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OPTIMAL DRIFT ON [0, 1]

SUSAN LEE

Abstract. Consider one-dimensional diffusions on the interval [0, 1 ] of the

form dX, = dBt + b(Xt)dt, with 0 a reflecting boundary, b(x) > 0, and

/„' b(x)dx = 1 . In this paper, we show that there is a unique drift which

minimizes the expected time for Xt to hit 1, starting from Xo = 0. In the

deterministic case dXt = b(Xt)dt, the optimal drift is the function which is

identically equal to 1. By contrast, if dXt = dBt + b{Xt)dt, then the optimal
drift is the step function which is 2 on the interval [1/4, 3/4] and is 0 other-

wise. We also solve this problem for arbitrary starting point X0 = x0 and find

that the unique optimal drift depends on the starting point, xo , in a curious

manner.

1. Introduction and summary of results

Let Bt be a one-dimensional Brownian motion, and consider the stochastic

differential equation dX, = dBt + b{Xt)dt on [0, oo) with 0 a reflecting bound-

ary. Let Tx = inf{* > 0: X, = 1} be the first time Xt hits 1, and let EXTX be
the expected value of Tx starting from Xo = x. The main question considered
in this paper is:

for each fixedxo, what drift minimizes <I>(xo, b) = EXoTx

over all b such that b > 0 and  /   b{z) dz = 1?
Jo

The original motivation for this problem was a conjecture proposed by Itai
Benjamini and Yuval Peres. Fix N, a positive integer. Among all rooted trees

with 2^ leaves at level N such that the root has at least two children, what

tree minimizes the expected time for a simple random walk, starting from the

root, to reach level N ? Benjamini and Peres conjecture that the (full) binary

tree minimizes this expected value.

In the special case of spherically symmetric trees, this conjecture can be ver-
ified through standard Markov chain techniques. Recently, Lyons, Pemantle,
and Peres [3] showed that for any positive integer m , the speed of random walk

on a nondegenerate Galton-Watson tree with mean m is strictly smaller than
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the speed of random walk on a deterministic ra-ary tree. We will show in this

paper that contrary to what might be expected by analogy, in the related case

of Brownian motion with fixed total drift, the optimal drift is not identically

equal to a constant.

Our first result shows that if we relax the positivity constraint on the drift

b, then there is no optimal drift. Let sf be the class of functions b such that

b£Lx[0, 1] and /J b{x)dx= 1.

Theorem 1. The infimum of <P(xo, b) over all b esf equals 0.

Let y„ = nen , a„ = e~" , and 8n = (1 - an)/(n + 2). We will prove that

0(0, bn) —► 0 as n -» oo, where {b„} is a sequence of step functions such that

, J -Vn/2     if0<x<a„,

[ ' °»W-\ l/{2dn)   ifa„<x<i.

Because of Theorem 1, it is natural to consider only nonnegative functions,

b > 0. In order to pursue a minimum within a sensible context, we begin with

the observation that, under certain restrictions on b, u{x) = EXTX solves the

differential equation
f -1 = \u" + bu',

I «'(0) = w(l) = 0.
This differential equation can be solved explicitly and

(2) u{x) = 2 f fe-2$:b(z)dzdsdy = 2 f cp'{y) f -£-dy,
Jx Jo Jx Jo   9 \s)

where cp is the natural scale or, more specifically,

cp'{y) = exp I -2 /   b{z)dz J.

The expression for cp' makes sense if we replace J^ b{z)dz by b[0, y] where

b is a probability measure on [0,1] and b[0, y] is the weight that b gives

to the interval [0, y]. Thus, for each fixed Xo, we can view <&(xn, b) = u{xq)

as a functional on the space of probability measures on [0, 1 ]. (Later, we will

construct for each probability measure b a diffusion with drift b and show

that EXTX equals u{x).)

Now we will demonstrate that O achieves its minimum in the space of prob-

ability measures. Let srfm denote the class of probability measures on [0, 1].

Fix the starting point Xn . If {b„} is a sequence of measures in s/m such that

b„ converges weakly to b as n -> oo, then b„[0, y] -> b[0, y] for almost all

v £ [0, 1]. In addition, e~2 < cp' < 1 . Thus, by Lebesgue's Dominated Con-

vergence Theorem, O(x0, b„) -»<J>(x0, b) as n -> oo. In other words, O(x0, •)

is continuous in the weak* topology. Since sfm is compact under the weak*

topology, O(xo, •) must achieve its minimum in sfm .

Consider the deterministic equation dXt = b{Xt)dt, with the initial condi-

tion Xo - xo. An application of Jensen's inequality shows that, among posi-

tive functions b with /0' b{z)dz = 1, the function which minimizes the time

for X, to hit 1 is the function which is constant on [x0, 1]. By contrast, if

dX, = dBt + b{X,)dt, then the optimal drift is not the function which is con-
stant on [xo, 1]. Theorem 2 identifies the unique optimal drift for each starting

point xq .
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Theorem 2. For each fixed x0, 0 < xo < 1, there is a unique measure bo

which achieves the minimum of O(xo, •) in the space of probability measures

on [0,1]. This optimal measure bo depends on xo and can be described as

follows.
If 0 < x0 < 1/4, then b0 has a density which is given by

(3) b0(x) - < n
w \ 0   otherwise.

If 1/4 < xo < i/(e~2 + 1), then bo is the sum of two measures, a measure
concentrated at xo of mass w > 0 and an absolutely continuous measure with
density:

... Uly     ( (l-w)/{xx -x0)   ifx0<x<xx,

(4) boix) = 1 0 otherwise.

The variables, xx and w, satisfy

If xo > i/(e~2 + 1), then bo is the unit mass concentrated at xo.

The value of O(xo, bo) is as follows:

(\-x2 if 0<x0< 1/4,

®(x0,bo) = l (l-x,)[3-2x0-xi] ifl/4<x0<l/(e-2+l),

( (l-x0)[l+x0(2e-2-l)]   ^l/(e-2+l)<x0<l.

It is difficult to explain this answer intuitively. We began our investiga-

tion with the case xo = 0 and discovered that, among all step functions b

with /0 b{x)dx = 1 that are constant on [c, 1 - c] and 0 otherwise, 0(0, b)

achieves its minimum at c = 1/4. In particular, the value of O at c = 1/4 is
strictly less than the value of O at c = 0. Later, we observed that if br is the

reflection of b about 1/2, then 0(0, br) = 0(0, b). Hence, in the presence

of strict convexity, the minimum must be symmetric. In hindsight, it is not
surprising that the drift is turned off near 0, where reflection occurs, and near 1,

when we have almost reached our goal. (Of course, by symmetry one of these

reasons is redundant.)

We believed and then proved that the step function defined in (3) is the

right answer mainly because a variational calculation showed the following. Let

tr(x, y) be the Green's function for our process killed when it hits 1, and let

u{x) = EXTX. If b is minimal, the the product G{x, x)u'{x) must be constant
on the set {x: b{x) > 0} . Further calculations showed that if C7(x, x)u'{x) is

constant, then b'{x) = 0. Therefore, b must be constant where it is nonzero.

Similar calculations allowed us to determine the optimal drift for an arbitrary
starting point.

Theorem 2 addresses the problem of minimizing the expected time to hit 1.

It is also interesting to let T0 - inf{t > 0: Xt = 0} be the first time Xt hits 0
and ask: what drift will maximize PX{TX < To), the probability that Xt hits 1

before it hits 0, starting from Xo = x ? This time the answer is very simple.
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Theorem 3. For each fixed x, the unique measure which achieves the maximum

of *F(x, b) - PX(TX < To) in stfm is the unit mass concentrated at x.

Note that if the starting position Xq = x is close to 1, then the unit mass con-

centrated at x both maximizes the probability of hitting 1 before hitting 0 and

minimizes the expected time to reach 1. We have no probabilistic explanation

for this phenomenon yet.

Furthermore, if b is the measure concentrated at 0 of mass w, then the

diffusion dX, = dBt + b{Xt)dt has a simple interpretation. It is skew Brownian

motion. In other words, given a reflecting Brownian motion on [0, oo), change

the sign of the excursions away from 0 independently, so that a given excursion

is positive with probability a = l/{e~2w + 1) and is negative with probability

1 -a. The resulting diffusion is X,. See Harrison and Shepp [2], and Engelbert
and Schmidt [ 1 ] for more details.

Lastly, we will show that in some sense, there exists a diffusion with drift

b where b is a measure. Given a measure b, let cp' be the right-continuous
function

( e-2b[0,z]    if z > o,

^'*) = {,2*(z,o,      if2<0.

Let tp{b, x) be a function such that cp{b, x) - cp{b, x0) = f* cp'{b, z)dz . Call

cp the natural scale.

Definition. A diffusion process, Xt, will be called a solution to the stochastic

differential equation (SDE) dX, = dBt + b{X,)dt if there exists a natural scale,

cp{b, x), such that cp{b, Xt) is a martingale and (X)t - t.

In order to take into account reflection at 0, we observe that if b is a measure

on [0, 1] with density b{x) and dX, = dBt + b{Xt)dt, then the expected time
for X, to hit 1, with 0 a reflecting boundary, starting from Xo - x, equals the
expected time for Xt to exit (— 1, 1), starting from Xq = x, where b{x) is

extended to be an odd function about 0. Analogously, we will define what it

means for a measure b to be the odd reflection of a measure b and then prove:

Theorem 4. There exists a solution to dXt — dB, + b{Xt)dt. Moreover, the

expected time for X, to exit (-1, 1), starting from X0 = x, equals u{x) where

u is the function defined in (2).

The interested reader can find in Engelbert and Schmidt [1] necessary and

sufficient conditions for the existence and uniqueness of a solution to a SDE

with drift where the drift is a measure.
The organization of the paper is as follows. In §2, we will prove Theorem 1

and show that the infimum is not achieved in L'[0, 1]. The core of the paper

is §3, where we will prove Theorem 2, namely, that in s/m, the infimum of

O(xo, •) is achieved by the measure bo specified in Theorem 2. Then we will
prove Theorem 3, i.e., we will prove that if the starting point is x, then the unit

mass concentrated at x maximizes the probability of hitting 1 before hitting 0.

Finally, in §4, we will prove Theorem 4.

2. Proof of Theorem 1—Infimum is not achieved in L1

Let sf be the class of real-valued functions b such that b £ L'[0, 1] and

/„' b{x) dx=\. Let <p'{b, x) = exp(-2 /* b{z) dz) = exp(-2/3[0, x]), and let
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O(x0, b) be the functional

(6)       O(x0, b) = lf f e-W>*dsdx = 2 /' cp'{b,x) f -Jf-dx.
Jx0 Jo Jx„ Jo   9 (D, S)

Let {bn} be the sequence of functions defined in (1). We will show that

0(0, b„) -> 0 as n-»oo. (Of course, there is no b in sf such that 0(0, b)

equals 0.) For ease of notation, we will write 0(&„) instead of 0(0, b„). We

will also write cp'n{x) instead of cp'{bn , x). Each function bn is in j/ because

(1 - a„)/28„ - a„y„/2 = 1. In the calculations below, we will repeatedly use

without comment the equality ynan = n . By the definition of natural scale,

cp'(x)-e-2b»V'xX-ie7nX ifO<x<a„,
<PnKX)-e - \ ene-(x-an)/Sn     ifa„<x<l.

Let Mn{x) = $xe2b«V'sX ds. If 0 < x < a„ , then

Mn{x) = I*e-?»sds = - — {e-y"x - 1).
Jo yn

If an < x < 1, then

Mn{x) = - —{e~n - 1) + <?-" / e^s-a"^s" ds

V" Ja„

= +8ne-n{e{x-a")is" - 1).
yn

Now we will calculate 0(ft„) = 2 J0 cp'n{x)Mn{x) dx .

r cp'n{x)Mn{x)dx =-—/"" e^^-^ - \)dx
Jo yn Jo

=  - — L, -   r ey»x dx
yn L      Jo
an      e" - 1

=   - — + -=—.
yn      y2n

Since (1 - an)/8n = 2 + n ,

/   cp'n{x)Mn{x)dx
Jan

=   f   ene-(x-c„)/S„     X - e   " + 5n(e-ne(x-*„)ISn _ g-n)    rfjf

- £?JlI / e-(x-«.)/*. </* + sn f dx-8n f e-^-^l*- dx
in       Ja„ Ja„ Ja„

= _(g"-1')^(g-(l-a„)/^ _ 1)+<5B(1 -Q„) +<52(e-(l-a„)/(5n _ ,}

= <J„^-^(1 - e~V+nx) + 8n{\ - a„) + 82{e^2+^ - 1).
7n
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Continuing our calculation of 0(6„), we obtain

1 /-i
-0(6„)=   /   cp'n{x)Mn{x)dx

= -^ + e-^± + 8n^^l{l-e-^)
yn      y2 yn

+ 8n{l-an) + 82{e^2+^-l).

As n —► oo, yn —» oo, a„ —» 0, <5„ —► 0, and

g"- 1 _ en - 1

yn «g"

Therefore, 0(<3„) —> 0 as n —> oo.

3. Proof of Theorem 2 and Theorem 3—

Infimum in the class of probability measures

As before, let <p'(b, x) = exp(-26[0, x]) and O be the functional given

by (6). We remark that the value of O(xo, b) will be the same, regardless

of whether the interval in the definition of cp' contains its end points or not.

This is because b has at most countably many atoms. In addition, substituting

b{0}b{0, x] for b[0, x] in the definition of cp' reveals that if b has an atom

at 0, then the atom has no effect on the value of O(xo, b), confirming our

intuition that any drift at the reflecting boundary point is like having no drift
at all. Thus, an explanation of the example given in §2 is that the function bn

is akin to the measure with an atom at 0 of mass —n (which has no effect) and

with constant density on x > 0, the constant equal to n + 1 .

Theorem 2 will follow from the two propositions stated below. Let bx and

b2 be two arbitrary probability measures on [0, 1 ].

Proposition 1. For each fixed xq and for all 0 < t < 1,

*J*{xo,{\-t)bx+tb2)>0.

Moreover, if bx (0, x] ^ b2{0, x] for some x > Xq , then for all 0 < t < 1,

d2<b
-tj-t(xo, (I - t)bx + tb2) > 0.

Proposition 2. If bo is the measure given by Theorem 2 and b is any probability

measure on [0, 1], then

dO
lim -^-(x0, (1 - 0*o + tb) > 0.

Moreover, if b[0, x0) > 0, then

dO
lim -jjixo, (1 - 0*o + tb) > 0.

If b is a probability measure on [0,1] and b ^ bo, then O(xo, &o) <

O(x0,6). Since b ^ bo, b{0, xx] ^ b0(0,xx] for some 0 < Xi < 1. If
xx > Xo, then by the second clause of Proposition 1, d2Q>/dt2 > 0 for all

0 < t < 1.  By Proposition 2, limr_>0+ dQ>/dt > 0.  Hence, as a function of
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t, O is strictly increasing; in particular, O(x0, *o) < O(x0, b). If xx < x0,
then b{0, x<] > 0 since b0(0,xx] = 0. By Proposition 1, d2<b)dt2 > 0 for all
0 < t < 1. By the second clause of Proposition 2, lim,_0+ d<t>/dt > 0. Again,

it follows that O is a strictly increasing function.

Proof of Proposition 1. Let 0 < s < y < 1. For any 0 < t < 1, by Jensen's

inequality

exp{-2((l - 0*i(s,y] + tb2{s, y])}

' <{l-t)exp{-2bx{s, y]} + texp{-2b2{s, y]}.

The above inequality is a strict inequality if bx{s, y] ^ b2{s, y] because exp is

a strictly convex function. Since

0(c) = 2 /   f e~2c(s'y]dsdy,
Jx0 Jo

by inequality (7),

(8) 0((1 - 0*i + tb2) < (1 - 00(60 + t®{b2).

Moreover, if bx{0, xx] ^ b2{0, xx] for some Xi > x0 , then bx{s, j;] ^ b2{s, v]

in a small neighborhood around the point 5 = 0, y — xx. Hence, in this
neighborhood, strict inequality holds in (7), which means strict inequality holds

in (8).   □

Proof of Proposition 2. Let c{t) = (1 - 0*o + tb, where bo is the measure

defined in Theorem 2 and b is an arbitrary measure in s/ . Let <p'{t, x) be an

abbreviation for cp'{c{t), x). We will also write ^(0 instead of ^(xo, c{t)).

Because cp'{t, x) = exp{-2((l - 0*o[0, x] + tb[0, x])} ,

^{t, x) = cp'{t, x)(2Z>0[0, x] - 2Z>[0, x]).

Let D{x) = b0[0, x] - b[0, x]. Then

^-{t,x) = 2cp'{t,x)D{x).

Similarly,  \/<p'{t,x) = exp{2((l - 0*o[0, x] + tb[0, x])} , and

di WUTx)) = "2 \W7x))D{x)'

In Proposition 4 we will prove that differentiating underneath the integral

sign is valid when differentiating O, the functional which was defined in (6).

This fact, plus the last two formulas, yield

m

Switching the order of integration in the second term, we obtain

-(f(M)-iK«.*))jf^j*.
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Interchanging the roles of x and 5 in the second integral and letting t go to

zero, we obtain

}^di^=iy^'^D^iovw^^

-(p(0, l)-p(0,x0)) r^ffl-yds.
Jo   r(o,s)

Taking the limit underneath the integral is permitted by Lebesgue's Dominated

Convergence Theorem because each of the functions D{x), cp'{t, x), \/cp'{t, x),

is bounded on 0 < x < 1, uniformly in t. For ease of notation, let cp'{x) —

cp'{bo, x) and M{x) = M{bo, x). Let

/,=  / cp'{x)D{x) fX-^-dx= f cp'{x)D{x)M{x)dx,
JxQ Jo    9'{S) Jxo

h = ~ f Sri /' <P'(s)dsdx = - f ^h<p{l) - cp(x)]dx,
Jx0 9 \X) Jx Jx0  Y \X)

h=-(^(i)-^(xo)) r^ds.
Jo    9 [s)

Then limt->o+d®/dt = 4{IX + I2 + I3). We will prove Proposition 2 by
showing that h >0 and Ix + I2 > 0. If, in addition, b gives positive weight

to [0, x0), then 73 > 0.   □

Lemma 1. Given any probability measure b on [0, 1], h > 0. If in addition,

b[0,x0) >0, then h>0.

Proof. As before, let D{x) = b0[0, x] - b[0, x]. On 0 < x < x0, D{x) =
-b[0, x] because bo[0, xo) = 0. Hence, I?, can be rewritten as

h={9{\)-9{xo))r^i£ds.
Jo     9 \s)

Because cp' > 0 and <p{\) - cp{xo) > 0, I3 must be nonnegative. In addition,

if <?[0,x0)>0,then 73>0.
Let / be the function

= e-2b0[0,x]   f* e2b0[0,s]ds_e2b0[0,x]  j   e-2bQ[0,s](is

Jo Jx

Then Ix + I2 = /J D{x)f{x) dx, and a routine calculation shows that

{G{x, x)u'{x))' = 4f, where G{x, y) is the Green's function for our pro-

cess killed when it hits 1, and u{x) — EXTX . Now we will calculate / explicitly

and show that for any probability measure b on [0, 1], 7i+/2 is nonnegative.

There are three cases, depending on the value of xq .
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Lemma 2. Ix +12 > 0. Case 0 < x0 < 1/4.

Proof. In this case, bo is the function which is 2 on the interval [1/4, 3/4]
and is 0 otherwise. A routine calculation shows that

{1 if 0 < x < i

e-4x+l     if i < X < | ,

e~2        if | <x < 1.

As before, let Mix) = £ e2b<®>xXdz. Then

' x if 0 < x < \

(11) M{x)=\  Ie4*"1        if|<x<|,

Ke2{x-±)   if|<x<l.

We also need to calculate cp{\) - cp{x) = J^1 cp'{z)dz.

' e~2{\-x)   if | < x < 1,

(12) cp{\)-cp{x) = \ \e-*x+x       if|<x<|,

. \-x if0<x<5-

We calculate / using (10)-(12). On 0 < x < 1/4,

f{x)^cp'{x)M{x)-^l)-{^
9 \X)

= x-(\-x) = 2x-\<0.

On 1/4 < x < 3/4, f{x) = 1-1 = 0. To reiterate, / is 0 on [1/4, 3/4],
i.e., C7(x,x)m'(x) is constant when bo(x) is strictly positive. This is a crucial
property of the rather ordinary-looking step function bo(x). On 3/4 < x < 1,

f{x) = x - \ - (1 -x) = 2x - § > 0.

We have the identities: D{x) = b0[0, x] - b[0, x] = -b[0, x] on x < 1/4

and D{x) = 1 - b[0, x] on x > 3/4. Because b is a probability measure on
[0,1],  1 -b[0,x] > 0. Hence,

Ix+I2=  f D{x)f{x) dx
Jx0

= - f    b[0,x](2x-^jdx

+ j  (1 -b[0,x]) \2x-^\ dx>0.   O

Lemma 3. Ix+I2>0. Case 1/4 < x0 < l/(e~2 + 1).

Proof. In this case, bo is the sum of a delta function and a step function. Let

h = {xx - xo)/2(l - w). Then equation (5) can be rewritten as h = Xoe~2w —
1 - xi , and the density given by (4) can be rewritten as bo(x) = 1/(2/0 on

Xo < x < xj. Because w + {{xx - xo)/{2h)} = 1, cp' equals

{1 if 0 < x < x0,

e-2we-(x-Xo)/h     if Xo < x < X] ,

e~2 if x > xx.
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A routine calculation shows that M{x) — JQX e2b°[0>zX dz is given by

{x if 0 < x < Xo,

he2we(x-x0)/h        if Xo < x < x, ,

e2{h+ x — xx)   ifx>Xj.

Lastly, we will calculate cp{\) - cp{x) = ^ cp'{z)dz . (It will not be necessary to

compute cp{\) - cp{x) for x < x0.)

mo t\\       t  \     / e~2W-x) ifx>xl5

(15) ^-V(x) = {he-2V,e-(x-X0)lh     ifxQ<x<Xl.

We proceed to calculate /, this time using (13)—(15).  On xo < x < xx,

f{x) = h - h = 0. On x>Xi, since h — 1 - xx,

f{x) = cp'{x)M{x)-^1]-^
9 \X)

= h+x — x\ — {\—x) = 2x — x\+h-\

> xi + h - 1 = 0.

Consequently, using the identity D{x) = 1 - b[0, x] in the region x > Xi, it
follows that

/i+/2=  / D{x)f{x)dx
Jxo

=   / (1 - b[0, x]){2x - xx + h - l)dx>0.   a
Jx,

Lemma 4.  Ix + I2 > 0. Case Xo > i/(e~2 + 1).

Proof. Now the minimizing measure is an atom at xo , so the calculations are

rather easy. We restrict our attention to the interval x > Xo. On this interval,

cp'{x) = e~2 , M{x) = e2x + Xo(l - e2), and cp{\) - cp{x) = e~2{\ - x). On

x >x0> l/(e~2+ 1),

fix) = 9'MM{x) - [y(1^(JC)1

= x + x0(e~2 - 1)-(1 -x)

= 2x + x0(e~2 - 1)- 1

>Xo(e~2 + 1) — 1 > 0.

Thus, it follows that

/, +12 =  j D{x)f{x) dx
JxQ

=   f (1 - b[0, x]){2x + x0(e~2 - 1)- l)dx>0.   a
Jx0

We will now evaluate O(xo, *o) = lnhes^m ̂ (xo, b).
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Proposition 3. The value of O(xo, bo) is as given by Theorem 2.

Proof. Again, there are three cases.

Case 0 < xo < 1/4. In general, O(xo, b) = 2 f^ cp'{b, x)M{b ,x)dx. Using
equations (10) and (11), it follows that

= 2{4~2*°2} = 2~*°2-

Case 1/4 < xo < l/(e~2 + 1). Since h = {xx - Xo)/2(l -w) = 1 - X!, using
equations (13) and (14), we obtain

O(xo, *o) = 2 < h{xx - x0) +      h + x - xxdx>

= 2 h{xx - xo) + \[(h + 1 - x, )2 - A2]}

= 2J(l-x,)(x,-xo) + !(l-x02}

= 2|(l-xi)  j-x0-^Xi  }

= (1 -xi)(3-2x0-xi).

Case x0 > i/(e~2 + 1).

O(x0, bo) = 2U(1 -x02) + 6>-2x0(l -e2){\ -x0)|

= 2J(l-x0)   ^ + ^Xo + Xo(e-2-\)]^

= 2{(l-x0)[i+x0(,-2-i)]}

= (l-x0)(l+x0(2g-2-l)).   n

This ends the proof of Theorem 2.

Proof of Theorem 3. Let 8X be the unit mass concentrated at x. Let b be any
probability measure on [0, 1 ] different from 8X . Proceeding as in the proof of
Theorem 2, let cp'{t, z) = exp{-2((l -t)8x[0, z] + tb[0, z])} . For convenience,
we will write *F(x, 0 instead of *¥{x, (1 - t)8x + tb). Then

Hx.l)-PAT,<T.)-$«'-')'".
Jo 9'U, z)dz

As mentioned earlier, dcp'/dt = 2Dcp', where D{z) = 8X[0, z] - b[0, z]. Dif-

ferentiating underneath the integral (see Proposition 4 for justification), we



170 SUSAN LEE

obtain

(16)

™(x >t) = 2\f 9'(t, z) dz ̂  cp'{t, z)D{z)dz

- jX cp'{t,z)dz j cp'{t,z)D{z)dz\ I U cp'{t,z)dz\   .

Now we will show that the numerator of d*¥/dt is strictly negative. Looking

at the terms in the numerator inside the braces, if /0 cp'{t, z)dz is rewritten

as the sum JQX cp'{t, z)dz + Jx cp'{t, z)dz , then cancellation occurs and

/   cp'{t, z)dz f  cp'{t, z)D{z)dz- j  cp'{t, z)dz f <p'{t, z)D{z)dz
Jo Jo Jo Jo

=  f cp'{t, z)dz [  cp'{t, z)D{z)dz- j  <p'{t, z)dz f cp'{t, z)D{z)dz.
Jx Jo Jo Jx

We look at each integral separately. Since cp' > 0 and D{z) = -b[0, z] < 0

on 0 < z < x, it follows that

/   <p'{t,z)dz j   tp'{t, z)D{z)dz
(17) x ,

= / cp'{t, z)dz I  cp'{t, z){-b[0, z])dz < 0.
Jx JO

Similarly, because D{z) — 1 - b[0, z] > 0 on z > x, it follows that

- f  cp'{t, z)dz f <p'{t, z)D{z)dz
(18) h Jx ,

= - /  <p'{t, z)dz I   <p'{t, z){l-b[0, z])dz<0.
Jo Jx

Furthermore, at least one of the last two equations, (17) and (18), must be

strictly negative since by assumption b is different from 8X. Thus, the nu-

merator of d^V/dt is strictly negative. The denominator of d^/dt is strictly
positive. Hence, for all t, 0 < t < 1, dWjdt < 0. On other words, as a function

of t, ¥ is a strictly decreasing function. Consequently, *F(x, 8X) > *F(x, b)

for any b ^ 8Z .   □

Now we will justify differentiating underneath the integral sign.

Proposition 4. The derivatives, d$>/dt and d*¥/dt, are as given by (9) and

(16), respectively.

We begin with a lemma.

Lemma 5. Let a and b be constants, a < b; and let h{t) = Ja g{t, x)dx.

Assume that for each fixed x, dg/dt is continuous with respect to t. Assume

also that \dg/dt\ < M for some constant M. Then

dhlx      fbdg,
Tt{t) = ja-£{t,x)dx.
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Proof. By the Fundamental Theorem of Calculus,

rb    fl+At q

h{t + At) - h{t) =       /       -^-{u,x)dudx.

By assumption, dg/dt is continuous with respect to /. By the Mean Value
Theorem, there exists some v, t <v < t + At, such that

i rhids,   w   dg.   >
Atjt       j;(»>x)du=^(v,x).

As At —► 0, u —► ?. Since dg/dt is continuous with respect to £,

lim i- /      ^-{u,x)du = ^-{t,x).
At^oAt Jt        dty       ' dtK      '

Because \dg/dt\ <M,

J_|+a'|£(„,x)rf„| = ||£(„,x)|<M.

By Lebesgue's Dominated Convergence Theorem,

dh, y      ,.      1    /"* [t+M dg,       . .    .
rf7w = iimoA^/a /     -atiu'x)dudx

Clearly,   l//(f, 5) = exp{2((l - 0*i[0, s] + ?*2[0, 5])} is a differentiable
function of t and so is

dl\W7s)) = ~2\V(rs))D{s)-

Furthermore, \D{s)\ < 1 and 1 < \/cp'{t,s) < e2. By Lemma 5, we can

differentiate the function M{t, x) = fx{l/q>'{t, s))ds underneath the integral
sign and conclude that

dM.      .        _ fx   D{s)     ,
-^—{t,x) = -2 ,/    . ds.
dty      ' Jo   9'(t,s)

We will now focus on O, using arguments similar to that above. Let

/(/,*) = Cp'{t, X)M{t, X) = Cp'{t, X)   f -Jf-r.
Jo   9 \t, s)

Then, O(xo, t) = 2 /J f{t ,x)dx. We start with the observation that

The function df/dt is continuous with respect to t. It is also bounded because,
as stated earlier, \D{x)\ < 1 and e~2 < <p'{t, x) < 1. Again, by Lemma 5,
we can differentiate underneath the integral sign and conclude that d$>/dt =

2Ix (9f/dt)dx. Analogous reasoning shows that d^/dt is given by (16).   □
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4. Proof of Theorem 4—Construction of the diffusion process

In order to take into account reflection at 0, we will first define what it means

for a measure b to be the odd reflection of a given measure b . Next, we will

show that there exists a solution Xt to the SDE dXt = dB, + b{X,)dt. Lastly,
we will show that the expected time for Xt to hit 1, starting from X0 = x,

equals u{x) where u is the function defined by (2).

Given a probability measure b on [0, 1 ], extend it to a probability measure

on the positive real line [0, oo) by the rule b{A) = b{A n [0, 1]). As noted

earlier, if b has an atom at {0} , the atom does not affect the value of O(xo, *).
Therefore, we shall assume b does not have an atom at 0. (This will simplify

a few arguments.)

Let b be the signed measure on E defined by: if x > 0, then b[0, x] =

b[0, x]. If x < 0, then b{x, 0) = -b{0, -x). Call b the odd reflection of b
about zero. Recalling the definition of cp',

f e-2b[0,x]=e-2bl0,x]     ifx>0,
(19) <p (b, x) = <

\e2b(x,0)=e-2b(0,-x)     ifx<0.

For ease of notation, let <p'(y) be shorthand for cp'(b, y). Let <p(x) =

J0X cp'{y)dy. Because cp' > 0, cp is a strictly increasing function and cp~x

exists. Let I = cp~x, and let g(x) = cp'{I(x)) = cp'{cp~x{x)).

Lemma 6. There exists a solution to dY, = g(Yt)dBt.

Proof. We will construct Y, by time-changing Brownian motion. Given a Brow-

nian motion, W,, let

r<"=Infer
Let y = T~x and let Yt = Wy(t). Since 1 < l/g2 < e4, y is absolutely
continuous and y' exists almost surely. Differentiating the identity T(y(t)) = t

yields:  y'(t) = l/T'(y(t)) = g2(Wy(t)). Thus,

(20) (Y), = y(t) = [' y'(s) ds = f g2(Ys) ds.
Jo Jo

This time change is valid for all time because t < F(t) < e4t for all t > 0.

Hence, Yt is a martingale, being a time change of Brownian motion. Let Bt -

Bo = J0'g~2(Ys)dYs. Then Bt is a Brownian motion because it is a continuous

martingale and (B)t = t. Thus, dY, = g(Y,)dB, as desired.    □

Let X, - I(Y,) = cp~x{Yt). Now we will show that X, is a solution to the

SDE dX, = dB, + b(X,)dt. Clearly, tp(X,) = Y, is a martingale. It remains to
show that {X), = t. We will begin with a lemma. The function I(x) is strictly

positive for x > 0, equals 0 when x = 0 and is strictly negative for x < 0.

Let /+(x) be the function which equals I(x) if x < 0 and is 0 otherwise. Let

7~(x) be the function which equals -I(x) if x < 0 and is 0 otherwise.

Lemma 7.  I+ is convex and I~ is convex.

Proof. The function <p'{x) was defined so that it is even about x = 0 a.s.

Consequently,   <p(x)  is an odd function about x = 0 and so is its inverse,
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I(x) = cp~x{x). Thus, it suffices to show that I+ is convex, because then by

symmetry, I~ is also convex.
By Proposition 6, left differentiating the identity <p(I(x)) = x yields:

D-I(x) — l/D-tp(I(x)). By Proposition 5, D_cp is the left-continuous ver-

sion of cp', where cp' is the function defined by (19). Consequently, on x > 0,

D-I(x) — e2bx-°'I(-xV , which is a positive, nondecreasing function. Thus I+ is

convex.   □

Lemma 8.   (X), — t.

Proof. By Lemma 7, I = I+ - I~ is the difference of two convex functions.

We can thus apply Trotter and Meyer's extension of Ito's formula to I(Yt).

(See, for instance, Rogers and Williams [4, Theorem IV.45.1, p. 103].)   Let

gi(x) = D_<p(I(x)). Then £>_/(x) = l/D-cp(I{x)) = l/gi(x). Consequently,

X, -X0 = I(Y,) - I(Y0) = /' D-I{Ys)dYs + \ f°° F,m{dy)
JO Z J-oo

/•'  dYs       1   f°° ,v   ,, .

where If is the local time of Y at v and /" = m (as a measure). Rewriting
the last equation using the identity dY, — g(Y,)dB, and using the fact that the

functions g(x) and g/(x) differ on at most countably many points gives

(21) X, - Xo = f dBs + \ f" V/m{dy).
JO L J-oo

As a function of t, J^ tfm(dy) is continuous and nondecreasing and hence

is of bounded variation. Therefore, (X), — t.
Our next step is to check that u(x) = EXTX, where u is the function defined

by (2) and cp' is the function defined by (19).

Lemma 9. The process u(Xt) + t is a martingale.

Proof. By definition, u(X,)-u(X0) = u{I(Y,)) - u(I(Y0)). Let f(x) = «(/(*)).
If b has atoms, then /' is discontinuous. However, /' still exists and is

continuous. By Proposition 5, D-u(x) is the left continuous version of the

integrand, -2^'(x) f0x dy/cp'{y). By Proposition 6,

fI(x)   ds
D.f{x) = D-u(I(x))D.I{x) = -2 ^      — ,

D+f(x) = D+u(I(x))D+I(x) = -2Jo  X ̂ .

In addition, /" exists a.e. and is given by

f"(x\ =   ~2I'(X^ -      ~2
J K  }     cp'{I{x))     g2(xY

There is an extended version of Ito's formula which applies to functions

/ such that /' is continuous and /" is a function in the sense of Schwartz

distribution.   (See, for example, Rogers and Williams [4, Lemma IV.45.9, p.
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105].) Applying this extended Ito's formula to f(x) = u(I{x)) and using the

equality d{Y)s = g2(Ys)ds, it follows that

u(X,) - u(X0) = f(Y,) - f(Y0) = ff'(Ys)dYs + ij' f"(Ys)d(Y)s

=  /' f'(Ys)dYs- f §j%\ds= f f'(Ys)dYs-t.   D
Jo Jo  S (Is) Jo

The last step is to show

Lemma 10. The function u(x) equals EXTX.

Proof. Clearly, «(1) = 0. Moreover, «(-l) = 0 because <p'(y) is even about

y = 0, whereas M(y) = J* ds/cp'{s) is odd about y = 0. Hence, (p'{y)M{y)

is odd about y = 0 and m(-1) = /!, tp'{y)M{y)dy = 0. Let Tx be the first

time X, exits the interval (-1, 1). Then, by the Optional Stopping Theorem,

u(x) = Ex(u(Tx) + Tx) = 0 + EXTX = EXTX .    D

For the sake of completeness, we now present two propositions concerning

one-sided derivatives. Let A be a real-valued function with finite left and right
limits everywhere. Let h/(x) = lintA*—o+ h(x - Ax) be the left continuous

version of h, and let hr(x) = limAA:^o+ h{x + Ax) be the right continuous

version of h . Let H{x) — f0x h(y) dy . Then

Proposition 5. The left-hand derivative of H, D^H, equals h[ and the right-

hand derivative of H, D+H, equals hr.

The proof of Proposition 5 is routine and we omit it here.

Proposition 6. Suppose f(x) — g(h(x)). Assume h is a continuous, strictly

increasing function. Assume also that both, g and h, have left-hand derivatives
everywhere. Then D-f(x) = D-g(h(x))D-h(x).

Proof. Let y — h(x), and let Ak = h(x) - h(x - Ax) = y - h(x- Ax). Because
h is a strictly increasing function, Ak > 0. Hence,

f{x-Ax)-f{x) = g(y-Ak)-g(y) f-Ak\
-Ax -Ax V _ArC /

=  /g(y-Ak)-g(y)\ /h{x-Ax)-h{x)\

Since h is continuous, Ak -* 0 as Ax —> 0+ . Taking the limit as Ax —> 0+ of

the above equation, it follows that D-f(x) = D-g(h(x))D-h(x).   □
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