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A FAMILY OF REAL 2"-TIC FIELDS

YUAN-YUAN SHEN AND LAWRENCE C. WASHINGTON

ABSTRACT. We study the family of polynomials
2" a L
Po(X5a)=R((X+1)") - 2—,,3((X+t) )

and determine when P,(X; a), a € Z, isirreducible. The roots are all real and
are permuted cyclically by a linear fractional transformation defined over the
real subfield of the 2"th cyclotomic field. The families of fields we obtain are
natural extensions of those studied by M.-N. Gras and Y.-Y. Shen, but in general
the present fields are non-Galois for n > 4. From the roots we obtain a set of
independent units for the Galois closure that generate an “almost fundamental
piece” of the full group of units. Finally, we discuss the two examples where
our fields are Galois, namely a@ = +2” and a = +24-239.

1. INTRODUCTION

One method of constructing cyclic extensions of Q is the following. Start
with M € PGL,(Q) = Aut(Q(X)) of finite order and let Q(7T) be its fixed
field. By specialization, one obtains the desired cyclic extensions. For ex-
ample, the matrix (¢7') yields the family of cyclic cubic polynomials X3 —
aX? - (a+3)X — 1, named the “simplest cubic fields” by Shanks [11]. Simi-
larly, the matrices (') and (] 7') yield the polynomials X2 —aX -1 and
X*—aX3-6X2+aX +1, respectively. The latter family has been studied by
M.-N. Gras [4]. There is also a family of sextic polynomials arising from the
matrix (! 3!') of M.-N. Gras [3]. However, it is easy to see that there are
no elements of PGL,(Q) of finite orders other than 1,2, 3,4,6. In [13],

one of the authors of the present paper used the matrix (¢ ') of order 8 in

PGL,(Q(v2)), where & = V2 + 1, and showed that in some cases it is possible
to obtain cyclic extensions of Q of degree 8. In the present paper, we consider
transformations of higher 2-power order and obtain a family of fields of degree
2" for each n > 1. These fields are non-Galois in general, though they lift to
cyclic extensions over the cyclotomic field Q({>»), a fact that plays an important
role in studying their properties.
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A key step in constructing our fields rests on the following observation (see

[13]):
X?—aX —1=R((X +i)?) - %:r((x + i)Y,
Xt —aX?—6X2+aX +1=R((X +i)*) - %s((x + i)

and similarly for the octic fields of [13]. In general, define

N a 9N

Pu(X 5 @) = R((X + D)) = 523((X +D)7).

It turns out that these polynomials P,(X ; a) generate the fields of degree 2",
and their roots are permuted cyclically by the transformations mentioned above.
We determine exactly when P,(X;a), a € Z, is irreducible. This of course
reduces to Diophantine questions. It is amusing to note that we encounter
the equation 2w* = y2 + 1 considered by Ljunggren [9, 14], and its (perhaps
unexpected) integer point (w, y) = (13, 239).

One reason for studying the “simplest fields” is that the roots of the polyno-
mials yield explicit units that often generate subgroups of small index in the full
groups of units [2, 3, 4, 5, 6, 7, 10, 11, 12, 13]. In the present situation, since
the extensions we obtain are non-Galois and therefore contain few roots, we are
forced to consider the Galois closure, in which case we cannot hope to obtain
a maximal set of independent units as roots of our polynomials. However, we
show that the group S of units generated by the roots is an “almost fundamen-
tal piece” of the unit group in the sense that if E; O .S is a subgroup of the full

unit group and [E; : S] is finite, then this index is bounded uniformly as the
parameter for the family varies, under certain mild restrictions.

Acknowledgment. The authors would like to thank the referee for very carefully
reading the manuscript and for simplifying the proof of Lemma 2.

2. CONSTRUCTION OF THE 2"-TIC POLYNOMIALS
Let R,(X)=R(X + i)?" and let I,(X) = 3(X + i)?". Then
(X + )% = Ru(X) + il (X),

and hence
Ry(X) =X, Iy(X)=1.

Observe that
(X +0)2" = (X + D7) = (Ract(X) + iLp-1 (X))
= (Rao1(X) = I3y (X) + I(2Rn—1 (X)In-1(X),
and we obtain the following recursion formulas:
(1) Ra(X) = Ry_ (X) = I1_(X),
(2) I(X) = 2Ry (X) -1 (X).
Therefore, the next few R,(X) and I,(X) are

Ri(X)=R}-1}=X*-1, L(X) = 2Roly = 2X,
Ry(X)=R}-TI}=X*-6X*+1, DL(X)=2R I =4X(X?-1),
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R3(X) = X® —28X6+70X*-28X%+1,
L(X)=8X(X2 - 1)(X*-6X2+1).

By induction, we can express the polynomials R,(X) and I,(X) in terms of
the polynomials R;j(X), 0 < j < n, as follows.

n—1
(3) LX) =2"[Ri(X), n>1;
j=0
: 2
(4) Ry(X)=R:_,(X)- (2" lHR, X)) ,  n>2

Applying induction via (4), we have that the polynomials Ry(X), R;(X),
Ry(X), ..., Ry(X) are pairwise relatively prime, and hence by (3), the poly-
nomials R,(X) and I,(X) are also relatively prime. We record this in the
following.

Lemma 1. For any given n € Z*, the polynomials Ro(X), R(X), Ry (X), ...,
R, (X) are pairwise relatively prime, and hence the polynomials R,(X) and
I,(X) are also relatively prime.

Our 2"-tic polynomial is of the form
(5) Py(X;a)=Ry(X) - 2—nI,,(X), where a € Z.
From (3) we see that P,(X; a) € Z[X]. From (1) and (2), the right-hand side
of (5) becomes

a
=t Rn=1(X)[n-1(X) — n_(x),
which is a quadratic polynomial in the variables R,_{(X) and I,_;(X). It can
be factored into the product

(RH(X) - ”2“f+“"1n_.<X)) (RH(X) - %ﬁ*“"u_l()()) :

Ri_\(X) -

Therefore the polynomial P,(X ; a) factors over the field Q(va2 + 4") in the
following way:

2 n 3
©  PXia)= Pu, (X;a+_ V;H)P I(X $)

On the other hand, from (3), we may write the 2”"-tic polynomial P,(X; a) in
terms of the polynomials R;(X)’s as follows:

(7 Py(X;a) = —a H R;(X)."

=0
Putting (4) and (7) together, we have for n > 2 the following expression:

2
n-2 n-2
(8)  Pu(X;a)=R:(X)-aR._(X)[[R;(X 22"2(1'[R,X))

j=0 j=0
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3. BASIC PROPERTIES OF THE 2"-TIC POLYNOMIALS
As expected, the 2"-tic polynomial P,(X;a) has 2" distinct real roots,
which are units in the ring of algebraic integers.

Theorem 1. (a) For a € Z, the 2"-tic polynomial P,(X ; a) has 2" distinct real
roots. In particular, R,(X) = P,(X; 0) has 2" distinct real roots.

(b) Let ¢ be any root of Ry_1(X). The matrix M = (¢ ') has order 2" in
PGL;,(R). The transformation

ed -1
0+e¢
permutes cyclically the roots of P,(X; a).

Proof. We first use induction on n to show that there is at least one real root.
This is obvious for n =0, 1, so let n > 2 and assume this is true for n — 1.
Let ¢ be any root of R,_(X). By (8) we have

0 —

j=0

2
n-2
= 222 (]‘[ Rj(s)) :

j=0

2
n-2 n-2
Pu(e; a) = R:_,(e) — aRn_y (&) [] Rj(e) — 222 (]‘[ Rj(s)>
9) -

From Lemma 1, Rj(e) # 0 for 0 < j<n—-2. Thus P,(¢; a) < 0. Clearly we
have P,(0;a)=1>0, since n > 2. Therefore P,(X; a) has at least one real
root which is between 0 and ¢. Suppose 6 is any root and let o = 6 +i. Let
B=MO+i=oa(e+i)/(0+¢). Note that (g + i)2" = R,(g) + il,(€) = Rn(e),
since R,_;(X) divides I,(X). Since (¢ + i)' € R, we have

P.(MO; a) = R(MO + )?") — z“—ns((Mo +i?)

(32 (- £

.\ 2"
E+1
= P,(0;a
(0 + 8) n(0: a)
=0.
Therefore M permutes the roots. Since M has two distinct eigenvalues ¢+,
& — i, it must be similar to the diagonal matrix

_f(e+i O
b= ( 0 e- i)'
Because the matrices M and D have the same order, it suffices to show that
D is of order 2". Now for any z

e+i
Dz=—+—.z=Cz,
e—1

where { = (¢ +i)/(¢ — i). Note that ¢ is real and R,_;(¢) = 0. Therefore

(e + i) = Ry_1(e) + ilu_1 (&) = iln_1(e),
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and hence
n—1

-2 =Tri)  =—il,_.(e).
Since I,_;(¢) # 0 by Lemma 1, all these yield

.\ 2n! ,
Cz"-'=<8+{) _ l{n-l(ﬁ) =1,

e—1i —il,_1(€)

and thus { is of order 2". But Dz = {z, so the transformation D is of
order 2" and the only fixed points of a nontrivial power of D are 0 and cc.
It follows that i and —i are the only fixed points of any nontrivial power of
M . If 0 is a root, the numbers M*6, 0 < k < 2", must be distinct roots of
P,(X; a). This proves the theorem.

Remark. From the proof of the above theorem, we know that if ¢ is a root of
R,_i(X) then the element (¢+ i)/(¢ — i) is a primitive 2"th root of unity. In
fact, we have the following proposition:

Proposition 1. The element (¢ +i)/(e — i) is equal to

mi
{on = exp (2'1_—1)

if € is the largest root of R,_(X).
Proof. Among the 2"~! primitive 2"th roots of unity, the roots

{on = exp (%) —cos(zf 1) +zs1n(2f 1)

and (' have the largest real part. We have
e+1i kni
{ ponee Ui root of R,_ 1(X)} = {exp (F)

(the left side is contained in the right side, and both have 2"~! elements) and

R(&H) = : II‘ = 1— 27 is the largest if ¢ is the largest root of R,_;(X). Also

J(& "*') = +1 —+£- > 0. This proves the proposition.
For each natural number n, we let ¢, be the largest root of the polynomial
R,(X). We know that

k=1,3,5,...}

=0, =1, e&=1+V2.

How are these ¢, ’s related? From the above proposition, we have

where {»» = exp(ni/2"~1). Solving this equation for ¢,_;, we get
1 + on

ont = =iy g = oot (35)

Calculation shows &2 —2¢,_1&,—1 = 0 and hence &, = &, +,/83_, + 1. Note
also &,_; = 3(&n — é) , and we have proved the next proposition.
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Proposition 2. Let ¢, be the largest root of the polynomial R,(X). Then

1+ C2n+l T
&n = —I——=— = cot (—) ,
" 1 - C2n+l 2n+1
and hence the formula €, = e,y + ([€2_, + 1, or €,_1 = $(&n - é),

As a matter of fact, the extension field Q(e,) is the real cyclotomic field
Q(&pn1)* . This is the content of the next proposition.

Proposition 3. Let ¢, be any root of the polynomial R,(X). Then
Q(en) = Q(Lane) ™.

Proof. Since (&, +i)/(en — i) = ¢, for some primitive 2"+!th root of unity {,
we have ¢, = —i(1+¢)/(1 ={). Let : { — {? be an automorphism of Q({)
that fixes the element &,. Then
Al < 1+
—¢ - 'T=¢

Since d is odd, i? = +i.

F=+i:(1+H1-0)=1-H1+ = =¢=>0=id.

= -t 14+ - =-(1 = ¢+ = (=15 0=,
and hence o € Gal(Q({)/Q({)*). Since z eQ(C)+ is only fixed by {id, o_,},
the proposition is proved.

4. IRREDUCIBILITY OF THE 2"-TIC POLYNOMIALS

Theorem 2. Let a € Z. The 2"-tic polynomial P,(X ; a) is irreducible over the
rationals Q if and only if a* + 4" is not a square in rational integers.

Remarks. (1) It is easy to see that a? + 4" = b2 has only 2n — 1 solutions for
rational integers a. They are
a==+(2% —1)2nk-1, 0<k<n.
(2) The cases n = 1, 2, 3 were proved in [11, 4, 13], so in the following
proof we may assume n > 4.

Proof. If a* + 4" is a square, then P,(X; a) factors, by (6). Conversely, if
0 is a root of P,(X;a), then the 2" roots are {M’/0|0 < j < 2"}, where
M= (¢7!) and & = (5. Weknow that M = A~'DA, where D = (}' 9.},
and one choice for 4 is (| *}). Therefore M/ = A~'D/A, and hence AM’ =
D/A. Let a = A6 = 8L Then

Mig+i
Mig—i

=AM/ =D/40 = Do = {,a.

Since & € Q({2), all the roots of P,(X;a) lie in Q(6, {2n), so it is Galois
over Q({2n). If o € Gal(Q(6, {2n)/Q({2n)), then o6 = M’ for some j. Let

B = o' . By the above, ga = {j,a, so 6B = B. Therefore B € Q({2x), and
we have the following.

Q({or 5 0) = Q(Car, ¥/B) is of degree 2" over Q({) & B ¢ QL)
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Calculation shows S € Q(i) as follows: (Note P,(0; a) = Ry(0) — 51,(0) = 0)
(04D Ru(0)+il,(6) a+i2" .
b= =G " R@ =L@ ~a-iz ¢ W
Suppose \/? € Q({,n). Since the cyclotomic field Q({,») is cyclic of degree

2"=2 over the field Q(i), the extension field Q(i)(1/B) is either Q(i) or the
quadratic extension Q({3) = Q(i)(V2).

2
CaseI. /B € Q(i). Since f=4HZ = (—f_’i“T“,f')f , we have

A +4"cQi)=>a’+4" = (x+iy)> =x2 - y? + 2ixy
=>xy=0and x> -y>>0=>y=0=a?+4" € Q%
We know that P,(X; a) factors over the rationals in this case.

Case IL. Q(i)(1/B) = Q(i)(v2) . The element \/— is fixed by the Galois group
Gal(Q(i)(+/B)/Q(i)) . Thus g is a square in Q(i), and as above we have
A +4"=2(x +iy)} =2(x* —y?) + 4ixy > y = 0= a* + 4" € 2Q°.
So far, we have shown that if a® + 4" ¢ Q2 or 2Q?, then the extension field
Q($2n, ) is cyclic of degree 2" over Q({»). Therefore, since Q({z, 6) =
Q({2n, @), the field extension Q(0)/Q has degree > 2", so the polynomial
P,(X ; a) is irreducible over the rationals.
It remains to show that if a? + 4" = 2x? for some integer x then the

polynomial P,(X; a) is also irreducible over the rationals. Equation (6) tells
us that the polynomial P,(X ; a) factors over the field Q(vaZ +4") = Q(v2).

We will show that P,_(X ; £V i irreducible over the field Q(v2), if
B is not a 4th power in the field Q({2-).
Consider the following diagram: (N = [Q({2+)(6) : Q({20)])

QLn)(V/B)

Q(827)(0)
/ \
Q(6)(V2) /Q(Czn)
Qv2)
If g= gﬁ:: # 4th power in Q({z), then N >2"~!. Since Q(6)(v2)/Q(V2)

is generated by a root of P,_(X; E@) , which is of degree 2"~!, this
polynomial (and its conjugate by v2 — —v/2) is irreducible over the field
Q(V2). Since P_y(X; SV ) ¢ qrx], it follows easily that P,(X; a) is
irreducible over the rationals.

Finally, we take care of the situation when the element g = g—*_‘%"—i is a 4th
power in the field Q({2+). This is done in the following lemma.
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Lemma 2. Let a € Z and assume a? + 4" is not a square in 7. If the element
B =221 jsq 4th power in the field Q((y:), then a/2" = +1 or +239.

— a-2n
Proof. Assume /B € Q({»n). Since Q({z) is cyclic of degree 2"~2 over the
field Q(i), the field Q(i)(</B) is one of the following fields for n > 4,

Q(), Q(%s), Q(Le)-

So we have g =i¢-y*, where c=0,1,2,3,and y € Q(i).
(1) ¢ =0: Letting (a — 2"i)y* = s + it, we have

a+2"i
a-—2ni
=st=0, ands2 -2 >0since a? +4">0=>t=0=a’ +4" = 5>

== a?+4" = ((a-2")y)? = (s +it)> = s> — 1> + 2sti

This contradicts our assumption.

(2) ¢=2: &Zi = —y% 5 g2 + 4" = —(s + it)?, which is impossible, as in
case (1).

(3) c=1: &L = jy* . (See below.)

(4) ¢ =3: &2 = _jyt = =20 = 7' (:Z)fz:’;. = i7*, so we are in case

(3) by taking the negative of a and the complex conjugate of y.
For case (3), we have a?+4" = i((a—2"i)y?)? = iy}, where y; = (a—2"i)y?.
Write y; =s+it, for s,t € Q. Then we have

iV=i(?-t)-2t=a’+4"=>s*=2=t=4s5, -25t>0=>1t=-s.

Therefore 25> = a%+4" and y, = s(1 — i), and hence (a —2"i)y* = s(1 -i).
Write y = %% with u,v€Z, weQ, (u,v)=1. Since Ng;q(B) =1, the
same holds for y, so u?+v2=w?, hence w € Z and u # vmod2. We have

(@ — 2™i)(u? — v? + 2uvi) = sw?(1 — i),
and therefore the identities
(10) a(u? — v + 2"y = sw?, and 2uva — 2"(u* — v?) = —sw?.
Putting them together and solving for a, we get

2" (u? —v? - 2uv) 2"
(11 2= vty 2w =7(6—4uv),

where § = u? —v2+2uv.
Claim. 6 = +1.

Proof of the Claim. Since u # vmod2, we have § = 1mod2. Suppose p is
an odd prime such that p | 6. Since a € Z,p | (6 —4uv), and so p | 4uv.
Therefore p|u or p|v. If p|u then p|v?, and if p|v then p | u?. Both
contradict (u,v) =1. So d = +1. This completes the proof of the claim.

A straightforward calculation, eliminating a from the two equations in (11),
yields sw2é = 2"(u? + v?)? = 2"w*, so s6 = 2"w?. From (11), we have
a=2"y,with y =1 —45uv, hence 22"+'w* = 25 = 47(y? + 1). This implies
that 2w* = y2 + 1, w,y € Z. The integral solutions of this Diophantine
equation are [9, 14] y = +1, w ==+1, and y = £239, w = +13.
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First Solution. Case (3) gives us a = 2" since
y==x1=1-40uv==x1=>40uv=0=>a=2".
Similarly, case (4) yields a = —2" . For these two a’s, we have
a+2" 2" 427 _

a—-2nj  £2n-2nj

o\ 2" .
(M) =+i=> ? = €2n+2 s

+i,
and therefore

0—i -1

which yields
. 1 + C2n+2

0 - _ll _C2n+2.
From Proposition 3, we have Q(6) = Q({,n+2)* . Therefore we have

deg(Q(0)/Q) = 5#(2") = 2",
and sc P,(X; a) is irreducible for a = +2".
Second Solution. Case (3) gives us a = —239 - 2" since
y=2239=1-4%uv = +239 = 40uv = 240 = g = —-239 . 2",
Similarly, case (4) yields a = 239-2".
Lemma 3. The polynomials P,(X ; £239-2") are irreducible over Q.
Proof. Applying formula (6) twice, we get
Pu(X5 £239:2") = Ppa(X 5 2"a1) Py—a(X 5 2"02) Py—2(X 5 2"3) Pa—a(X 5 2"04);

where

ap = £239 + 169V2 + 13(7 + 5V2)\/4 £ 2V2,
ay = +239 + 169V2 — 13(7 £ 5v2)\/4 £ 2v2,
a3 = £239 - 169V2 + 13(7 F 5V2)\/ 4 £ 2V2,
ay = £239 - 169V2 — 13(7 F 5V2)\/ 4 £ 2V2.

Note that
Py 2(X; 2"a;)Pra(X 5 2"a) = X¥ o2 4 a,)XZ"_"‘ 4o,

and a;+a; ¢ Q, Vi, j. This can be seen by using the fact that {1, v/4 + 2v2}
is linearly independent over Q(v2) and v4-2v2 = (V2 - 1)V4+2V2.

Therefore none of the factors P,_,(X; 2"a;) or products of two of them are
in Q[X]. Since

Qlis)" = Q(V4+2v2) =Q(/4-2V2),

these polynomials are in Q({;6)"[X].
We will show below that each P,_,(X ; 2"q;) is irreducible in Q({16)*[X].
It then follows that P,(X; £239-2") is irreducible in Q[X].
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Observe that

+£239.2"+27  £239+i . (S¥12i\*
£239.27 - 27 2391 3 )

Suppose q:i(legz")“ is an 8th power in Q({>~). We may assume m > 5, so +i
is an 8th power. Therefore 5—%2’ is a square, say x2, with x € Q({»). Since
x% € Q(i), we have Q(i)(x) = Q(i) or Q({s). This implies that
SF12i
13

Since 5 F 12i = (3 F 2i)?, 13 is a square or i(square) in Q(¢), which is
impossible. Therefore :Fi (L”’)“ is not an 8th power in Q({2-), and hence the

field extension Q({», :Fz( )4) over Q({») has degree > 272,

is a square or i(square) in Q(i).

Q. Vi (5)")

Q(V4+2v2)(6) Q(¢2r)

This gives us that

[Q(V2+ V2)(6): Q(V2+v2)] > 2"2.

Since @ is a root of some P, (X ; 2"q;), this polynomial and its conjugates
over Q must be irreducible in Q({;6)*[X]. This completes the proof of the
lemma, and hence the proof of the irreducibility criterion for P,(X ; a).

5. UNITS AND ROOTS OF THE 2”"-TIC POLYNOMIAL

In this section, we assume a2 + 4" is not a square in the rationals so that
P,(X; a) is irreducible in Z[X]. Moreover, for simplicity we assume that
a?+4" # 252, s € Z. As in the proof of Theorem 2, this implies that P,(X ; a)
is irreducible over Q({2+). Fix a root 6 of P,(X; a), so the roots are of the
form M*9,0<k < 2", where M = (£ 7') and & = —i{*{ = cot(%). Let

1 e

K =Q(e) = Q)"
Then it is easy to see that K(6) is the Galois closure of Q(6). The above
assumptions on a imply that Gal(K(0)/K) = (t) is cyclic of order 2", where
ed -1

7:0— e

Note that we have

@) =M6, O0<k<2m
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Since the constant term of P,(X; a) is 1 (if n > 2), these 7¥(#) are units in
the ring of integers of K(6). Obviously, these 2" units are not independent,

for instance, 72" (0) = —}; . However, one half of them, say the first half
{tF1O)1 <k <271},

are independent. We prove this in the next theorem.

Theorem 3. The 2"~! elements
{t1O)1 <k <21}

are independent units in the ring Ok of integers of the field K(0), where
K =Q(e) = Q({n)*.
Proof. Let m =2""! and let 6, = t*~1(8), 1 <k <m. Then

(12) 0k+m=1’"(0k)=—el, for1 <k <m.
k
Suppose we have by, b,, b3, ..., b, € Z such that
(13) 021626 ... 6 = 1.
Apply 7,..., ™! to (13) and use formula (12), we get
_EIT)bmegl 05’2,,,657nm_—120'bnm-| =1,
(—g )bt (=)o@l glmgln = q,
(_all)bz _%)bs...(_ﬁ)bmgfg = 1.

Take absolute values and then take logarithms of the above m equations. Write
this system in matrix form as follows:

b b2 b3 cee bm_1 bm log |01| 0
—bm by by - buy_y bmy log |02| 0
—bm—l —bm bl T bm—3 bm—2 IOg |03| =10
—bz —'bs —'b4 e —i)m l;l log i0m| 0

If B is the coefficient matrix, then det(B) =0.
Lemma 4. det(B) = [[m__; Y5, b lF".
Proof. Let { be any primitive 2mth root of unity, so {” = —1. Then

1
¢

o

is an eigenvector of B with eigenvalue Y ;. b (*~!. Since { can take on
m different values, we have a full set of eigenvectors. The determinant is the
product of the eigenvalues.

By the lemma, we have 2,'(';, b tk—1 = 0, for some primitive 2mth root of
unity {. Since ¢(2m) = m,theset {1,{,..., (™ '} is linearly independent
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over the rationals, and hence by = b, = --- = b,, = 0. Therefore the 2" units
{r*=1(6)|1 < k < 2"~} are independent. This completes the proof of the
theorem.

So far we have 2”"~! independent units, all of which are roots of P,(X; a).
If the field Q(0) is Galois over the rationals, then the rank of the unit group is
2" — 1 and we need 2"~! — 1 more units in order to get a set of units which is
close to being a system of fundamental units. This is the case when n < 2 or
when n = 3 for a selected family of a’s. Unfortunately, the field Q(6) is not
Galois over the rationals in general. We know that K(6) is the Galois closure
of Q() so that the rank of the unit group is 4"~! — 1 and we need many
more units to reach the same goal. Although the set of the cyclotomic units in
K = Q({2»)* = Q(¢) will be part of them, it does not help us enough. In the
next section we show how to obtain additional units from subfields of K(6),
though we still do not obtain a maximal set of independent units.

6. A SET OF 2" — 1 INDEPENDENT UNITS

Define a sequence (u;) of real numbers as follows:
up=0 and uj=%(uj_|—L> , forl1<j<n.
Uj—1
For convenience, we denote the field Q(u;) by K; for 1 < j < n. Obviously,
we have the following lemma.
Lemma 5. The element u;_, satisfies the quadratic polynomial
Pi(X;2u)=X?-2u;X -1, forl1<j<n;
and hence the degree deg(K;_i/K;) of uj_, over the field K; is 1 or 2.
Lemma 6. We have the following identities:
Unij = Rj(um) ,
Ij(um)
In particular, u, = 4, and therefore K, = Q.
Proof. From (1) and (2), we have, for j=1,2,3,...,n
(14) Ry(X) _ 1 (Rj_wX) _ LX) )
Li(X) 2\[i1(X) Rj.i(X)
For j = 0 the lemma is trivial, since Ro(X)/Io(X) = X . Assuming it is true
for j — 1, we easily find from (14) that it is true for j. Letting j = n in the
lemma, and using the fact that P,(0; a) = 0, we find that

u = Rn0) _a
"TI(0) 27
Therefore K, = Q. This completes the proof of the lemma.
Proposition 4. For a # (2% — 1)2"~%=1 0 < k < n; the degree of the element
uj_, overthe field K; is 2, for 1<j<n.
Proof. We have

forOo<m+j<n.

deg(Q(0)/Q) = deg(Ko/K1) deg(K1/K>) deg(K2/K3) - - - deg(Kn—1/Kn).
The irreducibility of P,(X; a) gives us deg(Q(6)/Q) = 2", and so the degree
deg(K;_1/K;) of the element u;_; over the field K; is 2, for 1 < j < n. This
completes the proof of the proposition.
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Theorem 4. The element u; satisfies the polynomial
Po_j(X;a/2)), for1<j<n.

Furthermore, the field K; is a simplest 2"~-tic field over the rationals, if 2/
divides a. In this case, the element u; is also a unit in the ring Ok of
integers of K(0).

Proof. Lemma 6 tells us that the element u; satisfies the polynomial
a
R (X) = 5edn-i(X),
which is in fact the polynomial

aj2’ ]
g (0 = Pucy (X3 57) -

This completes the proof of the theorem.

Ry j(X) -

Remark. More generally, we see that u,, is a root of P;(X; 2/upy;), so each
intermediate extension K,,/Ky; could be regarded as being “of simplest type.”

From the previous theorem, we have for each 0 < j < n that the element
u;j is a unit in the ring &g if 2/ divides a. Theorem 3 gives us 2"~/~!
independent units, namely

(P D) <k <21}

in the ring F,,) of integers of the field K(u;). Putting all these units together,
we have in total

nlpon=24 4224214200
units in the field K(6). Are these units independent? The answer is yes, and
we will prove this in the following theorem.
Theorem 5. Let a € Z and let 2"|a. Then the 2" — 1 elements
{(t¥*-Du)l <k <2" "1 and 0 < j < n}

are independent units in the ring Ok of algebraic integers of the field K(0),
where K = Q(e) = Q({2n)*.

Proof. We will prove the theorem by induction on n. The result is trivial for
n = 1. Assume the theorem is true for n— 1. Suppose we have rational integers
by, j such that

27! n—12"/"1
(15) n= H(Tk I (u ) bk — H H 2l(k l bk J € K(uy).
k=1 ]=1 k=1

Since the field K(u,) is fixed by the automorphism 72", the element 75 is
invariant under t¥""'. Note that 72" (u) = —uy"', and so we have

2n—l 2n—l

[T oo = n ="' (m) = £ [[ (" (wo)) e,

k=1 k=1
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Therefore, we have
2n—l

= [1 (" (o).
k=1

Since the right-hand side is the square of a real number, we get

2n—l

T (25 (ug))?0 = 1.

k=1

Theorem 3 tells us that 2b; o = 0, Vk; and hence by o = 0, Vk. Now, the
relation in (15) becomes

—Jj-
H 2J(k1u)bk1=1

uz|

From the induction hypothe51s, the 2"~! — 1 units
{(t?* Dt <k <2"/~'and 1 < j < n}

are independent, and so b, ; =0, for 1 <k <2"/~'and 1< j < n. There-
fore all b, ; are 0, and this completes the proof of the theorem.

Finally, we prove that the group X generated by these 2" — 1 independent
units in the ring ) is almost fundamental in the sense that if E; D X isa
subgroup of the full unit group and [E; : X] is finite, then this index is bounded
uniformly as the parameter for the family varies, under certain mild restrictions.
First, we have the following:

Theorem 6. Fix n>1. Let S =(+0;;1<i<2" '), where §; = t""1(0). Let
D={uecQ{b:,6,,...)u €S for somel #0}.

Let a run through a sequence of integers such that (a* + 4")/osf(a® + 4") is
bounded above, where osf(x) is the odd squarefree part of an integer x (so
x = osf(x) times a square times a power of 2). Then the index [D : S] is
bounded independently of a.

Remark. This result says that the units S form an “almost fundamental piece”
of the unit group, in the sense that it is only necessary to enlarge S by a
bounded amount in order to obtain a direct summand of the full unit group.
In the corollary below, we obtain a similar result for the group X generated by
the units of Theorem 5.

Proof. By taking a large enough, we may assume that a? + 4" is neither a

square nor twice a square. Therefore, as in the proof of Theorem 2, K(6)/K
has degree 2". Let S =S/{+1} and D=D/{+1}. Let d e D andlet d' € S.
Then 72" '(d') = +d~'. Since d and 12" '(d) are real, (1 +t¥'"')(d) = %1

Therefore Z[t]/(1 + t¥'"') ~ Z[{sx] acts on D, which we shall mostly write
additively. If 0# a € Z[{] and d € D satisfy ad =0, then (Norma)d =0,
which implies d = 0 since D is a torsion-free abelian group. Therefore D is
a torsion-free Z[{,»] module. Since it has Z-rank 2"~! it must be isomorphic
to an ideal of Z[{,-] that is determined up to ideal class. Let I;, ..., I, be
representatives for the ideal classes of Q({,»). For each I;, choose a principal
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ideal 0 # J; C I;. Since D ~ I; for some i, we find that D has a cyclic
submodule ~ J; of finite index, with a bound on this index depending only on
n. Let C =2Z[{»])e; C D be this submodule, where & € D.

Let & =t%"!(¢;), 1 <k <2". Choose ! >0 such that

2n—l

el ==J] 6.
i=1
Then a}c =z Hf: Of’ik_l . Let g: K —» R be any embedding and extend g

to K(0) so that g(6) = 6y = largest root of P,(X; a). This is possible since
[K(0) : K] =degP,,so g(0) can be chosen to be any root in R of P,.

Let n = ]'[,2(:1l ez* , where the ay € Z are to be chosen later. Let n; = 7/=!(),

1 <i<2". Since g,1 < k < 21, are independent, and 72"~ acts by
inversion (modulo {+1}), it follows that the #; are distinct if some a; # 0.
Under any embedding g as above, we have

7 2 2!
0# I mi-n)*= 11 (l—;lf) [T e,

1<i<j<on i1 <Imil k=1

where my € Z is bounded in terms of n. Since 7 -1 = £1/m;, we have
restricted the last product to k < 2"~! . Note that each factor in the first product
on the right is bounded by 2. We now obtain

2n—l

log [J(mi—n)> <A+ B |log|nll
k=1

with 4 and B depending only on 7, and independent of # and the embedding

g.
There are 2”2 embeddings g: K — R, and we regard each one extended

to K(6) as above. Then

2n—l

log[] e (H(m - m)z) <2"24+BY > |log|gmnl|
g

g k=1

B 1/2
2n 1
<A+ B (Z ) log’ Igrzkl) ,

g k=1
by Cauchy-Schwarz.

Let L{ =log|gex|, 1 < k < 2". Note that L§

g 1 = —LE . Since n; =

n—1 .
IT;-, €}._, - the last sum above becomes

j=1
2n—l 2
N (Z aij+k-') =Y (a1, ..., ap-1)(LE)Xay, ..., 1),
g8 k Jj=1

4
where L# is the symmetric matrix (ng+k—l)le,kS2""’
n—1
Let S¥ = log|g6;|. Then IL{ = Zf=l bS8 ,_,. Define by -1 = —b

for 1 < i < 2"!, and regard the indices mod2". Let B = (b;;), where
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bij = bj_i+1. Let S8 = (S¥,_))i<i,j<-1 - The above becomes Lf = 1 BS?.

1
Note that L& and S$% are symmetric, so

(Lo = (L)L) = (7B) (57 (%B)

Our sum therefore equals

(@i, ..., am) (%B) (Z(Sg)Z) (@, ..., am) GB)'.
4

Lemma 7. Let M = (¢ ~!). As g runs through the 2"~? embeddings K — R,

1 —¢

the elements gM € PGL,(R) run through the powers
« _ [ cot(m/2m) -1 " —
My = ( 1 —cot(z/27) ) O<u<2",u=1 (mod4).
Proof. After fixing one embedding such that M maps to M, , we can regard the

embeddings g as corresponding to elements of Gal(K/Q). Extend g to Q({zn)
such that g(i) = i. Then g = o, with k = 1 (mod4), where oy () = (% .

Since -1
wo=e-o (L (% O (L

(we have used the fact that {,» = (¢+i)/(e — i)), it follows that gM, and M}
differ by a scalar matrix. The lemma follows easily. '
Let g, correspond to the power u. Then g,(6;) = g.(M~10) = Mg("‘)eo.
Thus )
S8 = log| Mg~ 60| = Sy »

where S; = S,f‘ and the subscripts are taken mod 2" .

Lemma 8. Y (S%)2 =sI, where s = 2"~2 Y2 log? |ME 6| .

Proof. Fix two indices a #b, 1<a,b <2""!. The (a, b) entry in Z:S,(Séf)2

18
2n—|

Z Z S“(a+i—l)Su(b+i—1)-

u =1
Since S,(+i—1) changes sign when i is changed to i+2"~!, the product of the
two S’s depends only on imod2"~!. Since u is odd, we can change variables

to obtain
Yo > SkSkr-an
U kmod2n-!

Let 2¥||(b—a). Clearly 0 <v < n—2 (we henceforth ignore the easy case n =
1). First assume v < n—3. Given u, let u; = u+ j2"~!'=? for 0 < j < 2v+!
(so u; =1 (mod4)). Then
k+b-auj=k+((b-au+(b-a)j2"1v
=k +(b—a)u+j2""' (mod2").

2v+l_

. l .
Therefore SgSktb—ay, = (—1)/ SkSks(b-aju 50 2ico  SkSk+(b-ayu, = 0. Since
the full sum is a sum of such sums, it must vanish.
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If v = n—2, an easy calculation shows that the terms for k and k + 2"~2
cancel, so again the sum is zero.
If a=0>, then the (a, a) entry is

2n—|
2172) ST =2""2"log? MK 6o| = s.
k k=1
This proves the lemma.

Lemma 9. s = O(log” |a|), where the implied constant depends only on n.

Proof. 1t is easy to show that the largest root 6y of P,(X;a) satisfies 6y =

O(la]), so log|6y] = O(log|a]). Therefore for +1/6,y, the smallest root in

absolute value, we have log|+ 1/6o| = O(log|a) . Since the numbers M}6, in

the definition of s are the roots of P,(X ; a), the lemma follows easily.
Consider the quadratic form

1 1\
Q@ay, ..., am-1)=(ay, ..., apn-1) (7B> sI (TB) (@i, .., am-1).

A theorem of Hermite (see Cassels [1, p. 31]) implies that there exists 0 #
(@, ..., am) € Z¥ " such that Q(ay, ..., ap-1) < p(det@)V/?"™", where
y is the Hermite constant, which depends only on n. We choose n above
corresponding to such a choice of aj ’s. Since detQ = s det(}B)?, we have

1 1/2n—2
Qay, ..., ap-1) < psdet (7B> .

Note that [],_;(m —n;)* € K, so y = [I, g[l,;(n:i — nj)* € Q, hence
isin Z. Let g be a prime divisor of osf(a® + 4"). Let q be a prime of
Q(¢n) above g. Then q divides either the numerator or the denominator of
(a+1i2")/(a—i2"), and in fact divides it to an odd power. Since the 2"th root
of this number yields the same extension as adjoining 6, q must ramify in
Q(&an, 6)/Q(L2n) , hence in K(6)/K . Since n has 2" distinct conjugates over
K, we have K(0) = K(n). Therefore the primes above g divide the relative
discriminant of 5, namely [[(n; — n;)?, so ¢ divides its norm to Q, namely
y . Since we are assuming osf(a? + 4") > ¢'(a% + 4") for some ¢’ > 0, we have
logy > ¢”log|a| for some ¢’ > 0.

Putting everything together, we find

172!
log|a| < A + By log|a| det (%B) ,

for some constants A4,, B, . Therefore det(%B)‘I is bounded above, indepen-
dently of a.

Standard index calculations show that detB = [S : C!], and of course
[C:C!']=1*"". Therefore det(}B)~' is the generalized index [C : S]. Since
we already know that [D : C] is bounded, we find that [D : S] is bounded.
This completes the proof of the theorem.

Corollary 1. Assume 2"|a. Let X be the group of units generated by the units
of Theorem 5. Let A= {u € K(0)|u' € X for some | > 0}. Let a run through
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a sequence of integers such that (a* + 4")/ osf(a* + 4") is bounded above. Then
the index [A:X] is bounded independently of a .

Proof. Assume the result is true for n — 1. Write X=X, & X_, where
o ={uet¥ u=+u},

and similarly for X, . Note that X_ is the group S in Theorem 6 and X, is
the group coming from subfields.
Let u € A with u! € £. Then

n—1 n—1

u21 — (u(1+r ))I(u(l-r

and we must have #/, € X.. By the induction assumption, u{{ € X, for

some /; > O that is bounded independently of a. Theorem 6 implies that
u2 € T_ for some /, > 0 that is bounded independently of a. Therefore
uhly = (y, u_)hz € . Since 2/, is bounded independently of a, the result
follows.

7. EXAMPLES FOR THE CASE a? + 4" = 2b?

From the proof of the irreducibility criterion of the polynomial P,(X; a),
we noticed something special when a2 + 4" = 2b2? for some integer b. In
this case, P,(X; a) is irreducible in Z[X] and Q(f) has a quadratic subfield
Q(Vv2), where 6 is any fixed root of P,(X; a). It can be seen from Theorem 4
“that u,_, satisfies X>—5%; X —1 and hence Q(u,—1) = Q(VaZ+ 47) = Q(v2).
It is in this case that Q(0) becomes Galois over the rationals for the octic field
(n = 3), see [13]. As a matter of fact, this is the last n for which we have
a family of Galois extensions over the rationals. Therefore in this section, we
assume a2+ 4" = 2b? and this implies that 2"|a so that Q(6) contains Q(v2)
and u;’s are units in the ring F ), where K = Q({z)*.

From Theorem 5, we have 2" — 1 units

{MY*=D(y)1 <k <2"'and 0 < j < n}.

Let S be the group generated by —1 and the 2” —1 units listed above, and call
n— 2_

S the simplest units of K(6). Note that AM? 2(uo) = %?)I_} and u; = Egu—o' . So

we have

U2 —lug—1 wug—1
2n—2 — 0 0 - 0
\ ot M2 (uo) \/uo G T 73

which is also a unit of &) . Similarly, we have units of the form Mk_—l\(/_?)‘—' ,

for 1 < k < 2"=2_ They are all square roots of elements in S. Replace the
units

{Mk—l(uo)lzn—Z <k< 2n—l}
by the units

Do the same thing for each u;, 1 < j < n—2; and replace the units

{MZj(k—l)(uj)lzn—j——2 <k < 2n—j—l}
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by the units

sz(k-l)(uj) ~1
V2

So now we have another 2" — 1 units in the ring Gk :

{sz("‘l)(uj), MZ’("—”(uj) -1

15k5?ﬁ4}.

V2

Let S’ be the group generated by —1 and the units listed above, and call S’
the modified simplest units of K(6). Clearly, S is a subgroup of S’ and the
index is [$: 8] =22"""-!. Recall S isa subgroup of the full unit group E of
the ring @k g) . Assuming [E : S] is finite, we have

_[E:S] _[E:S]

T8 S) T 2-r

and therefore the modified simplest units of K(6) are closer to being a funda-
mental system of units than the simplest units of K(6).

There are two special a’s to which we should pay more attention in view
of Lemma 2, namely a = £2", and a = +2".239. Note that P,(X; a) and
P,(X; —a) generate the same number field. For if 6 is a root of P,(X;a)
then —0 is a root of P,(X; —a). This can be seen from the fact that R,(X) is
an even polynomial while I,,(X) is an odd polynomial. So now, let us discuss
these two examples and work with the positive sign in the following.

Example 1. a = 2": Since R, (X) = P,(X;2")P,(X; —2"), Proposition 3
tells us that P,(X; 2") generates the real cyclotomic field Q({)* for each n,
where { = {,m:. So we have a family of Galois extensions Q(6) over the
rationals, where 6 is any root of P,(X ; 2"). Calculation shows that

1+
uj=—ll_—cz,-,

15k52“*%05j5n—2}uwbﬁ.

[E :S']

0<j<n.

Our simplest units S are generated by —1 and the units
{(MP*D(u)1<k<2"'and 0< j < n}.
From the discussion above, we replace the simplest units S by the modified
simplest units S’ .
Our goal is to compute a system of fundamental units from the modified
simplest units S’. Therefore, let us compare the modified simplest units with

the cyclotomic units. The cyclotomic units CJ,,, of Q({)* are generated by
—1 and the units [15]

T:-—c’ 3<b< 2!, bodd,
and [E},,, : C},,,] = h3,.,, the class number of Q({)*, where E},., is the full
unit group of Q({)*. It is easy to see that we always have

up =&nn_y, foreach n.

Let ¢, =841, 1 <k <2"—1.If n <5 then Aj,,, =1 (see [8]), hence C3,.,
is the full unit group. We consider these n. However, we skip the first two n°’s
because of triviality.
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(1) Octic case (n=3): {=1{3.
Calculation shows that
si=c¢ =23, s=c sa= 2
1 7> 2 ¢ s 3 3 4 C s
C3C4 C1C¢ C1C2C5C6 |
Ss=——, S6=—7—", 1=——7T—
C7 C7 C3C4C7
and the index [E : S'] = 2. So we must have some unit in S, which is a square

in E. One such unit is sysp5; %55 's2s7' = ¢Z, and therefore, the set

—2.—1 -1
{51, 52, 83, 54, \/S1st4 s5's3sst, 56, 87}

forms a system of fundamental units of the octic field Q({3;)*.
(2) 16-ticcase (n=4): { = (les.-
Calculation shows that

€13 C11 Cy Cs
S1=¢ S$H=—, S3=—, §H=—, S=cC S = —
1 15> 2 s 5 3 Ca 5 4 Cé ) 5 K} 6 ¢ 5
3 C1 C7C3 C5C10 C3C12 C1C14
S1=—=, S§§=—, S9=—, S0=_—"H> N=—"]-, S12=_—>
C4 Cé C15 €2€13 C15 2013
_ C3C4C11C12 4= €1C6C9C14 _ €10205C6C9C10C13C14 |
cicgCis 10815 €3€4C7€8C11C12€15
and the index [E : §'] = 16. We have
2 202 o6 o3 o3
518383 _ 2 5253510574 _ (€13 S1545951251351s _ .4 .
S = T3 . = Cia 4.3 o5 =Cl45
5759513 54572513515 14 53570514
and the following set forms a system of fundamental units of the 16-tic field:
22¢ 6 o3 o3 20 o2
§78459851+572S 8255510574
sla~'~,s83\/7144 312513 15’\/ 38 > S115 812, > S145 815
SgS10514 54572513515
(3) 32-ticcase (n=15): {="{2s-
Calculation shows that
29 C27 C25 23 (]
§1 =0C31, Sy =—, §3=—, S4 = —, §5 = —, S6 = —,
(%) Cq Ce Cg €10
€19 C17 €13 C11 C9
S7=—, S§§=—, So=¢ Sio=—", Su=—_—, Si2=—_
L2 s 8 C1a 5 9 5 s 5 c 5 Ce 5
4 Cs 3 C15C16
S3= =, Su=-—, Si5=-——, Si5=, =
Cs €10 €31
_ Gi3C1g _ €t _ CoCxn2 _ €104
- ) 19 = s S20=—, 8§21 = 5
C2C29 C4C27 CeC2s (31
Syp = C5C26 0y = C3C28 0g = C1C30 Sp5 = €7C8C23C24
2029 cacy7’ C6Cas C15€C16C31
_ €5€10€21C26 §om = €3C12€19C28 _ C1€14€17C30

2
C15€16€31 €2€13€18C29
_ €3€4C11€12€19C20€27C28 _ C1C6C9C14€17€22€25C30
€7C8C15C16€23C24C31 €7€8C15€16C23C24C31
__ €1€2€5C6€9€10€13C14€17C18€21€22€25€26€29C30 |

€2€13€18C29

529

31
€3€4C7C8C11C12€15€16€19C20€23C24C27€28C31
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and the index [E :S’] =2048. We have
34 = S155873°51 531855
35C3 = SaSg 556520855 S35 $38529532831 »
CeCas’ = 87 ' S6514 515 3236
31¢3s = S2835787 L S17575533535557 539 »
Coy = STSTSTs S17S15 553535577 53 »
C39Cl0 = STS3SESTs ST 15 30 524525536538 529 S30531
cho = stsgsi'stasi 345258367 0535 53055, »
and therefore the set

25 €6 €27 29
$1,8,8, —,C4, —, — , 88, ..., 516, C28, —
{l) 2 3’6‘30, ’C29,C28’ 8> » 916 » 8’630’

319,.--,524,6’30,326,.--,331}

forms a system of fundamental units of the 32-tic field Q({)23)" .

These examples indicate that S’ and hence S should always be a subgroup
of C+, where C* = C},.,; and the index [C* : 8] is 2!, 2143, 214347 for
n=3,4,5 respectively. We may conjecture that the exponent of this index is

n

143+74-+ 2721 =) (2*2-1)=2""—n,
k=3
and therefore for n > 3 we have (note that it is also true for n =1, 2)

[Ct:8]=22""""n.

Since [S’: ] =22"'-! and [E*: C*] = h*, where E* = E}., and ht =
h3,.. ; we conclude that

[E+ 18] = 22"=n—1_ p+
and state it as a conjecture in the following.
Conjecture 1. The simplest units have index 22"~"~!.h* in the full unit group
of &g, > for a=+£2", n>1.
Example 2. a =2".239: Since a?+4" = 2-13%.4" | the field Q(A) contains the

quadratic field Q(v2) as expected, where @ is any fixed root of P,(X; 2".239).
We know that Q(6) is Galois over the rationals when n < 3. For n =4, our ¢

in Theorem 1is 1+ v2+ V4 + 2v2 (see Proposition 2). By Theorem 4, Q(6)
contains a quartic subfield Q(u,), where u, is a root of the polynomial

X4 ~4.239X3 - 6X2+4-239X + 1.

One such u; is 239 + 169v2 + 13(7 + 5v2)V4 + 2v/2, and hence V4 + 2v2
belongs to the field Q(f). Thus ¢ € Q(0), and we conclude that Q(6) is Galois
over the rationals. Calculation shows that the conductor f of this field is 64-13,
and its discriminant d is 27°-13'2, When n > 5, the extension Q(6)/Q is not
Galois, so the above example completes the list of Galois extensions we obtain
by our methods.
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