(n+2a+2 (n +3(n+2a+1)m+3 (l x)
= — E: 5

2\ n JT(nI2a+5) % m!(a+ )my3
_ 4 n+2a+1 _d__ (a,a)
_(2a+3)(2a+4)< n-1 )dx3P” (%)-

This implies

a,a 4 2 1 d a,a
;;c,(xD”'P (x) = (2a+4)(”*;,_a1+ )(1— x) B ()

i ereey (ntzz—afrl) [2("

P (x)

d ,a,a
—P*9x)|.

—(n-1(n+2a+ 2)dx

Now we have found

el (e o)
> ici(x)D' PV (x) + x Y ci(x)D PV (x)

i=0 i=0
20+ 1 d?
—a (") - pe
n+2a+2 i (a,a)
+4(2a +3)( )xde,, (x)
n+2a+l
(2a+4 n-1

2
x [Z(a + 2)x%P,§°"")(x) —(n-1D(n+2a+ 2)%P,§°"°‘)(x)]

n+2a+1 d2 (a,a)
—a ("2t ) )

which proves (26) and therefore Theorem 2.

6. DIFFERENTIAL EQUATIONS FOR Pg*!/2:0-N (x)

In this section we will derive a differential equation for the polynomials
{P,‘,’"'/Z’O’N(x) % and another one for the polynomials {P,',"’'/z'o’N(x)};,";0
for all @« > —1 and N > 0. These differential equations can be obtained from
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our results by applying the following quadratic transformations (see [7]):

Pzan,a,M,M(x) B P:,—1/2,0,2M(2x2_ 1)

(27) _— = g
e MMy o pr 03
and
PgnflM M(l) P:,I/Z,O,(M-O-G)M(l)

Note that (27) and (28) reduce to (7) and (8) if M =0.
If we set y(x) := f(2x2 — 1), we can prove by induction that
2i

. 2i)123i-2 R .
2)(x) = .( —_ _x¥%f02x 1), i=0,1,2,...,
V) ;(2;-21)1(21-;)! S )

and

2i+1 . 3j-2i1
@it = 37 2IF 12 .
’ j=it] (2j-2i-)2i-j+ 1)!x f2xr-1),

i=0,1,2,...,
or written in one formula
J i123-i

o) = =G =)

xU-i U (2x2 - 1),
(29) J=1(i+1)/2]
i=0,1,2,....

Note that (27) and (29) substituted in the differential equation given in The-
orem 1 leads to a triviality, since

= (=1)2%-1 e
i(x)y@(x) = o x % f)(2x2 - 1)
iz=; 121, [(f?)/zl (2 = DI ])'

=i 3=1x2 £ (2x% — 1)2———(21 (L — =0,
j=1

)i = Jj)!
in view of
2J ] J .
(-1) ) -
g(Zi—i)!(i—j)! 2%() j=1,2,3,....

By using (27) and (29) we obtain from Theorem 2 the following equation:
ad i j123j—i o
MZC,'(X) E ﬁxzf"f“)(sz— 1)
o el BT
+ (1 = x2)[16x2f"(2x* - 1) + 4f'(2x* - 1)]
—8(a+ )x2f'2x2 - 1)+ 2n2n+2a+ 1) f2x2 - 1)=0
with

Co(X) = c0(2n , O, x) = 4(2a + 3) (zn;;lz_a;— 2) ’

n=0,1,2,...,
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satisfied by

f(x) = P20 2M (),
Since

Se0) Y ot i)
Gilx PTED A e
T ety & D= )

_2231111)(2)( - I)ZW—)— x¥ei(x),
we obtain
(30) Midj(x)ﬂj)(sz 1)+ (1 =x)[16x*f"(2x2 - 1) + 4f/(2x> - 1)]
j=0
—8(a+ )x2f'(2x* = 1)+ 2n(2n+ 22+ 1)f(2x2 - 1) =0
where

2n+2a+2

do(x) = 4(2a + 3) ( o

2j _
Ly S F_
dj(x) = Z(zj AT alx), j=1,2,3, ...

), n=0,1,2,...,

By using (19) and (23) we easily see that dj(x) is an even polynomial with
degree [dj(x)] < 2j foreach j=1,2,3,.... Now we set 2x>— 1 =¢ and
N =2M in (30) to find a differential equation of the form

Ni d; Oy (1) + (1 - £2)y"(2)

J=0

- 1[(2a + 1)+ (2a+3)tly'(¢) + -;-n(Zn +2a+ 1y()=0
for the polynomials {P," »=1/2,0.N ()}, , where

do‘(t)=—2-(2a+3) (2"2:2_";2) . n=0,1,2,...,

1, [ [T+1 .
dj(t)=§dj( T), ]=1,2,3,....

We remark that dj‘.'(t) is a polynomial in ¢ with degree [d}(¢)] < j for every

and

Jj=1,2,3,.... By using (19) and (23) we see that
2j)12/-3
4;(-1) = 3,0 = B2, o)
_ 1+l a+l 21_—1 -
= (2a+ 3)(-1) (j—l) 7 #0, j=1,2,3,...,
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if « is not a nonnegative integer. This implies that the order of the differential
equation is infinite in that case if N > 0. For nonnegative integer values of o
we have dj(x) =0 for j >2a+4 and

drara(x) = 24285 2% L4(x) # 0

since degree[cy,+4(X)] = 2a + 4. This implies that the order of this differential
equation equals 2a + 4 if o is a nonnegative integer and N > 0.
And if we set y(x) := xf(2x2 — 1), we find by using Leibniz’s rule

2, . . .
. 2i)123-2 i
y®(x)=x> o (_ 2)1')!(21‘ — j)!xzf U (2x?2 1)
j=i

2i—-1
(2 — 1)123/-2i+1 2t Ay
v Z (2j=2i+1)(2i -1 _j)!x fOxt-1)

2i
Qi+ DI2Y72 i et fiy g2 -
g G—nr i e =D, =012,

and
2i+1 3j—2i—1
i+ (2i+1)12 2j-2i-1 £(j) (72 _
(x) = "j;l(zj 2i—)I2i-j+ D fO@x -1

2i )123)-2i o
+2i+1) Z; 7 (_2’2):)2'(’21 — j)!xzj-z,fm(zxz ~ 1)

2i+1
Qi+YA1 -
Zm et Ve -0, i=0,1,2,..,

or written in one formula

: d i+ 1123 il A
YO = Y 2T i f0x 1y,
i 3 i+ D))

(31)
i=0,1,2,....

If we substitute (28) and (31) in the differential equation in Theorem 1, we find
a triviality, since

)+ 3 bix)y 9 (x)

i=1

(H'l) 1)2%-1 K2+ £ (952
SR e £ 1)
111[1/2]( -1+ D(i- )
2j+1

S 531 X2+ £ (2 G+DED
?::2 G 1)Z(zj-z“ G
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in view of
2j+1 . j+1 )
i+ 1)(=1) (l+J+1) 1)+
;(21—1+1)'(1—])' Z (j—i+ D
G N AW S A VA4 A WY
= {Z;( i )(_1)—,2:;(")(_1)]

=0, j=1,2,3,....
By using (28) and (31) we obtain from Theorem 2 the following equation:

3 _ )
Mz;c,(x) z[;zﬂ P e
i= J=[i

+ (1 = x2)[16x3 " (2x% — 1) + 12x.f'(2x* — 1)]
—2(a+ Dx[4x?f(2x* = 1) + f(2x? = 1)]
+22n+D)(n+a+ Dxf2x*-1)=0

with
co(x):=c(2n+1, a, x)=4Q2a+3) (2n2-|;1?fx1+3) , n=0,1,2,...,
satisfied by

Since
(+ 12570 i A2
St 3 i 0
i, (B =i D= )
2j+1 i
— 3 F) (252 — (i+nnR- 2j—itl ..
22 f9(2x? l)z CTE S VT ci(x),

we obtain, after d1v1s1on by x,

Mi ej(x)fN(2x% - 1)+ (1 — x?)[16x2 " (2x? — 1) + 12f'(2x%* - 1)]
32 =0
(32) —2(a+ D[4x2f'2x* - 1) + f(2x* - 1)]
+22n+D)(n+a+1)f(2x*-1)=0
where

T i+ 1y

(%) — 2j—ig, P
e](x) ; (21__1+ 1)!(1—])'x C,(X), J 0, 1’ 23 ves

By using (19) and (23) we easily see that ej(x) is an even polynomial with
degree [ej(x)] < 2j foreach j=0,1,2,.... Now we set 2x2 -1 =¢ and
= (4a + 6)M in (32) to find a differential equation of the form

N i e; Oy (1) + (1 - 2)y" (1)

j=0

- %[(Za - 1)+ Qa+ 51 (1) + %n(2n +2a+3)y(t) =0
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for the polynomials {P," 1/2,0.N (1)}, , where

wpn_ L [2n+2a+3 _
e°(t)_5( 1 ) n=0,1,2,...,

n 1 . /1+t .
ej(t)—8(2a+3)e,( > ), j=1,2,3,....

Note that ej(f) is a polynomial in ¢ with degree[e;(7)] < j for every j =
1,2,3,.... By using (19) and (23) we see that

and

(¢

D = gy = I [p(, % Jern+eien(31))]

i—1
_ N CE AV _
(2a + 5)(-1) <j-—1)_j! #0, j=1,2,3,...,
if a is not a nonnegative integer. This implies that the order of the differential
equation is infinite in that case if N > 0. For nonnegative integer values of a
we have ej(x) =0 for j >2a+4 and

€20+a(x) = 290 8x22H 0, 4(x) #0.

This implies that the order of this differential equation equals 2a + 4 for non-
negative integer values of @ and N > 0.
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