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UNIVALENT FUNCTIONS AND THE POMPEIU PROBLEM

NICOLA GAROFALO AND FAUSTO SEGALA

Abstract. In this paper we prove a result on the Pompeiu problem. If the

Schwarz function 4> of the boundary of a simply-connected domain fi C R2

extends meromorphically into a certain portion E of ii with a pole at some

point zn. 6 E , then ii has the Pompeiu property unless <1> is a Mobius trans-

formation, in which case Q is a disk.

1. Introduction

In 1929 the Rumanian mathematician D. Pompeiu formulated the following

problem: "To characterize those bounded domains flcR2 for which f = 0 is

the only continuous function such that

(1.1) f    fdx = 0,
Ja(D)

for every rigid motion a of R2 ".
One says that Q has the Pompeiu property if f = 0 is the only continuous

function for which (1.1) holds. For a historical introduction to the problem

we refer the reader to [GS1]. In that paper we conjectured that (modulo sets

of measure zero) the disk is the only simply-connected domain that does not

have the Pompeiu property. Chakalov [C] was the first one to realize that the

disk fails to have the Pompeiu property. In fact, if one considers the function

f{xx, x2) = sin(axi), then one has

I      f{x) dx =-sin(ax0, i )/i {ar),
Jb,(x0) a

where Xn = (*o,i, ^0,2) is fixed, 2?r(xo) = {x\ \x - xo\ < r}, and Jx is the
Bessel function of order one. It is therefore enough to choose a > 0, such that

Jx{ar) = 0, for (1.1) to hold.
This paper contains some progress toward the above conjecture. Let Q c M2

be a bounded simply-connected domain whose boundary dQ is a piecewise
C1 Jordan curve. By the Riemann mapping theorem there exists a univalent

function h: D -» Q, where D = {z 6 C||z| < 1}. Moreover, h can be

extended in a one-to-one fashion to a continuous map of D onto Q. In order
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to state the main result in this paper we need to introduce some definitions. We

consider the Schwarz function of dQ given by

&(w) = h (      1       |.
\h-x{w)J

A priori, Q> is well defined on dQ. Given a straight line LcC, and a point
z0 ^ L, we denote by A(L; z0) the open half-plane lying on one side of L

and containing z0 . We also let

£(L;zn)=A(L;z0)nQ.

The main result in this paper is given by the following

Theorem 1. Suppose that there exist z0 e Q and a straight line LcC such

that:
(i) <P can be extended to a holomorphic function in E{L; zo)\{zn} having a

pole in z0;

(ii) O is not a Mobius transformation.

Then, Q has the Pompeiu property.

Figure 1 below illustrates the situation.

We now state two remarkable consequences of Theorem 1.

Corollary 2. Supposejhat h is univalent in D and meromorphic in C, with at

least one pole in C\D. If, moreover, h is not a Mobius transformation, then

Q = h{D) has the Pompeiu property.

If we specialize Theorem 1 to the class of convex domains we obtain the

following partial solution of the Pompeiu problem.

Corollary 3. Suppose that Q = h{D) be a convex set. Assume that h has a pole
on the boundary of the circle of convergence relative to its Taylor expansion at

z = 0. If h is not a Mobius transformation, then Q has the Pompeiu property.

Remark. Corollary 2 contains the result in our paper [GS2] (see also [GS3])

concerned with the case
N

h(z) = Y^akzk.
k=0

Figure 1
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Furthermore, it contains a result in a recent paper by Ebenfelt [E]. The latter

has proved that if h is a univalent function in D such that h{z) = ||4 , with

p and q polynomials, then Q = h{D) has the Pompeiu property, unless h is

a Mobius transformation.

Our strategy to prove Theorem 1 is to study, by Riemann's method of the

steepest descent, the asymptotic behavior of the (complexified) Fourier trans-

form of the characteristic function of Q, fa, along the algebraic variety of C2 ,
Ma = {£2 + £2 = a} , a> 0. This is due to an important characterization of the

Pompeiu property established in 1973 by Brown, Schreiber, and Taylor [BST],

see Theorem A in the next section. We mention that Berenstein [B] was the

first one to use asymptotic expansions of fa in connection with the Pompeiu

problem.

2. Preliminary reductions

We begin this section by recalling the above-mentioned characterization of
the Pompeiu property due to Brown, Schreiber, and Taylor [BST].

Theorem A. A bounded domain Q c R2 has the Pompeiu property if and only

if there exists no a e C\{0} such that the complexified Fourier transform of the

characteristic function of Q, fa, vanishes identically on

Ma = {{Cx,C2)eC2\C2 + C22=a}.

It was observed by Berenstein [B] that, when Q is simply connected, a e

C\{0} in the statement of Theorem A can be replaced by a > 0. Furthermore,

when dQ is a rectifiable Jordan curve, then the divergence theorem allows to

replace fa with xaa. Note that for £ = (£i, £2) e C2

(2.1) Xaa= I  e^^{dxx + idx2)
Joa

where we have let (£,*) = C\XX + £2*2 • Changing C in -/'£ in (2.1) we are

thus led to study the following oscillatory integral

(2.2) /   e«'x)(dxi + idx2)
Jaa

for £ G M-a , with a > 0. We write £ in the form

£ = r(cos 8, sin 6) + it{- sin 6, cos 8).

The condition £ e M-a becomes

(2.3) t2 = a + r2 .

We have

(£, x) = .Xi(rcos0 - itsind) + x2{rsind + it cos 6)

(2.4) = rxxe~'e + irx2e~'e - i{t - r)xx sin0 + i{t - r)x2cos6

= re~'e{xx + ix2) - i{t - r){xx sin 6 - x2 cos 6).

Since from our assumptions in the introduction dQ = h{dD), where h is

univalent in D = {w e C| \w\ < 1} , we have for se[0, 2n]

(2.5) xx{s) = \h{eis)+X-k{eis).
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Figure 2

Here, we have let

(2.6) k{w) = *(=)•

Analogously, we have

(2.7) X2(s) = l.h{eis)_llk{eisy

Inserting (2.5), (2.7) in (2.4) we obtain

(£, x) = re-'eh - i^-^-[(h + k) sin 6 + i{h - k) cos d],

which, after some easy reductions, gives

(2.8) (£, x) = i^J-e-^hie") - l-^eiek{eis).

Taking (2.8) into account, we see that (up to a factor of i) the integral in (2.2)

becomes

I{r) = /   exp  -——e~ww-—ewQ>{w)   dw

(2.9) Jaa       L   2     r        t_r J
= e'e \   exp  -^— w-— *¥{w)   dw

Jdi.       L   2 2

where I = e~wQ, *¥{w) = ei6<f>{e'ew). At this point we choose 6 e [0, 2n]

in such a way that the straight line e~wL, where L is as in the statement of

Theorem 1, becomes parallel to the imaginary axis. We let Wo = e~'ezo, M =

e~'eL, where z0 e Q is as in the assumption of Theorem 1, see Figure 2.

We now have from (2.9)

(2.10)

e-eI{r) =( f + [ ) exp U^) w - ^^(w)} dw .
\JdE{M;w0)      Jd[Z\E{M;w0)]J L V    l    J l

3. Asymptotic expansion of %da AND THE Pompeiu property

The aim of this section is to establish the asymptotic behavior as r —► oo

of the integral in the right-hand side of (2.10).   We begin by analyzing that
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part of the integral on the set d(L\E{M; w0)).   We let A = max |»F|  on

d(L\E{M; w0)). Then

/ exp  —— w-— *¥{w)   dw
Jd{X\E(M;w0)) L     2 2

f \t + r^ t-r .1   ,
< / exp  —=- 9te w H—— A   ds.

Jd{Z.\E(M;w0)) L    2 2

We now choose P > 0 such that on the set d{I\E{M; w0)) we have (see

Figure 2)
9\e w < 9\e w0 - P.

Noting that (2.3) gives

«,„ !?-r(1+0$)).    «w-#(. + 0(i))

as r —► oo, it follows that on the set d(L\E{M; wo)) we have uniformly as

r —» oo

L^Lxe w + IzZ^ < ^(9te wo - P) + l-^A = r{me w0 ~P){l+o{l)).

From this we derive the estimate for r —» oo

(3.2)    / exp  -^-w-^(w)   dw < Cexp r [Me w0 - hr J   •
J d(Y\E(M ;wa)) L2 2J LV ^ J.

We will now analyze the first integral in the right-hand side of (2.10). We

have for 8 > 0 small by Cauchy's theorem

(3.3)

I exp  -^—w-=— *¥{w)   dw
JdE(M;w0) L    ^ 2

= exp ( -^wo ) / exp  ~^{w-w0)-^^(w)   dw
\    l J J\w-wa\=5 L    Z l .

= exr)(—^wo) exp  —-^-w-— ¥{wo + w)   dw.

By the assumptions on O in Theorem 1, there exists m e N such that
oo

(3.4) *¥{w0 + w) =  Y, °kwk

k=—m

for \w\ < 8, with a-m ^ 0. We now distinguish two cases.

First case. m>2.
Using (2.3) we can write

(3 5) l—- =      Q

By (3.4), (3.5) we have on the circle {w e 8en\ - n < x < n}

t + r        t-rat.
—2~w-y~   (w° + w)

(3.6) t + r       _  aa-a, ^_     q__    y.       Jk ttt
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We now choose
§ = (t±l\~mm+l)

Then, (3.6) becomes as r —» oo

t + r        t~ruj,           ^     /r + r\(m-1)/(m+1)r h     aa.m_imx      „,i
—w-—x¥{wo + w)= (-j-J [*-^e ,mT + o(l)   .

From the first equality in (3.1) we conclude that

(3.7)   lA^w - ^^{wo + w) = r(m-l)Km+Vq(r) {<?" - aa~m^ '"" + o(l)|

with #(/•) —► 1 as r —> oo, uniformly on the circle {w — 8en\ - n < x < n} .

Taking (3.7) into account, we obtain for (3.3) with some p{r) —> 1 as r —► oo

(3.8)

/ exp  —r—w-r— *¥{w)   dw = ir'2^m+x^p{r)exp (——wo)
JdE(M;w0) L    ^ 2 J \    2 /

•  T exp{r<"'-1>/(m+1>tf(r) ̂_^-/« + o(1)jje/I(/r

At this point we observe that the integral on the right-hand side of (3.8) is

of the type studied in the paper [GS2]. By virtue of the work done in [GS2] we

can conclude that the asymptotic behavior, as r -» oo, of the above-mentioned

integral is as follows

f" exp{r(m~x)!{m+x)q{r) \eix - a^Le-imx + o(l)] }eiTdx

_ r-Cn-l)/2(m+l)A(ry exp[r(m-l)/(™+l)5(,.)] >

where, having let tp{x) = eH - ^ne~imT for x € C, one has for r —> oo

A{r)^     il= = 4^0,     £(/•)-> p(T0).
vV(to)

Here, t0 is a suitable simple critical point of the function tp . Inserting (3.9)

in (3.8) and recalling (3.1), we obtain

/ exp  —^-w-— *¥{w)   dw
(3.10) JdE{M;w0) L    2 2

= r-(m+3)/2(m+l)/4l(,.)exp[rWo + r(m-l)/(m+l)B(/.)]j

where Ax{r) -> iAo, as r —► oo .
Using (3.2), (3.10) in (2.10) we finally conclude for r -» oo

e-''*/(r) = r-<m+W2<mTl»/l1(/-)exp[rwJo + r(m-1^m+1)fi(r)]

(111} . 11 + O (r(rn+W(m+l) exp   _£r + Cr(m-l)/(m+l)   ^ | ?

for some number C > 0. Observing now that 0 < **=} < 1, we infer that

0/r(m+3)/2(m+l)exp    _lr+Cr(m-\)/(m+D   ^=0(1)
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as r —> oo. In conclusion, we obtain from (3.11)

(3.12) e~ieI{r) = r-(m+3)Mm+lU2(r) exp[rw0 + r^m-x)'{m+^B{r)],

where A2{r) -» iA0 as r-»oc.

To conclude the study of the asymptotic behavior of the integral e~'eI{r) in

(2.10) we need to analyze the case in which *F has as simple pole in w0 , i.e.,
the case in which m = 1 in (3.4).

Second case, m = 1.

We consider again the integral on the circle {w e 8e'x\ - n < x < n} in the

right-hand side of (3.3). By the assumptions in Theorem 1, the function *F is
not a Mobius transformation. If w = aen, with \a\ = 8, then we have from

(3.5)

~2^w-2~^(^o + w) = -   {t + r)w- -^—/¥{wo + w)

(3.13) r r oo 1)

= L){t + r)aeix--^-r   ^-e~" + a0 + 2>aV**   \

for some q eN, with aq ± 0. At this point we choose

(3.14) o=l^^±.
v       ' t + r

It follows from (3.13), (3.14) that for w = aelx one has

t + r        t-r„.. . aao      . .-
—=— w-y-T(wo-r-w) =-+ iy/aa-Xcosx

(3.15) 2C (       [      \
+_-e'qx + O I_-_1
+ {t + r)«+x       + u \{t + r)*+2 J '

for some C ^ 0. We conclude

(3.16)
f \t + r       t-r„„ .1   ,
/       exp   —^—w--— *¥{wo + w)   dw

J\w\=S I   2 2 J

= icre-*»°/('+') [* e'v^rrcosT J, + —CiqT    Q (-1_\ 1   ix ̂
J-n I       (t + r)i+x \(t + r)o+2)j

We now recall the integral representation of the Bessel function Jn (see [L])

Jn{z) = Ll f   eizcosxeinxdx,        n g Z.

2n J_n

Using this we can rewrite (3.16) as follows

(3.17)

/       exp  —z—w-■z—xV{wo + w)   dw
J\w\=d L   2 2

= ~^^e-^l^ s[2niJx{y^aTx)

2nCi«Jq{y/airrx) t       1       \ \

{t + r)»+x        +     \{t + r)»+2) J '
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Since, from (3.1), t + r{\ + o{\)) as r-»oo, and by a theorem of Siegel, Jx

and Jq have no common zeros (see [W, p. 485]). (3.17) implies

f             \t + r        t-r..,. ,1   ,
/       exp  -—— w-—'r{wo + w)   dw

(3.18) J^=S        L   2 2 j

= M1[/1(>/55ID + T^My/^dZT)   ,

where Ex (r) — E0 ^ 0 as r ^ oo, and £2 ^ 0. From (2.10), (3.2) and (3.18)
we finally obtain

(3.19) e-ieI{r) = e™'^ [^(Va^D + ^-xJq(y/^aTx)

with £3(1*) —> Eq as r —► oo (of course, in this estimate we have used again

(3.1)).
We are now ready to conclude the proof of Theorem 1. We recall that from

the reductions in §2, the oscillatory integral Xoa(0, with £ moving out to

infinity along a special path of Af_a, was shown to equal e~'eI{r) in (2.10)

(up to a factor of i).
From (3.12), (3.19) we see that, under the assumptions in Theorem 1, the

latter cannot vanish identically on A/_a. From Theorem A we conclude that

Q has the Pompeiu property.   □

4. Proofs of Corollaries 2 and 3

The proof of Corollary 2 follows immediately from Theorem 1 by observing

that if 0 is a Mobius transformation, then so is h . Moreover, if h has at least
one pole, then <J> has at least one pole and at most one essential singularity
{w = 0).

As for the proof of Corollary 3 we observe that if Q = h{D) is convex,

then by Study's theorem [S, Theorem 2.4] so is h{Dr) for 0 < r < 1, where

Dr = {z e C| \z\ < r}. Set S = {x e C| \z\ < R} with R > 1, and denote
S~l = (ilz e ^} • Assume that h is holomorphic in S with a pole z0 on dS.

Then 0 is holomorphic on h{S~x) and has a pole in h{j-). Since h{S~x) is

convex we are in a position to apply Theorem 1, see Figure 3.

We close this paper with an example of a one-parameter family of domains

which fall within the scope of Theorem 1, but are not included in any previous

result on the Pompeiu problem.

Example. Consider for 0 < a < 2 the map hk:D-^£ given by hx(x) — jf^j ■

In Figure 4, we represent Q^ = h^(D) for some values of X. There exists

A0 e (0, 2) such that for 0 < / < A0 the domain Q^ is convex. Furthermore,

one verifies that for k e (0, An)

min diam Q\> -r max diam QA

so that the result in [BK] cannot be invoked.
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Figure 3
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