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FINITE GROUP ACTIONS ON SIEGEL MODULAR SPACES

K. F. LAI AND RONNIE LEE

Abstract. The theory of nonabelian cohomology is used to show that the set

of fixed points of a finite group acting on a Siegel modular space is a union of

Shimura varieties

0. Introduction

Let ^ bea finite group of automorphisms of the symplectic group Sp2„(R)

which leaves invariant the maximal compact subgroup U„(C) and let Y be

a torsion free arithmetic subgroup of Sp2„(Q) which is invariant under j¡.
Denote by <&„ the Siegel upper half space of degree « , i.e.,

<£>„ = {Z e M„(C)\Z = 'Z, ImZ > 0}.

Then p induces an action on the locally symmetric space <S„/r. We denote
by {<S>„/Yy the set of fixed-points of ß in <S„/Y. Gottschiling [2, 3] gave
a very explicit description of the fixed-point sets of p in <S2 /r. The set of
components of (<Ö„/Yy is in one-to-one correspondence with the nonabelian
cohomology set Hx(p, Y) (cf. [8]). The arithmetic nature of these components

is determined by the image in Hx(p, Sp2„(Q)) under the natural map

//V n - # V sp2„(Q)).
Using the results of Satake [7] on symplectic representations, we describe in §3
Hx(ß, Sp2„(Q)) in terms of the character table of ß . The use of nonabelian

cohomology to study the fixed-point set was first discovered by Rohlfs. In § 1, we
summarize his theory with minor modification to fit our situation. In the next

section, we relate the nonabelian cohomology with the representation theory of

p . The authors would like to thank the referee for helpful comments.

1. Fixed-point components

1.1. Let G be a connected semisimple algebraic group defined over Q, let
AT be a fixed maximal compact subgroup of the group G(R) of the real points

of G, and X = K\G(R) the associated symmetric space.
Let ß be a finite group of automorphisms of G(R) which keeps the maximal

compact subgroup K invariant. Then there exists an induced action of ¿t on
the symmetric space X - K\G(R) by isometries.   Suppose we are given a
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torsion free, ^-stable, arithmetic subgroup r of G. Then p acts on the

quotient space X/Y. Denote by (X/Yy the fixed-point set of this action.

1.2. A cocycle in Zx(p, Y) is a map, s i-> bs, of p to Y such that bst —

bs ' s(bt), where s(bt) represents the action of í (se #) on the element bt.

The cohomology class of bs is denoted by [bs].
1.3. Given an element b = [bs] in Hx(ß, Y), we define a new action of ß

on G(R) by means of the formula: A i-> SA = bs • S(A) • b¡~x. There is also an

action of p on X,

(1.3.1) Jx = sx-bfx,       xeX,seß,

and this is compatible with the action of # on the group G(R) ,

(1.3.2) J(x ■ A) = Jx ■ JA.

We will refer to these as the ^-action twisted by the cocycle b and will use

the notation ß(b) to denote the new automorphism group. We write X(b)
for the fixed-point set of ß(b) in X. Let Y(b) be the set of ^(è)-invariant

elements of Y. We have a natural embedding X(b)/Y(b) -» X/Y and we

denote by F(b) the image of this embedding. Clearly, this is a part of the

fixed-point set {X/Yy. If two cocycles b and V are cohomologous to each

other, then the fixed-point sets X(b), X(b') are T-conjugate to each other, and

so F(b) = F(b').
1.4. The connected components of (X/Yy are indexed by the cohomology

set Hx(f,Y).

Proposition. The fixed-point set (X/Yy is the disjoint union of the connected

totally geodesic submanifolds F(b),

(X/Yy = [J F(b)
b

where b runs through Hx (p, Y).

The proof follows the same lines as that of Proposition 1.3 of Rohlfs [6]. We

omit the proof.
1.5. We shall need the following lemma, the proof of which is the same as

Rohlfs [6, Lemma 1.4].

Lemma. Let K be the fixed maximal compact subgroup in G(R), and let p

be a finite subgroup in Aut G(R) which keeps the subgroup K invariant. Then

the inclusion i: K <-> G(R) induces a bijection in cohomology i: Hx(p, K) ->
Hx(y,G(R)).

1.6. Given an element b in Hx(#, Y), we denote by b^ the image of b

in Hx(p, G(R)) under the natural induced map Hx(ß, Y) -► Hx(p, G(R)).

Clearly if b^ = b'^, then X(b), and X(b') are isomorphic to each other

under the translation of an element in G(R). Thus it is enough to study X(b)

according to the classification in Hx(p, G{ß)).

By the above lemma (1.5), we may assume that b is an element in Hx(#, K)

and we get an exact sequence of pointed sets

(1.6.1) 1 - H°(ß(b),K) - H°(f(b), G(R)) - H°(f(b),X) - 1.
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From the definition H°(ß(b), X) is the same as the ^(è)-fixed-point set X(b)

in X, and H°(ß(b), K), H°(^(b), G(R)) are subgroups in K and G(R) re-
spectively fixed by ß(b), and the sequence (1.6.1) can be viewed as a fibration
sequence of spaces

1 _ k,W _» G(R)^b) -* X(b) -» 1.

We have Ä><*> = ÄTiG(R>^*) and that A>W is the maximal compact subgroup

in G(Ry^ and X(¿>) is the symmetric space associated to G(R)^(6). Summing
up, we have

1.6.4. Proposition. A connected component F (b) of the fixed-point set (X/Yy^
of the locally symmetric space X/Y is again locally symmetric. With the nota-

tion defined as in the above paragraph, F(b) is the quotient of the symmet-

ric space X(b) = H°(#(b), K)\H°(^(b), G(R)) associated to the Lie group

H°(^(b), G(R)) and it has the arithmetic subgroup H°(^e(b), Y) as its cover-

ing transformation group,

F(b) = H°(f(b), K)\H°(f(b), G(R))/H°(ß(b), Y).

2. Nonabelian cohomology

2.1. To proceed further, we need an explicit description of the nonabelian

cohomology H'(¿e, G), / = 0, 1, in terms of p.

Let us assume that G is semisimple and rkjj G > 0 and that every element

in ß is an inner automorphism, given via a homomorphism p: p —► Inn(G).

It is then enough to consider the central extension of groups

1 -> Z(G) -> G -» Inn(G) -> 1.

Using the homomorphism p: p —» Inn(G!), we can pull back the above central

extension to obtain a covering group ß of p together with a commutative

diagram of group homomorphisms

1    -►   Z(G)   «-►    G    -»   Inn(G)    -    1

il        n        n
1    -»   Z(G)   -    ß    -»       ,        -»    1

Here ^ is a homomorphism of ^ to G which covers our original homomor-

phism />: y —► Inn(C7), and restricts to the identity map on the center Z(G).
In general, we consider the set Homz(G)(^, G) of all group homomorphisms

9: ß —> G which restricts to the identity on the center. Two such homomor-

phisms 6: ß —► G, 9': ß -* G are said to be equivalent if they differ by the
conjugation with an element x in G. The set of all these equivalence classes

of homomorphisms will be denoted by HomZ(G)(ß, G)/G.

2.2.   Proposition. There is a one-to-one-correspondence

Hx(ß,G)^HomZ{G)(ß,G)/G.

This follows immediately from the exact sequence

1 -» Hl(y, G) ™ Hx(ß, G)z^ ^s HX(Z(G), G).
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2.3. For b in Hx(p, G). Let 9b be image of b under the isomorphism of

Proposition 2.2. As in (1.3), we can twist the action p: p —> Aut((7) of p on

G by an element b in HX(#,G) using the formula

(2.3.1) A^9b(u)p(u)(A)9b(uTx.

With respect to this action, we have the zero degree cohomology group, denoted

by H°(^(b), G). The following proposition is immediate.

2.3.2. Proposition. Let b, ß(b) be defined as above. Then there is a one-to-

one correspondence between H°(^(b),G) and the subgroup of elements d in
G commuting with 6b .

3. HeRMITIAN REPRESENTATIONS OF ß

3.1. We will concentrate our effort in studying the cohomology Hx(ß, G)

in the special case when G is the symplectic group Sp2„(Q), and p consists

of inner automorphisms. In this setting, the theory can be reduced to one of
skew-hermitian representations of ß.

First of all, the center of Sp2„(Q) is a cyclic group of order 2 with -I2n as

the nontrivial generator. It follows that ß is a 2-fold covering over p with a
nontrivial element œ in the kernel of the projection ß -> p, which maps onto

-hn-
As a consequence of §2 there is a one-to-one correspondence between

Hx(p, Sp2„(Q)) and the set of isomorphism classes of pairs (V, X) consist-
ing of a 2«-dimensional vector space V over Q and a pairing X: V x V ^ Q

satisfying the following conditions:

(3.1.1) A is nonsingular and skew symmetric ;

(3.1.2) X(u • g, v • g) = X(u, v) for u, v e V, g e ß;

(3.1.3) v • co - -v for v e V.

Given any ^-invariant pairing ( V, X), we define a new pairing h : V x V —>

Q[ß] by means of the formula: h(u, v) - Y,X(u • g, v)g~x (g e ß). Then h
has the following properties:

,_ . ..        h  is nonsingular and skew-hermitian,  h(u, v) = -'h(v, u)

* ' ' '       with respect to the involution i: Y,agg ^¿Zagg~x \

(3.1.5) h(u- g ,v) = h(u, v)g   for u, v e V, g e ß.

(Note that h(u, v • g) = g~xh(u, v) 7) Conversely, given a pairing (V, h)

satisfying (3.1.3)—(3.1.5), there is a corresponding ¿í-invariant nonsingular skew
symmetric pairing ( V, X) defined by

X: Vx vAq(ß)$Q,    where    tr(^ai^)=a,.

It is easy to verify that the above two constructions (V, X) —* (V, h), (V, h) -*
(V, tr oh) are the inverse of each other.
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3.1.6. Theorem. Under the assumption that p operates on Sp2„(Q) by inner

automorphisms, the cohomology Hx(ß, Sp2„(Q)) is the same as the set of iso-
morphism classes of nonsingular, skew-hermitian, Q[ß]-pairings (V, h) satisfy-

ing (3.1.3)-(3.1.5).

Furthermore given a cohomology class b in Hx(ß, Sp2„(Q)), the zero de-

gree cohomology group H°(^(b), Sp2„(Q)) is the same as the subgroup of

centralizers p[ß(b)] in Sp2„(Q). Expressed in the terminology in the previ-

ous paragraph, this amounts to the Q[^]-automorphisms of V preserving the
skew-hermitian pairing (V, h).

3.1.7. Theorem. Let b be a cohomology class in Hx(p, Sp2„(Q)) and let (V, h)
be the corresponding hermitian Q[ß]-pairing as in (3.1.6). Then the cohomology

group H°(ß(b), Sp2n(.R)) is isomorphic to the unitary group U(V, h).

3.2. The procedure of classifying all the pairs (V, h) satisfying (3.1.3)-
(3.1.5) is well known (see, for instance Satake [7, §IV-2]).

We decompose the Q[¿z]-module V into its primary components—

(3.2.1) V = ®V[X]

where each V[x] is a direct sum of n[x] copies of an irreducible Q[¿9]-module
W[x] and x is the character of an irreducible representation of ß. In partic-
ular this means that

(3.2.2) Yl "M dimQ wti] = dimQ V.

Define the "twisted" group algebra Q<u[^] to be the quotient of Q[ß] by the
two-sided ideal (1 + to) generated by 1 + to. Then, from the Wedderburn theo-

rem, the group algebra <Q[ß] is a direct product of <Q[je] and Qw[ß]. As is well

known, the group algebra Q[ß] is a product of simple algebras Endo[¿]( PF[;t]),

where D[x] denotes the division algebra End¿(W[x]). Thus there are two

types of representations: those appear in the first factor Q[¿?] and those appear

in the second factor Qw[#] ■ The first consists of representations for which to

operates trivially, and the second consists of representations for which co op-
erates as — 1 . Thus for a ^-represenation V to factor through Qa>[¿?] , it is

necessary and sufficient that its multiplicities satisfies the following condition:

(3.2.3) x(co) > 0 =► n\x\ = 0.

Therefore the set of elements of Hx(ß, GL(V)) which correspond to those

representations of ß such that to operates as -1 is the same as the set of

nonnegative integers n[x\ satisfying (3.2.2) and (3.2.3).
Next we turn to the problem of classifying to skew-symmetric ¿¿-invariant

pairings X : V x V —► Q. It follows from Schur's lemma that any ¿¿-invariant,

bilinear pairing (V, X) is decomposed into an orthogonal sum of its primary

components, (V, X) = ¿Z(V[x], ¿M), and so we can concentrate our discus-

sion on the primary components (V[x], X[x]). As a vector space over Q, the
W[x] has at least one positive-definite, symmetric pairing b(x, y), and by tak-
ing the average with respect to the group action we arrive at a ¿í-invariant,
nonsingular, symmetric pairing b over W[x].

As is well known, any nonsingular symmetric pairing (X, ß) gives rise to
an involution i(ß) on the endomorphism ring of X. For, from the nonsin-
gular pairing, we have an adjoint isomorphism ad(/?): X -> Hom(X, <Q>) =
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X* between X and its dual X*. Given an endomorphism ^ of I, there

is an induced endomorphism on its dual yi* : X* —► X*. The composition

(ad/?)-1 o y/* o (ad/?) gives us a new endomorphism of X which represents the

image of y/ under the above involution i(ß),

i(ß)(y,) = (adß)-xoy,*o(adß).

If A is a ¿î-invariant pairing, then i(X) preserves End^(F). Applying this

situation to the irreducible representation W\x\ and the symmetric pairing

b, we obtain an involution iD: D[x] -» D[x] on the division algebra D[x] =
Endß(W[X]).

Let U[x] be the vector space Hom¿(W[x], V). Then V[x] is isomorphic
to the tensor product of U[x] and W\x\ over D[x]. Then as shown in [7]
there exists a skew-hermitian pairing hw : W[x] x W[x] -+ ö[^] such that

hw(x,yd) = hw(x>iD(d),y)

for all x, y in ^[^], rf € D[/]. Furthermore there is a one-to-one correspon-

dence between nonsingular, ¿5-invariant, skew-symmetric pairings X[x] : V[x] x
V[X\ ~* Q and nonsingular skew-hermitian pairings h[x]' U[x] x U[x] —► Q
such that

¿LtK" x w, W x w') = trD/z(D)(h[x](u, «') • iD(hw(w, w'))).

Let //'([/[^J) denote the set of equivalent classes of skew hermitian, Z>[^]-

pairings over [/[/]. Over a ¿z-vector space 0 U[x], the set of such skew

hermitian, ¿î-pairings is given by a product

Hl(®U[x])=UHl(U[x]).

3.2.4.   Theorem. There exists a natural isomorphism of cohomology

(3.2.5) Hx(ß,Sv2n(®)) = \JHl(®U[x]) ,

where the disjoint union on the right runs through all direct sum 0 U[x] such

that

(3.2.6) £nfo]dimW[;c] = 2/!,        n[X] = dimU[X],

(3.2.7) x(û>) > 0 => n[X] = 0.

Lei p be a symplectic representation of ß into Sp2„(Q), and let h[x] = U[x] x
U[x] -» £[*] be the skew-hermitian pairing defined as above. Then there exists

a natural isomorphism

(3.2.8) H°(,,Sv2„(Q)) = YlU(h[x])
[x]

where U(h[x\) is the unitary group preserving the skew-hermitian pairing h[x] —

The part of the theorem about Hx follows from the above discussion. We

recall that the cohomology H°(#; Sp2„(Q)) is the same as the group of automor-

phisms preserving the ¿î-invariant, skew-symmetric pairing (V, X). From the
orthonormal decomposition (V, X) = Y,(V[x], ¿M) we have Aut¿(F, X) =
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]lAut¿(F[z], X[x\), and from the tensor product decomposition above, we

have Aut(K[*]> Mx\) = U{h[x]). Thus we get (3.2.8).

4. Finite group actions on Siegel modular space

4.1. Let V be a rational vector space of dimension 2«, endowed with

a nonsingular, skew-symmetric pairing X: V x V —> Q. Denote by Sp(K)
the group of automorphisms which preserves this pairing ( V, X). We use the

notation Sp(I-r) , where V& is the real vector space V <g> R, to denote the real
points.

Let <S(V) be the Siegel upper half space associated to V. <S(V) is isomor-

phic to AT\Sp(I^) where K is the maximal compact subgroup of Sp(J-r) . A

point z in <S(V) can be viewed as a complex structure Jz on V&, (Jz'-V*-*

Vr, J2 = - id) such that the bilinear pairing (u, v) h-> X(u , Jzv) is symmetric
and positive definite.

Let L be a lattice in V such that the restriction of the pairing 2 to I
takes on integral values X: L x L -> Z. Let (x¡) denote a finite collection of

points in V. We obtain an arithmetic subgroup Y in Sp(K) by considering
all automorphisms y/ in Sp(K) suchthat y/(L) = L, y/(x¡) = x;modL,

Y={y/ eSv(V)\y/(L) = L, y/(x¡) = x¡modL}.

This subgroup operates properly discontinuously on the Siegel upper half space

<8(V) and its quotient space 0(V)/Y is a Siegel modular space.

Let D be a product a division algebras over Q with a positive involution

iD, and let *F be a representation of D into End( V). We refer to [9] for the

definition of PEL structures on abelian varieties. The set of all isomorphism
classes of PEL structures of a fixed type £2 = (D, *F, iD ; V, X, L ; x¡) forms a

moduli space. We refer this moduli space as the Shimura variety and denote it
by Sy.

Let

G, = {g G Sp(K)|* • ¥(a) = ¥(a) • g, a e D},

<5w = {(V,J)e ®(V)\J • ¥(a) = ¥(a) • /, a G £>}.

Then according to Shimura [9-11] there is a natural isomorphism between the
moduli space Sq> and the quotient space 0>p/r n Gy .

4.2. Proposition. Let p be a finite group of automorphism of Sp(I-r) which
keeps the maximal compact subgroup K and the arithmetic subgroup Y invari-

ant. Then every connected component of the set (&(V)/Yy of[fixed points of p
in <6(V)/Y is a Shimura variety.

4.3. The proposition is an immediate consequence of 1.4. However we can

give a more explicit description in terms of the characters of ß. The action of
ß on the symmetric space <S(V) must have a fixed-point. Let z = (Pr , Jz) be
such a fixed-point in <S(V). Let A be the abelian variety Vr/L with complex

structure Jz . Since aJz = Jza, (a e Q[/*]), there is a homomorphism

(4.3.1) Q[^]^EndQ(^)

of the group algebra Q\ß>] into the endomorphism algebra Endq(A) of A.

Decompose V into primary components V — 0 V[x¡] (1 < i < I) as in
(3.2.1). Let D[Xi] be the division algebra End¿(W[Xi]) and D be the product
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of all the division algebras D[xi\, D = D[x¡] x ■■■ x D[x¡]. Then, from Satake
[7, Lemma IV. 1.1], the composite

D^Q[ß]^EndQ(V)

gives us an injection of D as a subalgebra in EndQ(F). Using (4.3.1) we get a

monomorphism *¥: D «-► EndQ(^4).
Since X is ¿z-invariant, we have the selfadjoint condition

A((E^ • s) •x > y) = 1{X >' (¿Z°g ■ s) • y)

satisfied for all the elements in the group algebra Q[ß]. This preserves the

natural involution iD on D and on the endomorphism algebra EndQ(^4). By

the solution to the congruence subgroup problems there exists a level structure

Xi such that T is a congruence subgroup preserving this level structure.
Let SV be the Shimura variety of the type (D, *F, iD ; V, X, L ; x¡), and let

GV and ©y be defined as in §4.1. From representation theory, it is known that
the automorphisms of p = (V, X) which preserve the ¿z-action are precisely

those automorphisms which preserve the Z)-action,

Aut,(F,A)ÊiAutj)(K,A).

Hence the two subgroups H°(y, Sp2„(K)) and Gy in Sp(K) are the same.

Consider the orbit of the z = (V, Jz) under the action of this group. On the

one hand, it is the fixed-point subspace <&(Vy and on the other hand it is the

bounded symmetric domain <Sy. Therefore they must coincide &(Vy = 64/,
and the same holds for their arithmetic quotients

F(p) = ®v,       [P]eHx(ß,Sv(V)).

This proves that the connected component F(p) in the fixpoint set (<Ô(V)/Yy
is a Shimura variety. As for the other components F(b), we only have to
replace p by the twisted action p(b), and repeat the same argument as above.

4.4. In [9], Shimura studied the nature of these varieties according to the

classification of the algebra D. It is interesting to compare his classification

with the analysis in §3. For this, it is enough to study only the situation when

D is a division algebra. Division algebras with positive involution separate into

types I, II, III, IV, and we have the corresponding four types of Sy. We shall

omit details, instead, we give two examples.

Example (4.4.1). Let p be the cyclic group of order p where p is an odd

prime. Since H2(p; Z/2) = 0 any central extension ß of ¿z is a trivial central

extension. Hence ß is a product of ¿z and a cyclic group of order 2, ¿z =

¿z x Z/2, and the group algebra, <Q)[ß] is also a product

Q[ß) « Q[ß] x Q«» W,       Qw W - Q[e2*i/p] x Q.

Suppose the representation of ß in Sp(K) have no trivial factor. Then the

algebra D coincides with the cyclotomic field <Q>[e2n'/p] and the involution is

the complex conjugation. In other words, we are in (Type IV) with p - 1

isomorphisms of Q[e2n'/p] into the complex field

Ti , ... , T£_^ , Ti , ... , Tp_i■

2 2
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Since 4* is of degree n , we have

n        1

n = m(p-l),       rv+sv = m,       v = l,... ,—=—

and G>¡/ is a product of unitary groups. In particular if m = 1, we have either

rv or sv is 0 and either case the fixed-point set consists of isolated points. If

m = 1, then we have three possibilities: (i) rv =2, sv — 0, (ii) rv = 0, sv = 2,

(iii) rv = 1, s„ = 1. In the first two cases, we have isolated points as fix point

set, and in the third case we have a product of curves as its fixpoint set.

Example (4.4.2). The situation for the cyclic group of order two is similar. In

the case when ß is a split extension, ß = p x Z/2, we have the group algebra

Q»W = QW = Q+ x Q-

and so we are in Type I situation. The fixed-point components are a product of

Siegel modular spaces of various dimensions.
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