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A FAMILY OF REAL 2" -TIC FIELDS

YUAN-YUAN SHEN AND LAWRENCE C. WASHINGTON

Abstract. We study the family of polynomials

P„(X; a) = n((* + if) - ~nX + i)2")

and determine when P„(X ; a), a € Z , is irreducible. The roots are all real and

are permuted cyclically by a linear fractional transformation defined over the

real subfield of the 2"th cyclotomic field. The families of fields we obtain are

natural extensions of those studied by M.-N. Gras and Y.-Y. Shen, but in general

the present fields are non-Galois for n > 4. From the roots we obtain a set of

independent units for the Galois closure that generate an "almost fundamental

piece" of the full group of units. Finally, we discuss the two examples where

our fields are Galois, namely a = ±2" and a = ±24 • 239.

1. Introduction

One method of constructing cyclic extensions of <Q> is the following. Start

with M e PGL2(Q) = Aut(Q(X)) of finite order and let Q(F) be its fixed
field. By specialization, one obtains the desired cyclic extensions. For ex-

ample, the matrix ( ° "j1 ) yields the family of cyclic cubic polynomials X3 -

aX2 - (a + 3)X - 1, named the "simplest cubic fields" by Shanks [11]. Simi-
larly, the matrices (° ~' ) and (} "j1 ) yield the polynomials X2 - aX - 1 and

Xa - aX3 - 6X2 + aX + 1, respectively. The latter family has been studied by
M.-N. Gras [4]. There is also a family of sextic polynomials arising from the
matrix ( j ~J ) of M.-N. Gras [3]. However, it is easy to see that there are

no elements of PGL2(Q) of finite orders other than 1,2,3,4,6. In [13],
one of the authors of the present paper used the matrix (, ~ ' ) of order 8 in

PGL2(Q(\/2)), where e = y/2 + 1, and showed that in some cases it is possible

to obtain cyclic extensions of Q of degree 8. In the present paper, we consider
transformations of higher 2-power order and obtain a family of fields of degree

2" for each n > 1. These fields are non-Galois in general, though they lift to

cyclic extensions over the cyclotomic field Q(&» ), a fact that plays an important
role in studying their properties.
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A key step in constructing our fields rests on the following observation (see

[13]):

X2 - aX - 1 = X((X + i)2) - ^3((X + i)2),

X4 - aX3 -6X2 + aX+l= <R((jr + i)A) - ^3((X + i)4)

and similarly for the octic fields of [13]. In general, define

Pn(X ; a) = m((X + if) - ±3((X + if).

It turns out that these polynomials P„(X; a) generate the fields of degree 2" ,

and their roots are permuted cyclically by the transformations mentioned above.

We determine exactly when P„(X; a), a e Z, is irreducible. This of course

reduces to Diophantine questions. It is amusing to note that we encounter
the equation 2wA = y2 + 1 considered by Ljunggren [9, 14], and its (perhaps

unexpected) integer point (w, y) = (13, 239).

One reason for studying the "simplest fields" is that the roots of the polyno-

mials yield explicit units that often generate subgroups of small index in the full

groups of units [2, 3, 4, 5, 6, 7, 10, 11, 12, 13]. In the present situation, since
the extensions we obtain are non-Galois and therefore contain few roots, we are

forced to consider the Galois closure, in which case we cannot hope to obtain

a maximal set of independent units as roots of our polynomials. However, we

show that the group S of units generated by the roots is an "almost fundamen-

tal piece" of the unit group in the sense that if Ex D S is a subgroup of the full

unit group and [Ex : S] is finite, then this index is bounded uniformly as the
parameter for the family varies, under certain mild restrictions.

Acknowledgment. The authors would like to thank the referee for very carefully

reading the manuscript and for simplifying the proof of Lemma 2.

2. Construction of the 2"-tic polynomials

Let R„(X) = X(X + i)2" and let I„(X) = 3(X + if . Then

(X + i)2n=Rn(X) + iIn(X),

and hence
R0(X) = X,        I0(X)=l.

Observe that

(X + i)2" = ((X + if-l)2 = (Rn_i(X) + iIn-i(X))2

= (R2n_x(X) - I2n_x(X)) + i(2Rn-i(X)In_i(X)),

and we obtain the following recursion formulas:

(1) Rn(X) = R2n_l(X)-I2_l(X),

(2) In(X) = 2Rn_i(X)In-i(X).

Therefore, the next few Rn(X) and I„(X) are

Ri(X) = R2-I2 = X2-l, h(X) = 2Roh = 2X,

R2(X) = R2i- I\ = Xa - 6X2 + 1,       I2(X) = 2RxIi = 4X(X2 -I),
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Ri(X) = X*- 2SX6 + 10XA - 2%X2 + 1,

h(X) = %X(X2 - l)(XA - 6X2 + 1).

By induction, we can express the polynomials R„(X) and In(X) in terms of

the polynomials Rj(X), 0 < j < n , as follows.

n-i

(3) /„(I) = 2" J] Rj(X),        n > 1 ;
7=0

(4) Rn(X) = R2n_l(X)-h"-x"f[Rj(X))   ,        n>2.

Applying induction via (4), we have that the polynomials Ro(X), ^iWj

R2(X),... , Rn(X) are pairwise relatively prime, and hence by (3), the poly-

nomials Rn(X) and In(X) are also relatively prime. We record this in the

following.

Lemma 1. For any given n e Z+, the polynomials Ro(X), RX(X), R2(X),... ,

Rn(X) are pairwise relatively prime, and hence the polynomials Rn(X) and

In(X) are also relatively prime.

Our 2"-tic polynomial is of the form

(5) Pn(X ; a) = Rn(X) - £l„(X),     where a e Z.

From (3) we see that P„(X; a) e Z[X]. From (1) and (2), the right-hand side
of (5) becomes

R2n-X(X)-^Rn_i(X)In_x(X)-I2_l(X),

which is a quadratic polynomial in the variables Rn-X(X) and In-X(X). It can

be factored into the product

(¿„„m - a+vgT*V,(*)) (*„->m - -f^vitn .

Therefore the polynomial P„(X ; a) factors over the field Q(Va2 + 4n) in the

following way:

(6,       W;a) = i.„_,(x;^f±ijp»_,(x;^f±5).

On the other hand, from (3), we may write the 2"-tic polynomial Pn(X; a) in

terms of the polynomials Rj(X) 's as follows:

n-l

(7) P„(X;a) = Rn(X)-a\[Rj(X).-

7=0

Putting (4) and (7) together, we have for n > 2 the following expression:

11-2 ln-1 \

(8) Pn(X;a) = R2n_i(X)-aR„-i(X)l[Rj(X)-22"-2[Y[Rj(X)\   .
j=o \j=o J
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3. Basic properties of the 2"-tic polynomials

As expected, the 2"-tic polynomial P„(X;a) has 2"  distinct real roots,

which are units in the ring of algebraic integers.

Theorem 1. (a) For a g Z, the 2"-ticpolynomial Pn(X; a) has 2" distinct real

roots. In particular, R„(X) = Pn(X ; 0) has 2" distinct real roots.

(b) Let e be any root of R„-X(X). The matrix M = ( \ ~x ) has order 2" in

PGL2(R). The transformation

e + e

permutes cyclically the roots of Pn(X ; a).

Proof. We first use induction on n to show that there is at least one real root.

This is obvious for n = 0, 1, so let n > 2 and assume this is true for n - 1.

Let e be any root of Rn-X(X). By (8) we have

n-2 /n-2 ^

Pn(e;a) = R2„_i(e)-aRn-i(e)Y[Rj(e)-22n-2    Y[Rj(e)

/n-2 >

= -22"-2   n*;(£)

From Lemma 1, Rj(e) ^0 for 0 < j < n - 2. Thus P„(e ; a) < 0. Clearly we
have F„(0 ; a) = 1 > 0, since n>2. Therefore Pn(X ; a) has at least one real

root which is between 0 and e . Suppose 6 is any root and let a = 9 + i. Let

ß = Md + i = a(e + i)/(0 + e). Note that (e + if = R„(e) + il„(e) = Rn(e),

since Rn-i(X) divides In(X). Since (e + if e R, we have

Pn(M6 ; a) = m((Md + if) - ^¡3((M6 + if)

= (£tÍ)2V'>-^2->)

= 0.

Therefore M permutes the roots. Since M has two distinct eigenvalues e + i,

e — i, it must be similar to the diagonal matrix

»-(T.Ü0
Because the matrices M and D have the same order, it suffices to show that

D is of order 2" . Now for any z

r. e + i rDz =--z = Qz,
e -1

where C = (e + *)/(e - 0 ■ Note mat e is real an(* Rn-\(e) = 0. Therefore

(e + if = R„-i(e) + iln-i(e) = il„-i(e),
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and hence
_ . _jn — 1

(e-if    =(e + i)      =-U„-i(e).

Since I„-i(e) ^ 0 by Lemma 1, all these yield

2»-i     /e + /\2" </ii-i(e)      _.

and thus C is of order 2". But Z?z = Çz, so the transformation D is of

order 2" and the only fixed points of a nontrivial power of D are 0 and co.

It follows that / and -/' are the only fixed points of any nontrivial power of

M. If 6 is a root, the numbers Mk8 , 0 < k < 2" , must be distinct roots of

P„(X ; a). This proves the theorem.

Remark. From the proof of the above theorem, we know that if e is a root of
Rn-i(X) then the element (e + i)/(e- i) is a primitive 2"th root of unity. In
fact, we have the following proposition:

Proposition 1. The element (e + i)/(e - i) is equal to

fc» = exp (^tJ

// e is the largest root of Rn-i(X).

Proof. Among the 2n~x primitive 2"th roots of unity, the roots

Ï2» = exp (J^j = cos (^r) + /sin (^_)

and C2»1 nave the largest real part. We have

{^ e = rootofi?„_1(X)} = {exp(2^) k = 1, 3, 5, ... }

(the left side is contained in the right side, and both have 2"~x elements) and

9t(fM) = |^i = 1 - ^2_ is the largest if e is the largest root of Rn-X(X). Also

3(fif) = ¿££7 > 0. This proves the proposition.
For each natural number n , we let e„ be the largest root of the polynomial

Rn(X). We know that

e0 = 0,    ei = 1,    £2 = 1 + \/2.

How are these e„ 's related? From the above proposition, we have

£„-1+2        „

Z-7 ~ «» 'e«-i -1

where £2* = exp(^//2"_1). Solving this equation for e„-i, we get

. 1 + Ç2» 1 it \

Calculation shows e2 - 2£„_i£„ - 1 =0 and hence en = e„_i + v/fi2^ + 1. Note

also £„_i = ^(£„ - j-), and we have proved the next proposition.
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Proposition 2. Let en be the largest root of the polynomial Rn(X). Then

■ 1 + Í2»+i +(    n    \

and hence the formula e„ = £„_i + Je2_x + 1, or e„-\ = ¿(e„ - ¿-).

As a matter of fact, the extension field Q(£„) is the real cyclotomic field

Q(C2»+i )+ • This is the content of the next proposition.

Proposition3. Let e„ be any root of the polynomial Rn(X). Then

Q(e„) = Q(Í2»+.)+-

Proof. Since (e„ + i)/(en — /') = Ç, for some primitive 2"+1th root of unity £,

we have e„ = -i(l + C)/(l - 0 • Let a: Ç »-» Çrf be an automorphism of Q(Ç)

that fixes the element £„ . Then

.di + Cd _ l + C

l -cd     i-C

Since rf is odd, id = ±i.

i* = +/: (1 + Cd)(l - C) = (1 - Crf)(l + 0 =*• Cd = C => <t = id.

f = -/: (i + cd)(i - o = -(i - C)(i + o =► cd+1 = i =► crf = r1,

and hence rxGGal(Q(C)/Q(0+) • Since i\^eQ(Q+ is only fixed by {id, ct_,} ,

the proposition is proved.

4.  IRREDUCIBILITY OF THE   2"-TIC POLYNOMIALS

Theorem 2. Let a G Z. Tfte 2"-tic polynomial Pn(X; a) is irreducible over the

rationals Q if and only if a2 + 4" is not a square in rational integers.

Remarks. (1) It is easy to see that a2 + 4n = b2 has only 2« - 1 solutions for

rational integers a . They are

a = ±(22k - l)2"-k-x,        0<k<n.

(2) The cases « = 1,2,3 were proved in [11, 4, 13], so in the following

proof we may assume n > 4.

Proof. If a2 + 4" is a square, then P„(X; a) factors, by (6). Conversely, if

0 is a root of P„(X; a), then the 2" roots are {AP0|O < j < 2"}, where

M = (\ -1 ) and fíf = Ç2» ■ We know that M = A~XDA, where D = (£+' ,£,.),

and one choice for A is ( J Í' ). Therefore M-> = A~XDJA, and hence AM' =

DU . Let a = A6 = 14 . Then-/

M>Q +1

A/V0 - i
¿A/'0 = F>J^0 = Dja = ti„a.

Since e e Q(C2"). all the roots of P„(X ; a) lie in Q(0, Ç2»), so it is Galois
over Q(C2»). If <r G Gal(Q(0, f2-)/Q(C2«)) > then <J0 = M70 for some j. Let

ß = a2". By the above, era = Ç^„a > so aß = ß . Therefore ß e Q(C2»), and

we have the following.

2», 0) = Q(Í2», 2Vß) is of degree 2" over Q(Ç2») *» ß i Q(C2»)2-
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Calculation shows ß e Q(i) as follows: (Note Pn(6 ; a) = R„(6) - §In(6) = 0)

(0-
„       2„     (0 + O2"     R„(9) + iIn(e)     a + i2n

p = a    =
(0 -if     R„(e)-iln(6)     a-i2"

Suppose \fß e Q(£2"). Since the cyclotomic field Q(C2") is cyclic of degree

2"~2 over the field Q(i), the extension field Q(i)(y/ß) is either Q(i) or the

quadratic extension Q(Ç8) = Q(i)(V2).

Case I.  y/ß e Q(i). Since ß = £§ = <¿4^ , we have

a2 + 4" e Q(i)2 => a2 + 4" = (x + iy)2 = x2 - y2 + 2ixy

=*> xy = 0 and x2 - y2 > 0 => y = 0 =>■ a2 + 4" g Q2.

We know that F„(X; a) factors over the rationals in this case.

Case II. Q(/)( V7?) = Q(0(\/2). The element ̂ f is fixed by the Galois group

Gal(Q(i)(^/ß)/Q(i)). Thus f is a square in Q(i), and as above we have

a2 + 4" = 2(x + iy)2 = 2(x2 -y2) + 4ixy ^y = 0=^a2 + 4"e 2Q2.

So far, we have shown that if a2 + 4" £ Q2 or 2Q2, then the extension field

Q(Í2", a) is cyclic of degree 2" over Q(£2"). Therefore, since Q(Í2», 0) =

Q(C2", ol) , the field extension Q(0)/Q has degree > 2" , so the polynomial
Pn(X; a) is irreducible over the rationals.

It remains to show that if a2 + 4" = 2x2 for some integer x then the

polynomial Pn(X; a) is also irreducible over the rationals. Equation (6) tells

us that the polynomial P„(X; a) factors over the field <Q(Va2 + 4") = (QKV^).

We will show that P„-i(X; a±Jf+») xs irreducible over the field Q(\/2), if
ß is not a 4th power in the field Q((2») •

Consider the following diagram: (7Y = [Q(C2-)(Ö): Qib»)])

®(C2»)(2Vß)

Q(C2-)(0)

Q(C2-)Q(0)(v/2)

Q(V5)
If ß = T$h ^ 4th Power in Q(C2«), then JV > 2""1. Since Q(0)(v/2)/Q(v/2)

is generated by a root of P„-X(X; a±v°1+A" ) ( which is of degree 2n~x, this

polynomial (and its conjugate by \¡2 »-► -\/2) is irreducible over the field

Q(\/2). Since Pn-i(X; a±^ff+An) £ Q[X], it follows easily that Pn(X; a) is
irreducible over the rationals.

Finally, we take care of the situation when the element ß = f^r¡ is a 4th

power in the field Q(C2") • This is done in the following lemma.
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Lemma 2. Let a G Z and assume a2 + 4" is not a square in Z. If the element

ß = fí2^ is a 4th power in the field Q(C2»). then a/2" = ±1 or ± 239.

Proof. Assume {fß e Q(Í2n). Since Q(Í2«) is cyclic of degree 2"-2 over the

field Q(i), the field Q(i)(f/ß) is one of the following fields for n > 4,

Q(0,   Q(C8),   Q(Cie).

So we have ß = ic -yA , where c = 0, 1, 2, 3, and y e Q(i').

(1) c = 0 : Letting (a - 2"i)y2 = s + it, we have

a^2»*- = 74 => a2 + 4" = ((a - 2ni)y2)2 = (s + ¿i)2 = J2 - t2 + 2sti

=>st = 0, and s2 - t2 > 0 since a2 + 4" > 0 =*■ t = 0 =*• a2 + 4" = s2.

This contradicts our assumption.
(2) c = 2: l^j = -y4 =>• a2 + 4" = -(5 + if)2 > which is impossible, as in

case (1).

(3) c = 1 : f±|| = iy4. (See below.)

(4) c = 3: jgft = -// =» 2=^4 = iy4 =► £j)±g = ¿y4, so we are in case

(3) by taking the negative of a and the complex conjugate of y .

For case (3), we have a2 + 4" = i((a-2ni)y2)2 = iy2 , where yx = (a-2"i)y2 .

Write yi = s + it, for s, t e Q. Then we have

iy2 = i(s2 - t2) -2st = a2 + 4n^>s2 = t2=ït = ±s,    -1st > 0 => t = -s.

Therefore 2i2 = a2 + 4" and yi = 5(1 - 1), and hence (a - 2"i)y2 = s(l - i).

Write y = ^ with u,v eZ, toeQ, (u,v) = l. Since NQim(ß) = 1, the

same holds for y , so u2 + v2 = w2 , hence w eZ and « ^ v mod 2. We have

(a - 2ni)(u2 - v2 + 2uvi) = sw2(l - i),

and therefore the identities

(10) a(u2-v2) + 2n+xuv =sw2, and    2uva-2n(u2-v2) =-sw2.

Putting them together and solving for a, we get

.... 2"(u2-v2-2uv)     2"
(11) a = —^-=-—;r-- = ^(S-4uv),
K    ' u2 - v2 + 2uv ô

where S = u2 - v2 + 2uv .

Claim, ô = ±1.

Proof of the Claim. Since u ^ umod2, we have ô = 1 mod 2. Suppose p is

an odd prime such that p \ S. Since a e Z, p | (Ô - 4uv), and so p | 4uv .
Therefore p\u or p | v . If p \u then p \ v2 , and if p | u then p\u2. Both
contradict («,u) = l.Soá = ±l. This completes the proof of the claim.

A straightforward calculation, eliminating a from the two equations in (11),
yields sw2S = 2n(u2 + v2)2 = 2nwA, so sa = 2"w;2. From (11), we have

a = 2ny, with y = 1 - 48uv , hence 22"+1w4 = 2s2 = 4n(y2 + 1). This implies

that 2u>4 = y2 + 1, w, y e Z. The integral solutions of this Diophantine

equation are [9, 14] y = ±1, w = ±1, and y = ±239, w = ±13.
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First Solution. Case (3) gives us a = 2" since

y = ±1 =► 1 - 4ôuv = ±1 =*• 4ôuv = 0=*a = 2".

Similarly, case (4) yields a = -2" . For these two a's, we have

a + 2"i _ ±2" + 2ni __
a-2H ~ ±2"-2"i ~    l'

and therefore

/0 + A2"    ..    e + i   .
{g-¡)    =±^j- = t2»+>,

which yields

Q _    • i + Ci»-*
1 - C2"+2

From Proposition 3, we have Q(0) = Q(C2"+2)+ • Therefore we have

deg(Q(0)/Q) = \<p(2n+2) = 2" ,

and so Pn(X; a) is irreducible for a = ±2" .

Second Solution. Case (3) gives us a = -239 • 2" since

y = ±239 =► 1 - 4ôuv = ±239 =► 4ôuv = 240 =*■ a = -239 • 2".

Similarly, case (4) yields a = 239 • 2" .

Lemma 3. The polynomials Pn(X ; ±239 • 2") are irreducible over Q.

Proof. Applying formula (6) twice, we get

Pn(X; ±239-2") = Pn_2(X; 2"a1)P„_2(X; 2"a2)F„_2(X; 2"a3)F„_2(X; 2"a4);

where

a, = ±239 + 169\/2-r- 13(7 ± 5^)^ ± 2v/2,

a2 = ±239+169>/2- 13(7 ± 5^/2)\J4 ± 2\/2,

a3 = ±239 - 169V2+ 13(7 t 5\fi)^4^ 2\fï,

a4 = ±239-169v/2- 13(7^5^)^4^2^.

Note that

P„_2(X; 2%)P„_2(*; 2"a,) = X2"'' - 2"-2(a, + a,-)*2""'-1 + ••• ,

and a,-+a7- £ Q, Vi, 7 . This can be seen by using the fact that {1, v4 + 2\[ï\

is linearly independent over Q(\/2) and \j4-2\f2 = (y/2 - l)\/4 + 2v/2.
Therefore none of the factors Pn-2(X; 2"a/) or products of two of them are
in <Q[X]. Since

Q(Ci6)+ = Q(V/4 + 2v/2) = 0(^4-2^),

these polynomials are in Q(Ci6)+[^] •
We will show below that each Pn-2(X ; 2na¡) is irreducible in Q(Ci6)+[^]-

It then follows that P„(X; ±239 • 2") is irreducible in Q[X].
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Observe that

±239 -2" + 2" i     ±239 + /
±239 -2" -2ni     ±239-;

- = =R 5t12A4
13

Suppose Ti(^r-)4 is an 8th power in Q(C2™) • We may assume m > 5 , so ±z

is an 8th power. Therefore ^j1 is a square, say x2 , with x e Q(C2«) • Since

x2 e Q(z'), we have Q(i)(x) = Q(/') or Q(£8). This implies that

5 T 12/ .

13
is a square or /'(square) in Q(z').

Since  5+12/ = (3 + 2/')2, 13 is a square or /'(square)  in Q(z'), which is

impossible. Therefore TzX^21)4 is not an 8th power in Q(£2») > and hence the

field extension Q(f2., ^/(^i)4) over Q(Ç2») has degree > 2"~2 .

Q (&. V*W)4)

Q(y/4 + 2y/2)(6) Q(C2-)

This gives us that

Q(\/4 + 2v/2)

[\¡2 + V2)(6): Q( \¡2WÍ)] > 2n~2.

Since 0 is a root of some F„_2(X; 2"a,-), this polynomial and its conjugates

over Q must be irreducible in Q(Ci6)+[^]- This completes the proof of the

lemma, and hence the proof of the irreducibility criterion for Pn(X ; a).

5. Units and roots of the 2"-tic Polynomial

In this section, we assume a2 + 4" is not a square in the rationals so that
P„(X; a) is irreducible in Z[X]. Moreover, for simplicity we assume that

a2 + 4" t¿ 2s2 , s G Z. As in the proof of Theorem 2, this implies that P„(X ; a)
is irreducible over Q(C2») ■ Fix a root 0 of P„(X; a), so the roots are of the

form Mk6, 0 < k < 2" , where M = (\ ~x ) and e = -ijz^ = cot(£). Let

K = Q(e) = ®(Ç2»)+.

Then it is easy to see that K(6) is the Galois closure of Q(0). The above

assumptions on a imply that Gal(K(6)/K) = (r) is cyclic of order 2" , where

Note that we have

0

rk(9) = Mk9.

£0-1

0 + £

0 < k < 2".
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Since the constant term of Pn(X; a) is 1 (if n > 2), these xk(0) are units in

the ring of integers of K(6). Obviously, these 2n units are not independent,

for instance, t2"   (0) = -±. However, one half of them, say the first half

{rfc-1(0)|l <k<2n~x},

are independent. We prove this in the next theorem.

Theorem 3. The 2n~x elements

{t*-'(0)|1 <k<2"~x}

are independent units in the ring cfK^) of integers of the field K(6), where
K = Q(e) = Q(C2»)+.

Proof. Let m = 2"~x and let dk = Tfe-'(0), l < k < m. Then

(12) 6k+m = Tm(6k) = —s-,     for 1 < k < m.
vk

Suppose we have bi, b2, ¿3, ... , bm e Z such that

(13) 0?'0*20*3---0£" = 1.

Apply T,... , Tm~x to (13) and use formula (12), we get

t-±)bmab¡ab2 . . . ûbm-2aK-\ i
^    0i>     °2 a3 °m-\a'n ~     l '

(_L)bm-,(_J_\bmabi       abm-iûbm-i     _     i

(-i)b2(-hhi---(-B^)bm^ 1.

Take absolute values and then take logarithms of the above m equations. Write
this system in matrix form as follows:

-bm

-bm-i

b2

-bn

h
bi

bm-\

bm-2

bm-3

bm-l

bm-2

\
/log|0i|\

log|02|
log 1031 0

Voy\  -b2      -h    -b4 -bm     bi   I  \log|0m|/

If B is the coefficient matrix, then det(ß) = 0.

Lemma 4.  det(5) = \\^m=_x ¿Zti bkCk~l -

Proof. Let C be any primitive 2wth root of unity, so Çm = -I. Then

c

\cm-xj

is an eigenvector of B with eigenvalue YJk=\ °kik~x ■ Since C can take on
m different values, we have a full set of eigenvectors. The determinant is the
product of the eigenvalues.

By the lemma, we have 5Z!t=i bk^k~l = 0, for some primitive 2mth root of

unity C- Since <f>(2m) = m, the set {1, Ç,... , Cm_1} is linearly independent
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over the rationals, and hence bi = b2 = • • • = bm = 0. Therefore the 2" units
{rfc-1(0)|l < k < 2n~x} are independent. This completes the proof of the

theorem.
So far we have 2"~x independent units, all of which are roots of Pn(X; a).

If the field Q(0) is Galois over the rationals, then the rank of the unit group is

2" - 1 and we need 2"_1 - 1 more units in order to get a set of units which is

close to being a system of fundamental units. This is the case when n < 2 or
when n = 3 for a selected family of a's. Unfortunately, the field Q(0) is not
Galois over the rationals in general. We know that K(8) is the Galois closure

of <Q>(0) so that the rank of the unit group is 4n~x - 1 and we need many

more units to reach the same goal. Although the set of the cyclotomic units in

K = Q(£2»)+ = Q(fi) will be part of them, it does not help us enough. In the
next section we show how to obtain additional units from subfields of K(6),

though we still do not obtain a maximal set of independent units.

6. A SET OF 2" - 1   INDEPENDENT UNITS

Define a sequence (u¡) of real numbers as follows:

uo = 0    and    u¡• = ^ ( «7-1-1 ,     for 1 < 7 < n.
I \ M7-1/

For convenience, we denote the field Q(u,) by K¡ for 1 < 7' < n. Obviously,

we have the following lemma.

Lemma 5. The element w;_i satisfies the quadratic polynomial

Pi(X; 2uj) = X2- 2ujX - 1,     forl<j<n;

and hence the degree deg(Kj-X/Kj) ofw7_i over the field K¡ is I or 2.

Lemma 6. We have the following identities:

u™+í = TtH>    forO<m + j<n.
1j\uml

In particular, u„ = Jr, and therefore Kn = Q.

Proof. From (1) and (2), we have, for 7* = 1, 2, 3,..., n

M4Ï RÁ*)= ! (Rj-x(X)      Ij-x{X)\

{    ' Ij(X)      2\lj_i(X)      Rj-i(X))-

For 7 = 0 the lemma is trivial, since Fv0W/^oW = X. Assuming it is true

for 7 - 1, we easily find from (14) that it is true for 7 . Letting 7 = n in the

lemma, and using the fact that P„(6 ; a) = 0, we find that

RnW      a_

"     /„(0)      2"'

Therefore Kn = Q. This completes the proof of the lemma.

Proposition 4. For a ^ ±(22k - l)2"~fc_1, 0 < k < n ; the degree of the element

Uj-i over the field K¡ is 2, for 1 < 7 < n .

Proof. We have

deg(Q(0)/Q) = deg(*o/*i) deg(*i/tf2) deg(tf2/*3) • • • te%(Kn-i/Kn).

The irreducibility of P„(X; a) gives us deg(Q(0)/Q) = 2" , and so the degree

deg(Kj-X/Kj) of the element w;_i over the field Kj is 2, for I < j < n . This
completes the proof of the proposition.
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Theorem 4. The element u¡ satisfies the polynomial

Pn-j(X;a/V),    forl<j<n.

Furthermore, the field K¡ is a simplest 2n~J-tic field over the rationals, if 2j

divides a.   In this case, the element Uj  is also a unit in the ring cf^e)  of

integers of K(8).

Proof. Lemma 6 tells us that the element u¡ satisfies the polynomial

Rn-j(X)-£ln-j(X),

which is in fact the polynomial

Rn-j(X) - ^ßjin-j(X) = P„-j (*;£).

This completes the proof of the theorem.

Remark. More generally, we see that um is a root of Pj(X; 2'um+j), so each

intermediate extension Km/Km+j could be regarded as being "of simplest type."

From the previous theorem, we have for each 0 < j < n that the element

Uj is a unit in the ring cf¡c(0) if 27 divides a. Theorem 3 gives us 2n~J~x

independent units, namely

{T2y(ÂC-1)(t/7)|l</c<2"-^-1}

in the ring tfKI<u.) of integers of the field K(uf). Putting all these units together,

we have in total

2«-i + 2»-2 + ... + 22 + 2X + 2° = 2" - 1

units in the field K(6). Are these units independent? The answer is yes, and

we will prove this in the following theorem.

Theorem 5. Let a eZ and let 2"\a. Then the 2" - 1 elements

{x2^k-l)(Uj)\l <k< 2"-J~x andO< j < n)

are independent units in the ring cfK^ of algebraic integers of the field K(6),

where K = Q(e) = Q(C2»)+ •

Proof. We will prove the theorem by induction on n . The result is trivial for

n = 1. Assume the theorem is true for n -1. Suppose we have rational integers

bkj such that

2"-' rt-12''-•'-,

(15) n=H(Tk-x(uo))b*° = ]l  n {^(k-{){Uj))b^-'eK(ui).
k=\ 7=1    k=\

Since the field K(ui) is fixed by the automorphism t2" , the element n is

invariant under t2"    . Note that t2"   (m0) = -Uq1 , and so we have

2«—i 2»~ '

n^Vo))6'1'0 = n = r2"-\n) = ±H(Tk-x(uo))-bk-°.

k=\ k=X
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Therefore, we have
jn — 1

±1=n(^-i(Mo))2^°-
k=X

Since the right-hand side is the square of a real number, we get

■yn— 1

H(rk-x(uo))2b^° = l.

k=\

Theorem 3 tells us that 2bk 0 = 0, V/c; and hence bko = 0, V/c. Now, the
relation in (15) becomes

Y[2*[[(T2i«-lHuj))>*.> = l.
;'=1   fc=l

From the induction hypothesis, the 2n~i - 1 units

{T2J(*-i)(My)|i < k < 2"-j-x and 1 < j < n}

are independent, and so bkj = 0, for 1 < k < 2n~J~x and 1 < j < n. There-

fore all bkj are 0, and this completes the proof of the theorem.
Finally, we prove that the group X generated by these 2" - 1 independent

units in the ring cfntp) is almost fundamental in the sense that if Fi D X is a
subgroup of the full unit group and [Ei : X] is finite, then this index is bounded

uniformly as the parameter for the family varies, under certain mild restrictions.
First, we have the following:

Theorem 6. Fix n > 1. Let S = (±0, ; 1 < i < 2n~x), where 0; = t'-1(0) ■ Let

D = {ue®({di, 02, ...})\ul eSforsomel^O}.

Let a run through a sequence of integers such that (a2 + 4")/ osf(a2 + 4") is
bounded above, where osf(x) is the odd squarefree part of an integer x (so

x = osf(x) times a square times a power of 2). Then the index [D : S] is

bounded independently of a.

Remark. This result says that the units S form an "almost fundamental piece"

of the unit group, in the sense that it is only necessary to enlarge S by a

bounded amount in order to obtain a direct summand of the full unit group.

In the corollary below, we obtain a similar result for the group X generated by
the units of Theorem 5.

Proof. By taking a large enough, we may assume that a2 + 4" is neither a

square nor twice a square. Therefore, as in the proof of Theorem 2, K(d)/K

has degree 2" . Let S = S/{±1} and D = D/{±1} . Let d G D and let dl e S.

Then t2""\dl) = ±d~l. Since d and t2""'(ú?) are real, (1 + T2"'l)(d) = ±1.

Therefore Z[t]/(1 + t2""') ~ Z[^2»] acts on D, which we shall mostly write

additively. If 0 ^ a e Z[C2"]^nd deb satisfy ad = 0, then (Norma)ß? = 0,

which implies d = 0 since D is a torsion-free abelian group. Therefore D is

a torsion-free Z[C,2»\ module. Since it has Z-rank 2"_1, it must be isomorphic

to an ideal of Z[£2»] that is determined up to ideal class. Let Ii, ... , In be

representatives for the ideal classes of Q(C2») • For each /,, choose a principal
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ideal 0 / /, C /,.  Since D ~ /, for some i, we find that D has a cyclic

submodule ~ J, of finite index, with a bound on this index depending only on

n . Let C = Z[£2»]£i Q D be this submodule, where ex e D.
Let ek = Tfc_1(fii) , 1 < /c < 2" . Choose / > 0 such that

■yn— 1

e[ = ± J] of'.
1=1

Then elk = ±Ili=i 0b+k-X ■ Let g: K —> 1 be any embedding and extend g

to A^(0) so that g(6) = 0o = largest root of P„(X; a). This is possible since
[K(6) : K] = degP„ , so g(6) can be chosen to be any root in R of P„ .

Let n = n^=i e£* > where the akeZ are to be chosen later. Let n¡ = i'~x(n),

1 < i < 2". Since ek, 1 < k < 2"~x, are independent, and t2" acts by

inversion (modulo {±1}), it follows that the //, are distinct if some ak ^ 0.
Under any embedding g as above, we have

0
2   2""'

2mk* n (r,l-nJ)2= n (i-jf) ik
l<i<;<2" |ii;l<k-|  V 'l/      k=\

where mk e Z is bounded in terms of «. Since nk+2*-i = ±l/nk, we have

restricted the last product to k < 2"~x. Note that each factor in the first product
on the right is bounded by 2. We now obtain

iogn(^-^)2<^+5Eiiogi^n
k=\

with A and B depending only on n , and independent of n and the embedding

g-
There are 2"-2 embeddings g : K -* K, and we regard each one extended

to K(6) as above. Then

2"_1

log]\g {J\(m - tij)2) < 2»-2A + B¿2 E llogl^H
?  fe=i

2
X   '/2

<.4i+ß,    ££log2|g/,t|

\  g   k=\

by Cauchy-Schwarz.

Let L{ = log|g£fc|,  I < k < 2". Note that Lgk+2„_l = -Lgk . Since nk =

Ylj=i 6y+^_i > the last sum above becomes

/>-, N2

SE   Ea>LJ+A:-i     =E(fli»-" ,a2»-')(^)2(ai,---!û2»-')i>
g     le    \j=\ J g

where Lg is the symmetric matrix (Lj+k_l)i<jk<2n-i.

Let Sf = log|g0,|.   Then IL{ = EH'^f+it-i ■   Define /3;+2„-, = -¿,
for  1 < /' < 2"~x, and regard the indices mod2".   Let B = (b¡j), where
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bjj = bj-i+x. Let S8 = (S?+j_i)i<ij<2»-< • The above becomes L8 = \BS8.

Note that L8 and S8 are symmetric, so

(L8)2 = (Lg)(Lg)' = Q-2?) (S8)2 (i*)'.

Our sum therefore equals

(ai,..., «*-,) Qß) \T(S8)2) (ai,..., a2,-i) (j*)'.

Lemma 7. Le/ Af = ( \ z\ ). As g runs through the 2"~2 embeddings K -> E,
the elements g M e PGL2(R) run through the powers

K=(cot(n/2»)   _co-l/2n))\        0<M<2",M.l(mod4).

Proof. After fixing one embedding such that M maps to Mo , we can regard the

embeddings g as corresponding to elements of Gal(.iY/Q). Extend g to Q(Ç2»)

such that g(i) = i. Then g = ak with k = 1 (mod4), where crk(C2») = C2« •
Since

(we have used the fact that (2n = (e + i)/(e - z')), it follows that gM0 and Mq

differ by a scalar matrix. The lemma follows easily.

Let gu correspond to the power u. Then gu(0,) = gu(M'~x6) = M^'~{)6o .

Thus

Sf" = log \Mf~x)6o\ = %_,),

where Sk = S^1 and the subscripts are taken mod 2" .

Lemma 8.   Zg(Sg)2 = si, where s = 2"~2 £j£j' log2 |Jl/*0o| •

Proof. Fix two indices a/è, 1 < a, b < 2n~x. The (a, b) entry in J2g(.S8)2

is

/ , / , 5'„(a+,_i)5'„(ft+l_i).
M      1=1

Since 5„(a+,-_i) changes sign when z is changed to z + 2'!~1, the product of the

two 5 's depends only on z'mod2"_1. Since u is odd, we can change variables

to obtain

zJ       Z2      SkSk+(b-a)u-
u   k mod 2""'

Let 2W || (ft - a). Clearly 0 < v < n - 2 (we henceforth ignore the easy case n =
1). First assume v < n - 3 . Given u, let Uj = u + j2"~x~v for 0 < 7 < 2"+1

(so M7 = 1 (mod 4)). Then

k + (b- a)uj = k + (b-a)u + (b- a)j2"-x~v

= k + (b - a)u + j2"-x (mod2").

2v+l — 1

Therefore SkSk+{b_a)Uj = (-l)JSkSk+{b-a)u, so J2,=o skSk+{b-a)uj =0. Since
the full sum is a sum of such sums, it must vanish.
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If v = n - 2, an easy calculation shows that the terms for k and k + 2n~2

cancel, so again the sum is zero.

If a = b, then the (a, a) entry is

jn— 1

2"~2 E si =2"~2 E lQg2 \Mo e°\=s-
k k=\

This proves the lemma.

Lemma 9. s = 0(log2 |a|), where the implied constant depends only on n.

Proof. It is easy to show that the largest root 0O of Pn(X; a) satisfies 0o =

0(\a\), so log|0o| = 0(log|a|).   Therefore for ±l/0o, the smallest root in

absolute value, we have log | ± l/0o| = 0(log|a|). Since the numbers Mfi0o in

the definition of 5 are the roots of Pn(X; a), the lemma follows easily.

Consider the quadratic form

Q{ai ... ,a2»-i) = (ai, ... , a2n-i) (jB)si(jBJ (ax,..., a2„-i)'.

A theorem of Hermite (see Cassels [1, p. 31]) implies that there exists 0 ^

(ai,..., a2n-i) e Z2""1 such that Q(ai,..., a2»->) < y(detß)1/,2"~', where

y is the Hermite constant, which depends only on n. We choose n above

corresponding to such a choice of ak 's. Since detß = s2"   det(yß)2 , we have

(I   \1/2""2
ß(ai,...,a2.-i)<ysdetl j5 1

Note that UkjÍHí - Vj)2 e K, so y = UggUiKjim ~ *lj)2 e Q, hence

is in Z. Let q be a prime divisor of osf(¿z2 + 4"). Let q be a prime of

Q(C2») above q. Then q divides either the numerator or the denominator of

(a + i2n)/(a - i2"), and in fact divides it to an odd power. Since the 2"th root

of this number yields the same extension as adjoining 0, q must ramify in

Q(C2«, 0)/Q(C2») > hence in K(6)/K. Since n has 2" distinct conjugates over

K, we have K(6) = K(n). Therefore the primes above q divide the relative

discriminant of n, namely \\(n¡ - r¡j)2 , so q divides its norm to Q, namely

y. Since we are assuming osf(a2 + 4") > c'(a2 + 4") for some d > 0, we have

logy > c" log\a\ for some c" > 0.
Putting everything together, we find

ii V/2"~'
log \a\ < A2 + B2 log \a\ det Í jB J

for some constants A2, B2. Therefore det(\B)~X is bounded above, indepen-
dently of a.

Standard index calculations show that detß = [S : Cl], and of course

[C : C'] = l2"~' . Therefore det(jß)^1 is the generalized index [C : S]. Since

we already know that [D : C] is bounded, we find that [D : S] is bounded.

This completes the proof of the theorem.

Corollary 1. Assume 2"\a. Let X be the group of units generated by the units

of Theorem 5. Let A = {u e K(9)\ul e X for some I > 0} . Let a run through
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a sequence of integers such that (a2 + 4")/ osf(a2 + 4") is bounded above. Then
the index [A : X] is bounded independently of a.

Proof. Assume the result is true for n - 1. Write X = X+ © X_ , where

X_ = {« gX|t2"~'w = ±u~x},

and similarly for X+ . Note that X_ is the group S in Theorem 6 and X+ is

the group coming from subfields.
Let « G A with u1 G X. Then

M2' = (M(l+^-,))/(M(l-^-,))/ = M/+M/_>

and we must have u± G X±. By the induction assumption, u'l e X+ for
some /i > 0 that is bounded independently of a. Theorem 6 implies that

u'l g X_ for some h > 0 that is bounded independently of a. Therefore

u2'1'2 = (u+U-)'1'* e X. Since 2/1/2 is bounded independently of a, the result

follows.

7. Examples for the case a2 + 4" = 2b2

From the proof of the irreducibility criterion of the polynomial P„(X; a),
we noticed something special when a2 + 4n = 2b2 for some integer b. In

this case, Pn(X;a) is irreducible in Z[X] and Q(0) has a quadratic subfield

Q(\/2), where 0 is any fixed root of P„(X ; a). It can be seen from Theorem 4

that w„_! satisfies X2-J^TX-l and hence Q(w„_i) = Q(Va2 + 4n) = Q(\/2).
It is in this case that Q(0) becomes Galois over the rationals for the octic field

(n = 3), see [13]. As a matter of fact, this is the last n for which we have

a family of Galois extensions over the rationals. Therefore in this section, we

assume a2 + 4" = 2b2 and this implies that 2"|a so that Q(0) contains Q(V2)
and Uj's are units in the ring <ffc{B) > where K = Q(£2")+ .

From Theorem 5, we have 2" - 1 units

LMa,<*-|>(u;)|l < k < 2"-J-x and 0 < 7 < "}•

Let 5 be the group generated by -1 and the 2" - 1 units listed above, and call
llQ-l

«o+l
S the simplest units of K(6). Note that M2" 2(u0) = ^ and ux = \± . So

we have

yJuoUiM2"("o) = \Uo
Up - 1 Up - 1 _ Up- 1

2«o   "o+l        y/2

which is also a unit of (fK(8) ■ Similarly, we have units of the form M  J-^~' ,

for 1 < k < 2n~2. They are all square roots of elements in 5. Replace the

units
{Arfc-'(M0)|2"-2</c<2"-1}

by the units
(^-'(wo)-!

<k<2n~2\.
I V2

Do the same thing for each Uj, 1 < j < n — 2 ; and replace the units

{M2'{k-X)(Uj)\2n-j-2 <k< 2"-J-1}
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by the units
f M*lk-i)(uj) - 1

1 V2
So now we have another 2" - 1 units in the ring cf^B) '•

Kk< 2"-j-

**-»<»). M"""^)-1 1 < k < 2"-j-2,0<j<n-2}\J {un-i}\ U {u„.

Let 5" be the group generated by -1 and the units listed above, and call 5"

the modified simplest units of K(6). Clearly, S is a subgroup of S' and the

index is [S' : S] = 22"~ _1. Recall S is a subgroup of the full unit group E of
the ring (fK(e) ■ Assuming [E : S] is finite, we have

.      _ [E:S] _ [E:S]
11     [S':S]     22"-'-i'

and therefore the modified simplest units of K(9) are closer to being a funda-
mental system of units than the simplest units of K(6).

There are two special a's to which we should pay more attention in view

of Lemma 2, namely a = ±2", and a = ±2" • 239. Note that P„(X ; a) and
Pn(X; -a) generate the same number field. For if 0 is a root of Pn(X; a)

then -0 is a root of Pn(X ; -a). This can be seen from the fact that Rn(X) is

an even polynomial while In(X) is an odd polynomial. So now, let us discuss
these two examples and work with the positive sign in the following.

Example 1. a = 2" : Since Rn+i(X) = Pn(X; 2n)Pn(X; -2"), Proposition 3
tells us that P„(X ; 2") generates the real cyclotomic field Q(Ç)+ f°r each n ,

where £ = Ç2»+i. So we have a family of Galois extensions Q(0) over the
rationals, where 0 is any root of P„(X; 2"). Calculation shows that

l + C2'
UJ = -'JZJv '       °<J<n-

Our simplest units S are generated by -1 and the units

{M2'{k-X)(Uj)\l <k< 2"-J-x and 0 < j < «}.

From the discussion above, we replace the simplest units S by the modified
simplest units S'.

Our goal is to compute a system of fundamental units from the modified

simplest units S'. Therefore, let us compare the modified simplest units with

the cyclotomic units. The cyclotomic units C£„+2 of Q(C)+ are generated by

-1 and the units [15]

i-* 1 - Cb
Zb = t~Tzj,        3<b<2n+x,bodd,

and [F++2 : C++2] = h^n+1, the class number of Q(C)+ , where E+„+2 is the full

unit group of Q(()+ . It is easy to see that we always have

wo = £2»+i-i>     for each«.

Let ck = £2k+\, l<k<2n-l.\f n<5 then /z++a = 1 (see [8]), hence C++2
is the full unit group. We consider these n . However, we skip the first two n 's

because of triviality.
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(1) Octic case (n = 3) :  Ç = Ç32 .
Calculation shows that

c5 cx
Si=C7,     S2 = —,     Si=Ci,     54 = —,

c2 c2

C3C4 CXC(, C1C2C5C6
J5 = -r~ .    s6 = —— ,    s7 = ;

C-j Ci C3C4C7

and the index [E : S'] = 2. So we must have some unit in 5" , which is a square

in E. One such unit is s^s^s^s^x = c\ , and therefore, the set

{sx, s2, Si, s4, ysxs2s42s5 xs¡s7 l,s6, s7}

forms a system of fundamental units of the octic field Q(Í32)+ .

(2) 16-íz'c case (n = 4) : £ = Ç64 .
Calculation shows that

C13 Cu C9 C$
S\=CX5,      S2 = -,      53 = -,      54 =— ,      S5 = C7,      S6 = —,

C2 C4 C6 C2

C3 CX C-jCft C5CX0 B C3C12 „ C\C\A
S7 = —,      S8 = —,      S9 = ——,      Sl0 = ——,      Sn = —-,      i,2=——

C4 C6 C15 C2Cl3 Cl5 C2C13

C3C4C11C12 CiC6C9Ci4 C1C2C5C6C9C10C13C14
513 = -,      S14 = -,      5i5 = -;

C7C8Ci5 C7C8C15 C3C4C7C8CnCi2Ci5

and the index [F : S'\ = 16. We have

Wj*i_„2 ^10^4   _ ^13 V S2S¡S9S6nS33S35 _ ^
1 ~ C\2 ' 3 —  I  „      I     > 4   3    S — ̂ 14 '

52595l3 54if25135i5        \CX4 J HsX0SU

and the following set forms a system of fundamental units of the 16-tic field:

Í s2s2s9s6l2s33s35     / s2s2siqs24 Jsis3s3u
(SX, ... , Sa, t   -4   -,    s-, \   -Ï-, Su , S12 , \   ~2-, ^14 , S15
[ V 58510514 V S4Si2Sl3Si5 \ SJS9Si3

(3) 32-//C case (n = 5) :  Ç = C128 ■
Calculation shows that

C29    „   C27        C25 „   C23    B C2X
Si = C31 ,  S2  = — ,  S3 = — ,       S4 = — ,       S5 = — ,       S6 = —- ,

C2 C4 C6 Cg Cio

Ci9 cn en cxx c9
Si =  -,  58 = -,  59 = Ci5,  J10 = -,  Sn = —, SX2 = —,

Cn C14 C2 C4 C6

Cl C5 C3 Ci C.5C16
Í13 = — >      $14 =-,  Í15 = —• ,  516 = -— , Sn = —-,

C» Cio C12 Cu C31
C13C18 C11C20 C9C22 „ C7C24

■Sis = -,      $19 = 7— >      $20 = —— ,      521 = —-,
C2C29 C4C27 C6C25 C31

C5C26 C3C28 C1C30 C1C»C23C24
J22 = ——- ,      $23 = ——— ,      $24 = T^T" '      J25 =   „    ^    ,— .

C2C29 C4C27 C6^25 Ci5Ci6C3i

C5CioC2iC26 C3C12C19C28 C1C14C17C30
526 = ->       ^27 = -,       528 = -,

C2Cl3Cl8C29 C15C16C31 C2Cl3Cl8C29

C3C4C11C12C19C20C27C28 CXC6C9Ci4CxlC22C25C30
S29 = ->      530 = -,

C7CgCX5CX6C23C24C3X C-jCSCx5Ci6C23C24Cil

CiC2C5C6C9CioCnCi4CnCisC2lC22C25C26C29C30 .
Sil = -.

C3C4C7C8CiiCi2Ci5Ci6Cl9C20C23C24C27C28f31
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and the index [E : S'] = 2048. We have

2     _ —2—13—1
c24 — $1$5$13 $17 S2XS25  ,

2 _2 _   —12    —3—12    —2
C25c30 — s*s&   $16$20$24 S26 $28$29$30 $31 >

2 —2 _ —1  —2 —1 3 —1
C26c29 — S2 $6$14 $i8 $22$26 '

2 2    2    —2   —232—32
c27c28 — $l$3$7$is $17$i9 $23$25$27 529 '

c28 = $1$7$15 $17$i9 $23$25$27 $29 >

c29c30 = $1$2$8$16 $17$18 S20 $24$25$26$28 ̂ 29 S30$31 :

^.8 _ „4„4„-8.2 „—6„12„ „5 „-10.-5.11 „-5c30 — $1$8$16 $17$20 $24$25$26$28 $29 $30$31 '

and therefore the set

\,     ,      «  C25 „   C26     C21 C2g
\ $1 , $2 , $3 , — > C24 , —, — , $8 , ■ ■ ■ , $16 > ̂ 28 , — ,
I C30     C29  C28 C30

Si9, ... , S24, C30, S26, ■•■ , $31
}

forms a system of fundamental units of the 32-tic field Q(Ci2s)+ •

These examples indicate that 5" and hence S should always be a subgroup

of C+, where C+ = C++2 ; and the index [C+ : S'] is 21, 21+3, 21+3+7 for

n = 3, 4, 5 respectively. We may conjecture that the exponent of this index is

n

1 + 3 + 7 + • • • + (2"-2 - 1) = E(2*"2 - 1) = 2"_1 - «.
fc=3

and therefore for n > 3 we have (note that it is also true for n = 1, 2)

[C+:5"] = 22""'-".

Since [5' : 5] = 22""1-1 and [E+ : C+] = h+, where E+ = E++2 and h+ =

h2„+2 ; we conclude that

[E+ : S] = 22"-"-'•«+

and state it as a conjecture in the following.

Conjecture 1. The simplest units have index 22"-"-1 • h+ in the full unit group

of ^Q(C2n+2)+, for a = ±2" , n > 1.

Example 2. a = 2"-239 : Since a2 + 4" = 2-134-4" , the field Q(0) contains the

quadratic field Q(V2) as expected, where 0 is any fixed root of P„(X ; 2"-239).

We know that Q(0) is Galois over the rationals when n < 3. For n = 4, our £

in Theorem 1 is 1 + y/2 + \/4 + 2\f2 (see Proposition 2). By Theorem 4, Q(0)
contains a quartic subfield Q(m2) , where z/2 is a root of the polynomial

Xa - 4 ■ 239X3 - 6X2 + 4 . 239X + 1.

One such u2 is 239 + 169V2+ 13(7 + 5^)74 + 2VÏ, and hence \Z4 + 2v/2
belongs to the field Q(0). Thus £ G Q(0), and we conclude that Q(0) is Galois
over the rationals. Calculation shows that the conductor / of this field is 64-13,
and its discriminant d is 279 -1312 . When n > 5, the extension Q(0)/Q is not
Galois, so the above example completes the list of Galois extensions we obtain

by our methods.
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