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ANALYSIS AND APPLICATIONS OF HOLOMORPHIC
FUNCTIONS IN HIGHER DIMENSIONS

R. Z. YEH

Abstract. Holomorphic functions in R" are defined to generalize those in

R2 . A Taylor formula and a Cauchy integral formula are presented. An appli-

cation of the Taylor formula to the kernel of the Cauchy integral formula results

in Taylor series expansions of holomorphic functions. Real harmonic functions

are expanded in series of homogeneous harmonic polynomials.

Introduction

One of the main results in complex analysis in R2 is that a function holo-

morphic in the sense of Cauchy-Riemann is analytic in the sense of Taylor. We

recall the celebrated Cauchy integral formula leading to Taylor series expansions

of holomorphic functions through geometric series expansion of its kernel. In
7?" the situations are similar, but not as straightforward. First we construct a

Cauchy integral formula, then we find a Taylor formula to expand its kernel,

but the remainder term turns out quite difficult to estimate. Nevertheless, ob-

stacles are overcome, and we have analyticity of holomorphic functions in 7?" ,

a special case of which is the classical result in 7?2. Taylor series expansions
of holomorphic functions give rise to expansions of real harmonic functions in

series of homogeneous harmonic polynomials, and as a consequence we have
an algorithm for finding complete sets of independent homogeneous harmonic

polynomials. In R2 it is a simple matter of taking the real and the imaginary
components of powers of the complex variable z . In Rn it is a more elabo-

rate process of first computing the symmetric powers of hypercomplex variables

zx, z2, ... , zn-x, and then selecting, besides the real components, some of the

imaginary components. Surprisingly, while there are « - 1 imaginary com-

ponents in each symmetric power, most of them are repeated by components

of other symmetric powers, and we need only choose the first and ignore the
rest. Thus, the polynomial expansions of harmonic functions in T?2 and Rn are

practically of the same form, and we have in fact the best possible generalization

of results in T?2 to Tí" .
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1. HYPERCOMPLEX NUMBERS

Imitating the complex number system C, for the plane T?2, we consider

a hypercomplex number system C„_, for the space R" by creating n - 1

imaginary units ex, e2, ..., e„-X subject to multiplication rules:

(1.1) e¡ej^-ejei   for/¿j,

(1.2) e2 = e2 = ..- = e2_x = -l.

A hypercomplex number is expressible in the component form

(1.3) p = b0 + exbx + ■ ■ ■ + en-xb„-x + el2bx2 + el3bl3 + ■ ■ ■ ,

where ex2 '■= ̂1^2 and ex3 := exe3 are the first two of the many hyperimaginary

units arising from multiplications of any number of imaginary units. More

formally,

(1-4) 7> = $>¿>;i,

where each component bx is real and each X such as (1,2) or (1,3) is any
one of the 2"_1 order-preserving subsets, including the empty set 0, of the

ordered set (1, 2, ... ,n - 1). Needless to say, we identify ez with 1 and

bz with bo. Although hypercomplex numbers can be cumbersome, often we

need only the polycomplex numbers. These are hypercomplex numbers whose

hyperimaginary components are zero, and we shall express such a number in

the form

(1.5) p = exbx + --- + e„-xb„-x+b„,

where we prefer to label the real component as b„ . The conjugate p of p is

obtained from p by replacing each and every e¡ found in p by -e¡. Thus,

(1.6) P = I>a¿a   and   ex = (-\)wex,
à

where \X\ is the cardinality of X. In particular, e~¡ = -e¡, and it is not difficult

to see

(1-7) P~q=pq,

and that if p is polycomplex, then

(1.8) pp=pp = \p\2,

where \p\ is the absolute value of p, defined for all hypercomplex p as the

square root of the sum of all the components squared.
In Hile-Lounesto [6] the smallest number /c„_, is determined such that

(1-9) \PQ\<K„-X\p\\q\

for all p, q in C„_, . However, for polycomplex p and q , this inequality can

be replaced by a simple equality.
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Lemma 1.1. If p and q are both polycomplex, then

(1.10) \PQ\ = \p\\q\-
Proof. Let p = Y!¡=x e'bi and q = Yl"=x ejaj . where en is taken to be 1, then

with eiëi = 1 for all /',

P* = ( Ç "*' ) ( S ?7ßj ) = S *<*A*/

= I 5Z + H + H I e&AaJ = S &'a' + S e&AbtaJ - bjai).
\i=j      i<j      i>j j i i<j

Hence,

\pq\2 = (Tbta)   +YJ{biaj-bjai)2={ydb2\ i^aÚ =\p\2\q\2.

Replacing q by q , we obtain |p^|2 = |/>|2|<?|2.   O

2. Holomorphic Functions

We consider only hypercomplex functions f(x) = Yli.eivn(x) whose compo-

nents are smooth, that is, partial derivatives of vx up to a certain order are all
continuous in some domain Q in R" . Occasionally we will focus on smooth

polycomplex functions f(x) = £"=, e¡v¡(x) where en := 1. For smooth hyper-

complex / we consider the polycomplex differential operator d defined by

d := exdx +e2d2 + --- + en-\dn-x + dn,

where (dx, d2,... , d„) - d is the usual gradient operator, more commonly

denoted as V, and

df= (¿>,-a,-J ÍEe^) =¿E(^)(^a),

fd= fewi) (¿^) = £Í>^«-)(^).
\  A /   \i=l / k    ;=1

We say that / is holomorphic if df = 0, and retroholomorphic if fd = 0,

where the operator d := ë~xdx + e~2d2 H-h ën-idn-x + d« is the conjugate of

d.

Theorem 2.1 (equations of holomorphy).   A polycomplex function f = e,w,

H-+ en-xV„-\ + v„ is holomorphic in a domain Q in Rn if and only if its

components satisfy in fí

(2.1) dxvx + -+d„v„ = 0,

(2.2) d¡Vj = djVj   for 1 < i ¿ j < n.

Proof. Substituting the component forms of d and / in -df = 0, we have

(2.3) (exdx + ■■• + en-xdn-x - dn){exvx + ■■■+ en-\vn-\ + vn) = 0.
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Expanding and setting each component to zero, we obtain (2.1) and (2.2). Con-

versely, if (2.1) and (2.2) are satisfied, then (2.3) holds and df = 0.   D

In particular, if n = 2, we have / = exVx +v2, and

dxvx +d2V2 — 0,        dxv2-Ô2VX.

Now, in complex analysis, ex is usually written as /, vx is written as v , and v2
is written as u, so that f = iv + u, and if partial differentiations are denoted

by subscripts, then we have

(2.4) vx + uy = 0,

(2.5) ux = Vy.

Equations (2.4) and (2.5) are the well-known Cauchy-Riemann equations in

7?2.

Theorem 2.2. A polycomplex function f = exvx H-+ en-xvn-i + vn is retro-

holomorphic if and only if it is holomorphic.

Proof. It is easy to check that for a polycomplex / the respective components

of df and fd are either equal or negative of each other. Hence, if / is

polycomplex, df and fd always vanish simultaneously.   D

There are n - 1 basic holomorphic functions in Rn , each corresponding to

one imaginary unit. They are given by

(2.6) z,(x) = x¡ + e¡xn   for 1 < i < n - 1

with x= (xx, x2, ... , x„). For n = 2, we have simply z, = x\ +exx2 — x+iy.

Clearly,
dzi = (e¡di)Xi + d„(eiX„) = e~¡ + e¡ = 0.

In trying to find more holomorphic functions, we note that while linear combi-

nations of z, are holomorphic their products may not be. For example, z,Z2

is not holomorphic since

d(zxz2) = d[(xx + exxn)(x2 + e2x„)\

- d[xxx2 + ex(x2x„) + e2(xxxn) + e^x2]

= (e~xx2 + e2xx) + (e~2exx„ + exx2) + (e~xe2xn + e2x{) + exe2(2x„)

= [ei(-x2 + x2) + e2(-xx +xx) + exe2(xn - x„)] + exe2(2x„)

= exe2(2xn).

However, we can avoid this difficulty by considering instead z,Z2 + Z2Z,, then

f9(z,z2 + z2zx) = exe2(2x„) + e2ex(2x„) = 0.

Likewise, while z\z2 is not holomorphic, z\z2 + zxz2zx + z2z\ turns out to

be. We therefore propose for Z - (zx, z2, ... , zn-X) and each multi-index

ß = (ßx, ß2, ..., ßn-i) the symmetric power ZB defined as the sum of all

possible z, products each of which contains z, factor exactly /?, times. For
example, with n = 3, we have

(Z,, Z2)(1'1) = ZiZ2 + Z2Zi,

(z,, z2)(2'X) = z\z2 + zxz2zx + z2z\.
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Now, in the last equation, if we note further

(z,, z2Í2^ = zx(zxz2 + Z2Zx) + z2(z\) = zx(zx, z2f<» + z2(zx, z2)<2-°>,

then we may correctly infer

(z,, z2)C" •« = zx(zx, ,2)tA-i.« + z2(z,, ,a)(A .A"« ,

and more generally,

(2.7) ZB = zxZB-*1 + z2ZB-el + ■■■ + Zn-xZ8-*"'1,

where each el is the unit multi-index (0, ... , 0, 1, 0, ... 0) with 1 occurring
only in the /th position. However, rather than proving (2.7) we will use it to

define symmetric powers.

3. Symmetric powers

We begin with a formal definition of symmetric powers ZB. Let Z =

(z,, z2, ... , z„_i) where z, = x¡ + e¡x„ , and ß = (ßx, ß2, ... , ß„-X) where

ßi are integers, then ZB is a function in R" defined inductively as follows:
If any integer /?, is negative, we set ZB - 0. If ß — (0, 0, ... , 0), we set

ZB = 1. And if \ß\:=ßx+ß2 + --- + ßn-i > 1, we set

ZB = zxZB~e> + z2ZB-'2 + ■■■ + zn-XZB-e"" ,(3.1)

where el! = (0,... ,0, 1,0,

Thus, in 7?3 we have

0) with 1 occurring only in the zth position.

(z,, z2)(>>°> = Zx(Zx, z2)(°'°) + Z2(Zx, Z2f'~» = z,,

(Z,,Z2)(0'1) = Z,(Z,,Z2)(-1-1) + Z2(Z,,Z2)(°'0^Z2,

(z,, z2)<2'°> = x,(r,, z2)(1'°> + z2(z,, z2)(2'-') = z2,

(z,, z2f •J) = zx(zx, z2)(°-» + z2(z,, z2)(1'0) = ziz2 + z2z,,

(Z,,Z2)(0-2) = Z,(Z,,Z2)(-1'2) + Z2(Z,,Z2)(°'1) = Z22.

An alternative formula which we can deduce from (3.1) by induction on m = \ß\

is

(3.2) ZB = ZB~eXzx +ZB-e2z2 + --- + ZB-e"-lzn-X.

Using either (3.1) or (3.2) we can demonstrate after some calculations (and

after rewriting x,, x2, x3 as x, y, z) :

(2

(Z

(z

(Z

(z

(z

(z

(Z

(z

,z2)(x'V = x + exz,

,z2)(°'V=y + e2z,

,z2f^ = (x2-z2) + ex(2xz),

,z2f'V = (2xy)+ex(2yz) + e2(2xz),

,z2)^ = (y2-z2) + e2(2yz),

, z2)(3.0) _ fx3 _ 3xz2) + ex(T,x2z - Z3) ,

, z2){2' " = (3x2y - 3j;z2) + ex(6xyz) + e2(3x2z - z3),

, z2)(1 >2) = (3xy2 - 3xz2) + ex (3y2z - z3) + e2(6xj;z),

, z2)(o>3) = (y3 - 3j;z2) + e2(3y2z - z3).
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Lemma 3.1. The components of symmetric powers satisfy

(3.3) comp,Z^+e' = compjZß+eJ   for 1 < i, j < n - 1,

(3.4) compAZ}' = 0   for all \X\>\,

where \X\ denotes the cardinality of X.

Proof. We prove the lemma by a simultaneous induction on \ß\ and \y\. For

\ß\ - 0 and \y\ = 1, (3.3) and (3.4) are easily checked. Therefore, we assume
(3.3) for \ß\<k — I and (3.4) for \y\ < k, k > 1 as induction hypotheses and
show (3.3) for \ß\ = k and (3.4) for \y\ = k + 1.

First, for |j3| = A: in (3.3) we use (3.1) to expand ZB+e' = ££¡ z^Z'-*'-«*,

then, by the induction hypothesis on |y| </c in (3.4), z^"1"^-^ are polycomplex

since |/? + e' -eq\- k,so

n-l

compiZB+ei = Y,xqcompiZB+e'-eq +xnKeZB+e'-ei.

9=1

On the other hand, likewise

n-l

comp jZB+e' = Y.XgCompjZ^'-^ +xnReZB+ei~eJ.

9=1

But, in view of the induction hypothesis on \ß\ < k - 1 in (3.3), we have

XaCompiZ^-^' = x?comp,Z<^>+<

Hence,

compiZB+e' = compjZB+ei,

and (3.3) is confirmed for \ß\ = k .
Next, for \y\ = k + 1 in (3.4) we again use (3.1) to expand

n-l
(3.5) Z1 = Y,ZiZy~e'.

1=1

Clearly, compxZy - 0 for \X\ > 2 since compAZ',_e' — 0 for \X\ > 1 by the
induction hypothesis on \y\ < k. It therefore remains to show comp^Z5, = 0

for \X\ = 2. Now suppose ex = e¡ej , then since only the z'th and the yth terms

in (3.5) can possibly produce ex , we have

comp^Z7 = compx(z¡Zy~e') -|-comp/l(z7Z,'~e'')

= comp/l(e,e,yX„compyZ,'_el) + compA(e7e,x„comp,Z),_eJ)

= xncompjZy~e' - xncompiZy~eJ.

But,

comp¡Zy-e' = compjZy~e'    (by (3.3) for \ß\ < k - 1).

So, comp^Z1, = 0 for \X\ = 2, and (3.4) is confirmed for |y| = k + 1.   D
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Lemma 3.2. Every symmetric power ZB is a polycomplex holomorphic function
in R".

Proof. First ZB is polycomplex by (3.4) of the preceding lemma. As for holo-

morphy of ZB, we check dZB = 0 easily for \ß\ = 1. So assume as the

induction hypothesis dZB = 0 for \ß\ < k, k > 1. Now for \ß\ = k + 1 we
first expand ZB by (3.2),

ZßJ^zß^'zi,
;=1

then \ß - e'\ = k , and dZB~e' = 0 by the induction hypothesis. Applying -d

to ZB instead of d for convenience, and noting that each component of d

operates by the product formula of differentiation, we obtain

(-d)zB= ÍE^-aJ^z^z^

n-l

-E
;=1

'n-l

¿Zejdj-dnjZßS
<j=x

Zi + E ( E ejZB-e'djZi - Zß-'dnZi
i=l \j=l

n—l n-l  In-l

= Y,(-dzß-<')zi+y: e^z/,-% - zß-e>^
i=i i=i \j=i

n-l

= 0 + ¿~^(ejZß-e' - Zß-e'e7)   (by the induction hypothesis)

i=i

= y~] 2e,g;comp/Z^ e'

= y^ 2g,gycomp/Z^~g' + y^ 2e,e/comp;Z^~g'
i<j i>j

= ^7 2e¡e¡eovap jZß~e' + ^ 2e/£,comp,Z^_i"'

i<j j>i

= £ 2(eiej + ejei)compjZß-ei   (by (3.3))

i<j

= 0   (by (1.1)).

Hence dZß = 0.   D

Corollary 3.2. Components of symmetric powers Zß are homogeneous harmonic
polynomials.

Proof. First, obviously, components of Zß are homogeneous polynomials by

(3.1). Then, since dZß = 0, if we apply the Laplace operator A = dd on Zß ,

we have A(Zß) = (dd)Zß = d(dZß) = 0, and so all the components of Zß
must be harmonic.   D
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Lemma 3.3. Symmetric powers satisfy the following differentiation formulas:

(3.6) d¡ZB = \ß\Zß-e'   for\<i<n-\,

n-l

(3.7) dnZß = \ß\y£zß-e'ei.
i=i

Proof. Formula (3.6) is proved by induction on \ß\. For \ß\ = 1, (3.6) holds
quite trivially. So assume (3.6) with \ß\ = m as the induction hypothesis and

consider (3.6) with \ß\ = m + 1. Now

diZß = diV£zjZß-A    (by (3.1))

n-l

= Y>[(diZj)Zß-ei + Zj(diZß-ei)]

7=1

n-l

= ¿2(ôijZp-ei + Zj\ß - ej\Zß-ei~ei)   (by the induction hypothesis)

j=\

= Zß-e' + (\ß\-l)Y,ZjZß-e,-<i

j=l

= Zß~e' + (\ß\ - l)Zß~e'   (again by (3.1))

= \ß\zB-',

and (3.6) holds for \ß\ = m + \.
Formula (3.7) is proved by using (3.6) together with the fact that Zß being

polycomplex and holomorphic is also retroholomorphic by Lemma 3.2. Indeed,

dnZß = Zßdn = Zß(d + \z etd\ = £ diZßei = \ß\ £ Z^e,.   D
\       i=i       /      i=i i=i

As useful variations of (3.6) and (3.7) we have

(3.8) di(Z-P)ß = \ß\(Z-P)ß-e'   for 1 <i<n- 1,

n-l

(3.9) d„(Z - P)ß = \ß\ Y,(Z - P)ß~e'ei,
i=i

where the constant P = (px, p2, ... , pn-X) = (ax +e{an , a2 + e2an , ... , an-X +

e„-xa„) arises from a constant point a = (a,, a2, ... , an) in 7?" , and similarly

also

(3.10) di(P - Z)ß = -\ß\(P - Z)ß~e'    for 1 </<«-1,

n-l

(3.11) dn(P - Z)ß = -\ß\ ¿2(P - Z)ß~eiei.
i=i
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4. Taylor formula

A Taylor formula recovers a function from its partial derivatives of a certain

order and values of all the lower order partial derivatives at a point, say the

origin, combined with appropriate power functions. In the case of holomorphic

functions in 7?" , the required power functions are the symmetric powers Zß .

In order to state our Taylor formula we shall need line integrals in 7?" . Let

/(x) = Ee^w and c?(x) = Ev-Mx)
X ß

be smooth functions in some Q in Rn, and let C be a path of integration

(having a continuously varying tangent vector) in fi, then we define two Stieltjes

line inegrals of / and g along C by

(4.1) / f(dg) = ¿^(exe,) f J2[vx(diWp)]dxi,
Jc tí Jcti

(4.2) / (df)g = ¿^(exe,) í ¿ [(d^w,]dxt.

Lemma 4.1 (integration-by-parts formulas). If f and g are smooth functions

in some domain Q in R", and C is a path of integration in Q going from a

to b, then

(4.3) j f(dg) = [/(b)£(b) - /(a)s(a)] + £ df(-g),

(4.4) J (df)g = [f(b)(g(b) - /(a)s(a)] + J (-f) dg.

Proof. With proper rearrangement of summations, (4.1) and (4.2) can be con-
veniently written as

(4.1a) j f(dg) = J f(dlg)dxx + f(d2g)dx2 + --- + f(dng)dxn,

(4.2b) j (df)g = J (dxf)gdxx + (d2f)gdx2 + ■■■ + (dnf)gdx„.

Adding these two equations, we have

(4.5) j f(dg) + (df)g = J dx(fg)dxx+--- + dn(fg)dx„.

But in view of the fundamental theorem of line integrals we also have

(4.6) j dx(fg)dxx + --- + dn(fg)dxn = f(b)g(b) -/(a)s(a),

where a and b are the end points of the path of integration C. Combining

(4.5) and (4.6), we have

j f(dg) + (df)g = f(b)g(b) - /(a)g(a).
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Transposing the first and the second part of the integral, we obtain respectively

(4.3) and (4.4).   D

Before we state our Taylor formula, we introduce the differential operator

(4.7) Dß = (dx,d2,..., flL^CA.A.-.A-.) = d*dh ...d¡¡^,

in which d„ is notably absent, and we shall keep in mind that the order of

partial differentiations is immaterial for functions that are sufficiently smooth.

And lastly, we will use the notation /a f(x)dg(x) whenever the integral is in-

dependent of particular choices of the path of integration going from a to b,

and also the notation $* f(x)dg(x) whenever x is preempted to denote an end

point of the path of integration.

Theorem 4.1. If f is holomorphic and sufficiently smooth in a domain Q in Rn

containing the origin 0, then for any x in Q, we have

m-l

f(x) =  £ [Zß/\ß\l)Dßf(0)
(4.8) l/?l=0

+ E   / d[-(Z-Z)ß/m\]Dßf(x)   (Taylorformula),
\ß\=mJ»

where Z = Z(x) and the line integral is along any path of integration in Q

going from 0 to x.

Proof. We prove the theorem by induction on m . First, if m = 1, (4.8) reduces

to
n-l

f(x) -/(O) = ¿ Cd[-(Zi - Zi)]dif(x)
TIT Joi=i
n-l    ax

= y~] /  d(x,+eiX„)dif(x)   (since z, remains constant)
,=i Jo

n-l    ,x rx (n-l \

= E/0 dWfW + J   dxn \J2eidijf(x)

n      -x

=   y~] /   dxidif(x)    (by holomorphy of f),

which is none other than the fundamental theorem of line integrals in 7?" .

Next we take (4.8) as our induction hypothesis and show that (4.8) remains
valid when m is replaced throughout by m + 1. For this we focus on the re-

mainder term in (4.8) and apply the integration-by-parts formula (4.4), keeping

in mind that if the line integral on one side of the formula is independent of the

paths of integration then so is the line integral on the other side. The remainder

term then splits into two terms:
rx

J2 j d[-(Z-Z)ß/m\]Dßf(x)

= ¿2[Zß/ml]Dßf(0)+ Y   i\(Z-Z)ß/m\]d[Dßf(x)].

\ß\=mJo

\ß\=m \ß\=m'
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Now, while we let the first term join the cumulative summation in (4.8), we

work on the last part of the second term:

n-l tn-l

d[Dßf(x)] = J2 Dß+e'f(x)dxi + Dß[ £ eidi   f(x)dx„    (since df = 0)
i=i
n-l

,i=l

n-l

= J2(dXi + eidxn)Dß+e'f(x) = ¿2 dziDß+e'f(x).
i=i i=i

Consequently, we can rewrite the second term as:

£  \\(Z-Z)ß/m\\  Y,dziDß+e'f(x)
\ß\=mJ° L,=l

= e Erp-z)'/^^.-^/^)]
\ß\=m i=l J°

=    E    íXJ2[(Z-Zy-e'/m\]dzi[Dyf(x)].
\y\=m+lJ°    i=l

Finally, leaving the last part of the last integral intact, we attempt to show

n-l

J2 [(Z - Z)y-e'/m\] d¿i = d[-(Z - Zy/(m + 1)!]
i=i

in order to arrive at the correct remainder term. In fact, we choose to show this

last equation backwards by using differentiation formulas (3.10) and (3.11).

Indeed, with \y\ — m + 1 we have

rf[-(Z-Z)V(m+l)!]
n-l n-l

= £ [(Z - Z)y-e'/m\]dxi + ¿Z[(Z- zy-e'/m]]e¡dxn
i=i
n-l

i=l

= £ [(Z - Z)y-ei/m\]d(Xi + eiXn)

¡=i

n-l

= Yttz - zy-ei/m\]dzi. D
1=1

Formula (4.8) can be modified by a slight change in notation. For instance,

although x = (x,, X2,... , x„) is the ultimate independent variable in R" , it

can be uniquely represented by Z = (zx, z2,..., z„_,). Formula (4.8) then

becomes

(4.9)
m-l

f(Z) =  £ [Zß/\ß\\]Dßf(0)
|/?|=o

+ V   /   d[-(Z-Z)ß/m\]Dßf(Z)   (Taylor formula in Tí").
\ß\=mh
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In particular, if n — 2, Z reduces to zx = xx + exx2 = x + iy = z, ß

reduces to /?, = k, and D reduces to d, = d/dx — d/dz for holomorphic

functions in 7?2 , and so (4.9) reduces to

m-l

f(z)= Y,(zk/k\)fW(0)
(4.10) k=0

+ [ d[-(z - z)m/m\]ßm\x)   (Taylor formula in 7c2).
Jo

Further, since

d[-(z - z)m/m\] = d\[-(z - z)m/m\]dx + d2[-(z - z)m/m\]dy

= [(z - z)m-x/(m - l)\]dx + [(z - z)m-x/(m - \)\]idy

= [(z-z)m-x/(m- \)\]dz,

hence, (4.10) becomes, after replacing m throughout by m + 1,

m -z

(4.11) f(z) = Y}f(k)^)lk\)zk+      [ßm+1)(z)/m\](z-z)mdz,

tu J°

which resembles the familiar Taylor formula found in elementary calculus.

5. Cauchy integral formula

We consider only domains that are regular, that is, open connected sets in 7?"
on which the divergence theorem holds. A hyperball, for example, is such a do-

main. Specifically, if Q is regular, then for any real function u(x) continuously

differentiable in fi and continuous on the closure fi, we have

(5.1) //  i//(î)m(Ç) dÇ = [if d¡u(x) dx   for 1 < / < n,
J Jaa J J Ja

where (vx,u2, ... ,vn) = v is the unit normal vector on the hypersurface d£l

pointing outward, <¡; is the variable representing points on the boundary d£l,
and x is the variable representing points in fl. Formula (5.1) is a useful

reduced form of the well-known Gauss divergence theorem, which can be re-

stored from (5.1) by replacing u with w, and summing over 1 < i < n. Now

an extensive linear recombination of (5.1) after replacing u with vx leads to

a quasidivergence theorem (5.3) below, out of which emerges a Cauchy integral
theorem.

Theorem 5.1 (Cauchy integral theorem). Let f(x) = Ylxexvx(x) be continuously

differentiablewith df = 0 in a regular domain Q in R" and continuous on

the closure Q, then

(5.2) / /   v(Ç)f(Ç) ¿f = 0   (Cauchy integral theorem in Rn)
JJdîï

where V is the conjugate of the polycomplex unit normal v = e\Vx+e2v2-\-f-

en-xvn-i + vn formed by combining the components of the outward unit normal
vector v = (vx, v2, ... , vn).

Proof. Taking a component from v and a component from /, we have in view
of (5.1)

//   utvx(K= [[[ diVxdx.
JJdQ. JJJn
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Multiplying both sides by e~¡ex and summing over / and X, we obtain

E E^a) //   Wx dÇ = ¿ ¿Zfrex) iff diVx dx.
MX JJda Ml JJJa

Hence, by linearity of integrals, we have

(5.3) ¡f  vfdÇ= fffdfdx.
JJdn JJJa

Now substituting df = 0 in the last integral, we obtain (5.2).   D

In particular, if n = 2, then the surface integral reduces to the line integral

§dÇivfds, but Vds = (-ivx + v2)ds = -(-v2 + ivx)ds = -(dx + idy) = -dz
since (-v2,vx) is the unit tangent vector obtained by a 90 degree counter-

clockwise rotation of the outward unit normal vector (vx, v2), therefore (5.2)

reduces to

(5.4) f   f dz = 0   (Cauchy integral theorem in T?2).
Jda

A generalization of (5.2) is now necessary in order to deduce from it a Cauchy

integral formula. We follow examples of Delanghe [2] and Hile [5] and augment

the integrand Vf in (5.2) to gVf.

Theorem 5.2 (generalized Cauchy integral theorem). If f(x) = J2xexvÁx) and

g(x) = 53 epwp(x) are continuously differentiable with df = 0 and gd — 0 in

a regular domain Q in Rn and are continuous on the closure Q, then

(5.5) // g(ç)mf(Qdç = o.
J Jda

Proof. First without assuming df — gd = 0, we work out in general

//«"**=IL (?""') (IH (?™)¿{
= E E^'^) //   ViWPVxdC.

rr T~T J JaaX,ii 1=1

But by (5.1) we have

/ /   Vi(wpvx) dÇ = / / / di(wßvx) dx = ¡ff [(diWß)vx + wM(diVx)] dx.
J Jaa JJJa JJJa

Therefore we obtain

JL""«-JJLfcfeepwß   e¡ E*^

+ E eMwM Ee'9'   Ee^ dx

= Uj[(gd)f + g(df)]dx.
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Replacing v by v , we can likewise show

(5.6) //   gVfdÇ= fff[(gd)f + g(df)]dx.
JJaa JJJa

Finally, substituting df - gd -0 in the last integral, we obtain (5.5).   D

Corollary 5.2. If f and g are polycomplex and continuously differentiable and

holomorphic in a regular domain Q in Rn and are continuous on the closure

U, then

(5.7) //   g(C)V{C)Ai)dC = 0.
J Jaa

Proof,  g being polycomplex and holomorphic is in fact retroholomorphic by
Theorem 2.2.   Therefore conditions in Theorem 5.2 are satisfied, and (5.7)
follows.   D

We deduce a Cauchy integral formula from (5.5) by first transforming it into
(5.8) below.

Theorem 5.3 (principle of deformation). Let Sx enclosing S2 be two closed
surfaces that together form the boundary of some regular domain £2*, inside

which f and g are continuously differentiable with df = gd = 0, and over the
closure of which f and g are continuous, then

(5.8) // g(f)F(f)/({) dÇ = ff g(Ç)v(Ç)f(Ç) di,
J Jsi J Js2

where V denotes the conjugate of the polycomplex outward unit normal v of the

closed surface in each of the two surface integrals.

Proof. Since any outward normal of S2 is an inward normal of d£l*, we have

if    gvfdi = ff gVfdÇ - // gvfdi.
J Jda- J Js¡ J Js2

But the integral on the left is zero by (5.5), so (5.8) is valid.   □

Equation (5.8) leads to Cauchy integral formula (5.9) below if, while taking

Sx = díl and / holomorphic in £2 as given, we let g be a suitable function

to play the role of Cauchy kernel and S2 be a small sphere to facilitate the
evaluation of the surface integral.

Theorem 5.4. Let f(x) — ¿^,xexvx(x) be continuously differentiable and holo-

morphic in a regular domain Í2 in R" and continuous over the closure £2, then

for any x in Q, we have

f(x) = to-x ¡f K-n-"(t-x)nt)Ae)dt
(5.9) JJaa

(Cauchy integral formula),

where x = exxx + ■■■ + en-Xx„-X +xn, £ = ex£,x +■■■ + en-XÇ„-X +Ç„, to„ is

the area of the unit sphere in R", and V(Ç) is the conjugate of the polycomplex

outward unit normal v of dil at £.

Proof. Let g be the polycomplex function defined by

(5.10) S(Í,x) = ||$-x||-"(£-jc)   (Cauchy kernel)
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with x = (x\, x2,..., xn) and i = (fr , i2 » • • • » in) both in £2, and

x = x(x) = e,x, + e2x2 + ■■■ + e„_,x„_, + x„,

f = £(£) = e,£, + ^26 + • • • + en-xZn-i + in,

then, for each fixed x, g can be shown by routine calculations to be holomor-

phic (and hence also retroholomorphic by Theorem 2.2) in i e £2 - {x}, and
likewise, for each fixed i, g can be shown to be holomorphic (and hence again

retroholomorphic) in x e £2 - {£} .

Substituting (5.10) in (5.8) and letting 5, = d£2, while choosing S2 to be the
boundary of a small ball Bp(x) of radius p > 0 centered at the point x e £2,

we obtain

(5.11) //   g(i,x)V(i)f(i)di = ff       í({,xM{)/({)¿f.
JJda JJdBp(x)

Now noting that on dBp(x) V(i) = ||{-x||-1(£-x) and |<j;-x| = p, we see the

surface integral on dBp(x) can be simplified after some routine calculations to

(5.12) //       g(Ç,x)V{Ç)AÇ)dÇ = p-n+l ff       Ai)di.
JJdBp(x) JJdBp{x)

But if tûn denotes the area of a unit sphere in T?" , then the area of dBp(x)

is given by to„pn~x, and the last surface integral above reduces to to„p"~x

multiplied by the average value of / on dBp(x), which tends to f(x) by

continuity of / at x as p approaches 0. Consequently, (5.11) and (5.12) give

rise to (5.9).   D

Formula (5.9) can be modified by a slight change in notation. If we let x

and i represent x and i, then (5.9) becomes

f(x) = to~x ff \i - x\-"(i - x)v(i)Ai) dt
J Jda(5.13) - '       -   JJda'

(Cauchy integral formula in Tí"),

where the Cauchy kernel is now expressed as

(5.14) g(i,x) = \i-x\-n(i-x).

In particular, if n = 2, then to2 - 2n, and " x" reduces to e,x, +X2 = ix+y =

i(x - iy) = iz, and likewise, " i " reduces to iÇ. Also Vdt, reduces to -dÇ as
was shown in the derivation of (5.4). Consequently (5.13) reduces to

f(iz) = (2n)~x f   \iC - iz\-2(iC - i-z)fdO(-dC)
Jda

= (2ni)~x f  (C-z)'xf(iQdC
Jda

Now the ultimate independent variable (x, y) in 7?2 can be represented by iz

or z as long as f(ïz) and f(z) are understood to represent the same mapping
of £2. We may therefore rewrite the above equation as

(5.15) f(z) = (2ni)~x f (C-z)-xf(C)dC   (Cauchy integral formula in 7?2).
Jaa

6. Taylor series expansions

We now apply our Taylor formula (4.8) to Cauchy kernel (5.14) and analyze

the remainder term to arrive at Taylor expansions of holomorphic functions.
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Theorem 6.1. If f(x) = Y,xexvx(x) w continuously differentiable and holomor-
phic in a spherical domain \\x\\ < a in Rn and continuous on its closure ||x|| < a,

then f(x) can be expanded in power series

oo

(6.1) /(x)= Y,lzß/\ß\W>ßA0),
\ß\=0

which converges uniformly for ||x|| < a/4.

Proof. Whenever convenient we shall write x and £ for x and i. First by

applying the Taylor formula (4.8) to the Cauchy kernel g(Ç, x) in (5.14) with
i held constant, we have

m-l

(6.2) g(i , x) = £ [Zß/\ß\\]Dßg(Ç, x)U=o + Rm(i, x),
\ß\=0

where

(6.3) Rm(i,x)= Y,   fXd[-(Z-Z)ß/m\]Dßg(c;,x).
\ß\=mJ°

Substituting (6.2) and (6.3) for the Cauchy kernel in (5.13) while taking £2 = 5,
the spherical domain ||x|| < a, we obtain

(6.4) f(x) = £ [ZB/\ß\\] \to-x ff  Dßg(cl, x)v{i)f(i)di]       + Rm(x),
\ß\=0 l JJdB J  x=0

where

(6.5) Rm(x) = co-x ff  Rm(i,x)m)Ai)di.
J JdB

But Dß in (6.4) may be moved forward across the integral sign by Leibniz's

rule justified by continuities of Dßg. With simplification by the Cauchy integral

formula (5.13), we have

m-l

(6.6) f(x) = Y [Zß/\ß\\]Dßf(0) + Rm(x).
l/>l=o

Finally, since by Lemma 7.5 to follow |üTO(x)| tends to zero uniformly for

||x|| < a/4 as m goes to infinity, we obtain (6.1) with uniform convergence for

||x|| < a/4, and hence, by continuity of /, on the closure ||x|| < a/4.   D

In the Taylor series expansion (6.1) if we use Z to represent x, then (6.1)

becomes

(6.7) f(Z)=Y,(Zß/\ß\\)Dßf(0)    (Taylor expansion in Rn).

101=0

In particular, if n = 2, then as before, Z reduces to z, = xx + exx2 — x + iy —

z, and Dß reduces to dk/dxk where k = \ß\, and since d/dx is equivalent

to d/dz for holomorphic functions in 7?2 , we obtain

oo

(6.8) f(z) = Y(zk/k\)f{k)(0)   (Taylor expansion in 7?2).
k=0
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7. Remainder terms

Since the remainder term 7?m(x) arises in (6.5) from the remainder term

Rm(!7,, x), we begin by estimating the latter.

Lemma 7.1. If Rm(i, x) is as given in (6.3), then

(7.1) Rm(i,x)= f [(l-t)m-l/(m-l)\](x.d)mg(i,x)dt,
Jo

where x • d - xxdx + x2d2 H-h x„dn , and x = xt for 0 < t < 1.

Proof. For the line integral in (6.3) we choose as the path of integration the line

segment from 0 to x and parameterize it by x = xt with 0 < t < 1, then

(Z - Z)ß = (Z- Zt)ß = [(1 - t)Z]ß = (1 - t)MzB ,

and therefore

(7.2) Rm(i,x)= f d[-(\-t)m/m\][ Y Zßbß\g(c:,x).
Jo \\ß\=m J

Now the operator on g can be simplified in two steps to (x • d)m ■ First we
have

(7.3) £   ZBD* = (ZXÔX +■■■ + Zn-xdn-l)m ,

\ß\=m

which can be shown by induction on m . Indeed for m = 1, we have trivially

£  ZßDß = Zxdx+--- + Z„_xdn-l,

101=1

so assume (7.3) valid and proceed to

Y   ZßDß=    £   (z,Z^' + -.. + z„_,Z^"-,)Ty    (by (3.1))
\ß\=m+l \ß\=m+l

=    Y   (zidxZß-e'Dß-e,+--- + Zn-xdn-xZß-en-,Dß-e"-1).

\ß\=m+l

But for each i we have

53 zß~e'Dß-ei = 53 Z"^ ,
\ß\=m+l \ß\=m
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which by the induction hypothesis is equal to (zxdx H-\- z„-xdn-i)m ■ Con-

sequently,

53 z^7y = (z,öi + ... + z„_,cVir+1,
\ß\=m+\

and (7.3) is confirmed for all values of m > 1.

Next we see that

z,à, + • • • + z„_,ö„_, = (x, + exx„)dx + •■• + (x„_, + e„_,x„)¿Vi

(1 4) = x,ö, + • • • + x„_,9n_, + xn(exdx + ■■■ + en-Xdn-i)

= xxdx + ■■■ + x„_,4-i + xnd„

= x-à

so long as the operator is applied on holomorphic functions, for then exdx

H-+ en-xdn-i — 9„.  Substituting (7.4) into (7.3) and then into (7.2), we
obtain (7.1).   D

Lemma 7.2. If g(Ç ,x) = \i~ x\~n(Ç - x), then for m>\

[m/2]

(x • a)mg(i, x) = 53 b%_2jÂ-n-2m+2JBm-2J(-c2y (i - x)

(7.5)

+ E b%_2j_xA-n-2m+2j+2Bm-2j-x(-C2)jx,

j=0

where [m/2] and (m/2) denote respectively the largest integer no greater than

and the largest integer strictly less than m/2, and A, B, C are scalars given

by \£ - x\, x • (i - x), |jc| , and bf are positive real coefficients satisfying the
common inequality

m

(7.6) bf < Y[(n + 3k)   for 0 < i < m.
k=l

Proof. Since g(i,x) = \i - x\~"(Ç - x) = Â~n(à, - x), calculations of

(x • d)mg(i, x) will be based on the following formulas that can be routinely

checked:

(7.7) (x • d)A~k = kÄ-k~2B,       where B = x• (i - x),

(7.8) (x-d)Bk = kBk-x(-C2),    where C = ||x|| = |x|,

(7.9) (x-Ô)(i-x) = x.

Now for m = 1, (7.5) reduces to

(7.10) (x.a)^,x) = ¿),1^-"-2T}(^-x) + tb¿Í'-"x,

which can be confirmed by using (7.7) and (7.9), for indeed

(x • d)g(i, x) = (x - d)Â-"(i -x) = nÄ-n-2B(t: -x) + À-"x.

So (7.5) is valid for m = 1 with b\ = n and b0x = 1, and (7.6) is also valid

for m = 1 since
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1

b\ = n<n + 3= ]\(n + 3k),
k=l

and

i
b0l = 1 <n + 3 = Y[(n + 3k).

k=i

Therefore, we assume (7.5) and (7.6) as induction hypotheses and proceed to

(x-d)m+lg(i, x) and ¿>(m+1 for 0 < i < m + 1. If we apply x-d to both sides

of (7.5), we obtain

(x-d)m+ig(t,x)

[m/2]

= E bm-iM + 2m - 2j)A-"-2m+2j-2Bm-2j+x(-C2)j(i - x)   (by (7.7))

7=0

[m/2]

+ E b%_2jA-n-2m+2J(m - 2j)Bm-2J-x(-C2)j+x(Ç - x)   (by (7.8))

;=o

[m/2]

+ E bZ_2jÄ-n-2m+2jBm-2J(-C2)jx   (by (7.9))

7=0

(m/2)

+ E b%-2j-i(n + 2m- 2; - 2)A-"-2m+2jBm-2J(-C2)jx   (by (7.7))

7=0

(m/2)

+ E ¿m-27-i^~"~2m+27'+2(w - 2; - l)Bm-2j-2(-C2)j+xx   (by (7.8)).

7=0

Now -C2 appears with the exponent j + 1 in the second and the last sum-
mations, so we must replace j by j — I throughout in these two summations.

Then relying on elementary formulas:

for odd m,

for even m,

for all m,

we readjust the range of j whenever necessary, for example, for odd m,

[m/2]       [m/2]+l      [(m+l)/2]

E =  E  =   E     (by (7.1D),
7-1=0 7=1 7=1

and continue as follows.

(7.1.) [^] =

(7.12, ["].

(7.13,   [?].

m + 1

2

m + 1

1    and

and

and

(?) - C^)

r?)_V

m + 1

2

m+\ -1
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(x-d)m+lg(Z,x)

[m/2]

= E bm-2j(n + 2m- 2j)Ä-n-^m+^+2JB^m+^-2J(-C2y(i - x)

7=0

[(m+l)/2]

+    E    ¿m-27+2^""_2(w+1)+27'(w-27 + 2)Ti(m+1)-2^(-C2y(^-x)

j=l

((m+l)/2)

+      E      ¿m-27^~"-2(W+I)+2;'+2^('"+1)~27"1(-C2);X

7=0

(m/2)

+ Y b%_2j_x(n + 2m-2j-2)Â-n-2(m+lî+2j+2B(m+xî-2j-x(-C2)jx

7=0

((m+l)/2)

+    Y    b%_2j+xÀ-n-2(m+xî+2J+2(m-2j+l)B(m+xî-2J-x(-C2)Jx.

i=i

In the second summation above, although j should run from 1 to [(m+l)/2]+1

for even m in view of (7.12), as j reaches this upper limit of summation the

factor m - 2j + 2 vanishes. And similar situations are observed for j in the

last summation. Now, combining the first two and the last three summations

separately, we obtain

[(m+l)/2]

(X • d)m+ig(¿ , X) =      53     ^Vl)-27^"""2(m+1)+2^(m+1)_27'(-C2);'(í - X)

7=0

((m+l)/2)

+     E     ¿('m++1l)-27-l^"""2(m+1)+2;'+2^(m+1)"27"1(-C2)^,

7=0

where

m+ 1
6(r+i)-27 = bZ-2j(n + 2m- 2j) + b^2j+2(m - 2j + 2)   for 0 < j <

and

¿[m++1l)-27-l = *m-27 + 6m-27-l(« + ^ - 2j - 2)

+ b%-2j+x(m - 2j + 1)   for 0 < j < (^) ,

provided that we set bk := 0 for any k not satisfying 0 < k < m. Thus (7.5)

with m replaced by m + 1 is established.
As for (7.6) with m replaced by m + 1, if we let

¿,m:=Max{èm:0</< m},

then

¿(r+D-27 < b?(n + 2m- 2j) + b?(m - 2j + 2) = b?(n + 3m- 4j + 2)

<b?(n + 3(m + \))   for 0 < j < '
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and

6(r+,)-27-i < K + b?(n + 2m- 2j -2) + b?(m - 2; + 1)

= ¿>f (n + 3m - 4j)

<b^(n + 3(m + \))   for 0 < ; <

Consequently, combining both inequalities, we obtain

bm+l < b?[n + 3(m + 1)]

m+ 1

< X[(n + 3k)
k=l

+1

~[(n + 3k),

[n + 3(m+l)]   (by (7.6))

k=l

and (7.6) with m replaced by m + 1 is also established.   D

Lemma 7.3. If g(i, x) — \i - x\~n(Ç - x), then for m > 1

(7.14) (x.d)mg(i,x)\<(m+l) f[(n + 3k)
Ufc=l

\i-x
-n-m+li „im

X\K

Proof. Referring to (7.5) and noting that A = \i-x\>0, C = \x\ > 0, and

B = x • (i - x) < ||x|| \\i - x\\ = \x\i-x\ = CA, we obtain

[m/2]

l(x- b)mg(i, x)\ < 53 bz_2jÀ-n-2m+2J(Ac)m-2J(c2yA
7=0

(m/2)

+ E b%_2j_xA-n-2m+2j+2(Àc)m-2j-x(c2yc

7=0

[m/2] (m/2)
urn
7m-2j

m

l[(n + 3k)
Jfc=i

=  É bZ_2jA-»-^xCm+ 53 b^_2j_lÄ-»-m+lC

<(m+l) -n—m+l/^mCm    (by (7.6)).    D

Lemma 7.4. If Rm(i, x) is as given in (6.3), and \i\ = a, \x\ = r < a, then for

m > 1

(7.15)        \Rm(i,x)\<(m+l)
k=l

(a-r)-n+l[3r/(a-r)Y

Proof. Under \Ç\ = a, \x\ = r < a, and x - xt, 0 < t < 1, (7.14) leads to

\(x-d)mg(i,x)\<(m + l) H(n + 3k)
lk=l

(a-r) —n—m+l-m
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Using this estimate for the integral in (7.1), we obtain after integrating with
respect to t

\Rm(i,x)\<(m + l)

= (m+l)

= (m+\)

f[(n + 3k)
fc=i

fe=i

n('+i)

(a-r)-"-m+Vm(l/m!)

3mm!(a - r)-"+1[r/(a - r)]m(l/m!)

(a -/•)-"+'[3r/(a-r)]m.   a

Ufc=l

Lemma 7.5. If Rm(x) is as given in (6.5), then

(7.16) lim |j?w(.x)| = 0
m—»oo

uniformly for \x\ < a/4.

Proof. It suffices to consider only that part of (7.15) that depends on m , namely

am = (m + l) n('+Ä)
k=l

m

[3r/(a-r)T

-<«+»ii[(«+¿)(£)
k=ll x y

Now if \x\ = r < a/4, then 3r/(a - r) < 1, and

fc-.oo V      3kJ\a-r)     a-r

Hence, if e is any fixed number between 3r/(a - r) and 1, then for sufficiently

large k > K, say, we have

(' + s)(^)<-'-
Consequently, we have for m > K

fc.(„+„a [(I+¿)(£)] ft [(»+i)(ï^)]
fc=l

A-

S(—>n[('+i)(^)
k=l L x y

A:=a:+i

m-A:

Thus, as m tends to infinity, am tends to 0, and so \Rm(^, x)\ tends to 0

uniformly for |x| < a/4 and |£| = a . Therefore, referring to (6.5), we see that

|7?m(x)| tends to 0 uniformly for |x| < a/4 as m tends to infinity.   D

8. Harmonic functions

Every holomorphic function / = J2xexvx is harmonic in the sense that it

satisfies the Laplace equation:

Af=(dd)f = d(df) = 0.
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On the other hand,

Af=A ( E wi I= E e*Av*-

Therefore, if / is holomorphic, then every one of its components vx is a

real harmonic function. As carriers of real harmonic functions holomorphic

functions can be useful for analysis of real harmonic functions if we can show

that every real harmonic function, without exception, is a component of some

holomorphic function. Corollary 8.1 below shows that this is actually the case
provided that the domain of the real harmonic function is simply connected and

vertically traversable. A subset of 7?" is vertically traversable if for every point

(x,, x2, ..., x„) it contains it also contains all the points (x,, x2, ..., txn)

for 0 < t < 1. Clearly, a hyperball is such a set.
We begin with a basic lemma of general interest.

Lemma 8.1. Given a polycomplex holomorphic function f in avertically-travers-

able simply-connected domain £2 in R", there exists a polycomplex holomorphic

function F such that dF — f in £2.

Proof. Let f — exvx-\-\-e„-Xvn-x + Vn , then since / is holomorphic, these n

components satisfy the equations of holomorphy (2.1 ) and (2.2). Now construct

F = exVx + ■ ■ ■ + en-XVn-X + Vn by setting

(8.1)

r- 1
vi\- J     2V'(Xx ' • • • ' x"-x ' *")dx" + di^Xx ' • • • ' x"-ri

for 1 < i < n - 1,

fx" 1
(8.2) Vn =   /     ^vn(xx, ... ,Xn-X,Xn)dXn+XY(Xx, ... ,X„_i, 0)

fX„

'0

where 0(xi, x2, ..., x„_i ) is a solution of the Poisson equation

(8.3) A„_i0 = -{v„(xx, ... , x„_i, 0)

(see [1]) and ^(xi, ... , x„_i, x„) is such that

(8.4) ¿VF = jVj(xx,... , x„-x, x„)   for 1 < i < n.

Such a *F exists because of compatibility conditions (2.2) and the simply-

connectedness of £2.
First we must check that F is holomorphic, namely

(8.5) dxVx+d2V2 + --- + dnVn=0,

(8.6) di Vj = dj Vi   for 1 < i ¿ j < n.
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To check (8.5) we work out

n-l

+ ^v„   (by (8.1) and (8.2))530,^=53   9,/      ,VidXn+d2<b
1=1 «=1 L    Jo    2

rx„  1 1

=   /    ¿(-dnv„) dxn + An_x<t> + 2V"   (by (2.1))

=  -^[Vn-Vn&x, ... ,X„_i,0)]

- ¿vn(xx, ... , x„_i, 0) + ¿v„   (by (8.3))

= 0,

so (8.5) is satisfied.
As for (8.6) we have for 1 < i < n - 1 and j ^ i

di Vj = di jX" jvj dxn + didj<t>   (by (8.1 ))

= J'" ^djVi dxn + didjcb   (by (2.2))

= djVi   (by (8.1)).= dj\        2V' dxn + d¡4>

Furthermore for i = n and j ^ n we have

dn Vj = dn f" \vj dxn = ¿Vj     (by (8.1 )) ,

djK = 9jfn \v"dx" + \váXx» • • • • x"-x> °) (by (8-2)and (8-4))

1  fx- 1 1
= 2 /    on«;¿x„ + 2U7-(xi, • • •, x„_i, 0) = 2^7    (by (2.2)).

So we see (8.6) is satisfied.

Finally we check dF — f. Since dF = 0, we have

dF = (d+d)F = 2dnF = 2ô„ [5>^ ] = 2YjeidnVi
\i=i     /      1=1

= 2¿*/(i»i)    (by (8.1) and (8.2))
¡=i

= /■   a

Using Lemma 8.1, we can show that a polycomplex harmonic function can

be decomposed into a polycomplex holomorphic function and a polycomplex

coholomorphic function. A hypercomplex function g is coholomorphic if d g =

0. Obviously, g is coholomorphic if and only if ~g is holomorphic since

dg -0 and d~g - 0 are equivalent.

Theorem 8.1. 7« a vertically-traversable simply-connected domain £2 in R" a

polycomplex function h is harmonic if and only if

h = f+g
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where f is a polycomplex holomorphic function and g is a polycomplex coholo-

morphic function.

Proof. First, if h = / + g with df = dg = 0, then

Ah = A(f +g) = (dd)f + (dd)g = 0,

so h is harmonic.
Conversely, if Ah = 0, then d(dh) - 0 so that dh = fo is a polycomplex

holomorphic function. In other words, A is a particular solution of the differ-

ential equation

(8.7) du = fo

in which fo is a polycomplex holomorphic function. Therefore, it suffices to

show that the general polycomplex solution of (8.7) is given by

u = f + g

where / is a polycomplex holomorphic function and g is a polycomplex co-

holomorphic function. Now the general polycomplex solution of (8.7) is rou-

tinely found by putting together the general polycomplex solution of the asso-

ciated homogeneous equation

(8.8) <9m = 0,

which is none other than the totality of polycomplex coholomorphic functions,

say {g} , and a particular polycomplex solution of (8.7), say /, a polycomplex

holomorphic function whose existence is guaranteed by Lemma 8.1.   D

Corollary 8.1. If a real function h is harmonic in a vertically-traversable simply-

connected domain £2 in R" , then there exists a polycomplex holomorphic func-

tion f such that h -Kef.

Proof. A real harmonic function h is certainly a polycomplex harmonic func-

tion, hence by the theorem just proved

h = fx+gx

for some polycomplex f and g\ with df = dgx -0. But since h is real, we
have

h = Re[/i + gl] = Re[/, + g,] =: Re/

with df = d(fx + gx) = dfx+dg~i=0.   O

Thus since a real harmonic function in a suitably connected domain is the

real component of a polycomplex holomorphic function, and since a holomor-

phic function has a Taylor series expansion, such an expansion implies a series

expansion for the real harmonic function.

Theorem 8.2. If a real function h is harmonic in a neighborhood of a solid sphere

\\x\\ < a in Rn , then it can be expanded in the following series of homogeneous

harmonic polynomials.

oo

(8.9) h(x) = 53 aßReZß(x) + bß!mxZß(x)   (harmonic expansion in Rn),

101=0
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where ImxZß = comp,Z^ denotes the first imaginary component of the sym-

metric power Zß, and

(8.10) aß=DBh(0)/\ß\\   and   bß = Dß-eid„h(0)/\ß\\

The convergence is uniform for ||x|| < a/4.

Proof. In view of Corollary 8.1 let h = Re/ where / = exVx H-\-en-Xvn-x+h

is holomorphic. Now,

Re/-Re 53 ZBDBAV)l\ß\\
101=0

(by (6.1))

= E
101=0

n-l

(ReZß)(Dßh(0)) - 53(comp/Z*)(Z)*ui(0))
¡=i

/|y5|!.

But in view of (3.3) we can rework the second summation at each \ß\ - m > 0 :

n-l n-l

53 53(comp;.Z^)(7)^,(0)) = 53 53(comp1Z/'-i'+e )(7)^,(0)).
\ß\=m 1=1 |/S|=m 1=1

If ß in the last double summations is replaced throughout by ß + e' - ex, this

last sum becomes

n-l n-l

53 53(comp1Z^(7yî+e,-^,(0)) = 53 ̂ comp^'XI)'-''0,^(0))
\ß\=m 1=1 \ß\=m 1=1

= 53 (compxZß)Dß-el r£diVi(0)\
\ß\=m \¡=1 /

= 53 (comPlZ^)^-e'(-9„/î(0))    (by (2.1)).
\ß\=m

Hence,

oo

h(x)= Y,[DßhCb)KeZß + Dß~e' dnh(D)ImxZß}/\ß\\   G
101=0

In particular, if n = 2, (8.9) reduces to

oo

h(x, y) = E a">Re(* + '»m + Mm(x + iy)m

(harmonic expansion in 7?2),

(8.11) m=0

where

am = (dm/dxm)h(0,0)/m\   and   bm = (dm/dxm-xdy)h(0, 0)/m\.

This is a refinement of a result obtained in [8].
As an immediate consequence of the expansion formula (8.9) we can enumer-

ate the number of independent homogeneous harmonic polynomials of degree

m for each m > 0.
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Corollary 8.2. In Rn for each m>0 there are exactly

(8.12) N(m ,n) = (m + n- 3)!(2m + n- 2)/m\(n - 2)!

independent homogeneous harmonic polynomials of degree m.

Proof. Polynomials of degree m in (8.9) are ReZ^ and Im,Z^ with \ß\ =

m. Although each Zß has a real component, only Zß with ßx > 1 has a

first imaginary component. Hence we need only determine the cardinalities of

the sets {Zß: \ß\ = m} and {Zß; \ß\ = m, ßx > 1}. Now obviously the
cardinality of the first set is no different from the number of ways in which

m identical objects can be distributed among k = n — 1 distinct individuals,
which is given by a well-known combinatorial formula (see [3] for example) as

(8.13) CE4*-1 :=(m + k-\)\/m\(k-\)\ = (m + n-2)\/m\(n-2)\=:Cnvi+n-2.

As for the cardinality of the second set

{Zß: \ß\ = m,ßx>I} = {Zß: \ß\ = m} - {Zß: \ß\ = m,ßx = 0},

we have

(8.14) C^"-2 - C^"-3 = (m + n - 2)\/m\(n -2)\-(m + n- 3)\/m\(n - 3)!.

Hence combining (8.13) and (8.14) we have altogether

2(m + n- 2)\/m\(n -2)\-(m + n- 3)\/m\(n -3)1 = (m + n- 3)\/m\(n - 2)!   D

In particular, N(m, 3) = 2m + 1, and N(m, 2) = 2. In fact, for 7?2 the
two independent homogeneous harmonic polynomials of degree m are just the
real and the imaginary components of the power zm = (x + iy)m as shown in

(8.11).
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