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DISTRIBUTION OF PARTIAL SUMS OF THE TAYLOR
DEVELOPMENT OF RATIONAL FUNCTIONS

V. NESTORIDIS

Abstract. Let / be a rational function regular at 0, which is not a polynomial;

let Sh{z) , N = 0, 1, 2, ... , z € C , denote the partial sums of the Taylor

development of /. We investigate the angular distribution of the sequence

S\(z), N = 0, 1, 2, ... , around f(z). We show that for all z in the plane,

except a denumerable union of straight lines passing through 0, this angular

distribution exists and is uniform.

Let 5Jo° anz" , an £C,bea power series which is (C, 1) summable at every

point z of a set E c {z £ C : \z\ = 1} = T. Let o(z) £ C, z £ E, be the
(C, 1) sum of 5Do°a"z" • F°r each fixed z in E, we denote by L(z) the set

of limit points in C U {oo} of the sequence SV(z) = Y^o a„z" , N -0, I, ... .
In 1941 Marcinkiewicz and Zygmund [8; 13, vol. II, p. 178] proved the fol-

lowing.

Theorem. Under the above assumptions, for almost all z in E, the set L(z)

has circular structure with center a(z).

This means that, for almost all z in E and for every w in L(z), every

point w' of the form w' = a(z) + (w- a(z))e'e , 6 £ R, also belongs to L(z).

A. Zygmund asked whether the "angular distribution of L(z) around cr(z)"

is uniform (see [9, 12]); sometimes this question is called Rogosinski's problem.
J.-P. Kahane in 1983 [2] introduced a large class of upper densities related to the

limit points of a Taylor series; with respect to each one of these upper densities
and for almost all z in E, the distribution of L(z) is invariant under rotations
with center rj(z).

S. K. Pichorides introduced the subject in Crete; in [3, 4, 10 and 5] one starts
with geometric assumptions on the partial sums or on their limit points and

concludes with analytic characterizations for the power series. In all these cases
one can verify that the angular distribution is uniform.

The present paper deals with the problem of the angular distribution in the

case where Ya? a»z" is the Taylor development of a rational function / regular

at 0. A rational function is regular at 0, if 0 is not a pole for this function. First

we suppose that for some zx, \zx\ = 1 the series is (C, 1) summable but not
convergent; it turns out that the same holds for all z, |z| = 1, except the poles of

/. Under these assumptions, we show that for all z in the unit circle T, with a
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denumerable set of exceptions, the limit set L(z) has circular structure with cen-

ter the (C, 1) sum a(z) = f(z). This makes precise the "almost everywhere"

statement in the theorem of Marcinkiewicz and Zygmund. The set of excep-

tions is related to the poles of / in T. More precisely, if e'2ndl, ... , e'2ndM

are the poles of / in T, the set of exceptions is contained in el2nV, where

V = (1, 6X, ... , 8m)q is the vector space over the field of rationals Q gener-

ated by 1, 8X, ... , Qm . The simple example 1/(1 - z) = ^o° z" shows that

indeed we have an infinite denumerable set of exceptions. The proof of the

above result is based on Kronecker's Theorem in Diophantine Approximation.

Further, using Weyl's Uniform Distribution Theorem, we show, that under the

above assumptions, for all z in T with a denumerable set of exceptions, the fol-

lowing holds: the sequence SV(z), N = 0, 1, 2, ... , is uniformly distributed

with respect to a compactly supported in C probability measure pz which is

invariant under rotations with center f(z) and satisfies pz({f(z)}) = 0; it

follows that the angular distribution of the sequence Sn(z) , N = 0, 1, 2, ... ,

around the (C, 1) sum a(z) = f(z) exists and is uniform, for almost all

z. It is worth noticing that, for rational functions, the weak assumption of

(C, 1) summability of the partial sums implies the existence of a distribution
compactly supported in C; the converse trivially holds.

The above results, valid in the (C, 1) summable case of rational functions,

are used in order to prove our main result, where there is no assumption about

(C, 1) summability. This states the following.

Theorem. Let f be a rational function regular at 0, which is not a polynomial.

Let Sn(z), N = 0, 1, 2, ... , z £ C, be the partial sums of the Taylor develop-

ment of f. Then, there is a set QcC, which is a denumerable union of straight
lines passing through 0, such that the following holds:

For every z in C\Q, the angular distribution of the sequence Sn(z) , N =
0,1,2,..., around f(z) exists and is uniform.

The organization of the paper is as follows. Section 1 contains the charac-

terization of rational functions with a nonconvergent (C, 1) summable Taylor
development. Section 2 deals with the distribution of the partial sums in the

(C, 1) summable case of rational functions. Section 3 contains the main result

about the angular distribution without any assumptions about (C, 1) summa-

bility.

Acknowledgment. The author wishes to express his gratitude to I. Deliyanni,

C. Gryllakis, J.-P. Kahane, E. S. Katsoprinakis, S. Papadopoulou and S. K.
Pichorides for helpful discussions and comments.

1. Preliminaries

We start with the following definition.

Definition 1. Let A denote the set of rational functions / with the following

properties.
(i) / is regular at 0 and therefore, / has a Taylor development Yo" a"z" ■

(ii) There exists a point Z\, \zx\ = 1, such that the series £o° a"z" *s (^ > *)
summable to a finite sum, but is not convergent.

In this section we describe completely all elements of the set A . We need

the following lemmas.
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Lemma 2. Let M be a natural number, M > I, let cx, ... , cm be complex

numbers and let gx, ... , Qm be complex numbers of absolute value one (\Qj\ — 1

for all j — I, ... , M). We assume that gx,... , Qm are distinct. We suppose

that the sequence S„ - Yf=\cjQ" > n = 0> 1,..., converges to zero. Then

cx = ■ ■ • = cM = 0.

Proof. By a direct computation we have

N N N    ( M \    I M \ M N

Ew2 = Ew. = E E«r   5>eT = £ <tf>-5>*w
m=l m=\ m=\ \k=\ I    \X=\ )       k ,X=\ m=\

M

= NY,\ck\2 + 53 ckCxQkQkil - (QkQx)N]l(\ ~ QkQx) ■
k=\ k,X=l

k?X

Obviously |1 - (okQk)N\ < 2 and [1 - (OkQx)N]/N -> 0, as N -v +oo. It

follows that (1/JV) D^=1 \Sm\2 -* Yk=i \ck\2, as TV ̂ +oo. Since Sn -+ 0, as

n —> +00, we conclude Yk=\ \ck\2 — 0', this gives cx = ■ • • = Cm = 0.   Q.E.D.

There are several proofs of Lemma 2 (see [6, 11]); the proof given here is

due to N. Alikakos.

Lemma 3. Let X^o^ oe a complex series, which is (C, 1) summable to a

finite sum a. Then y„ = o(n), as n —> +00.

Proof. Let SN = Yn=o^ and °n = (So + --- + SN)/(N+1) -> a £ C. Then we
have (7V+ 1)on - NaN-X = Spf and y^ = Sn-Sn^x = (N + 1)on - 2NaN-i +
(N-l)- aN-2. It follows that yN/N -» 0, as N -» +00.   Q.E.D.

Lemma 3 above is well known (see [13]); we included its short proof, for the

purpose of completeness.

Proposition 4. Let f be a regular at 0 rational function and let Y'o a"z" oe

the Taylor development of f. We suppose that there exists zx, \zx\ — 1, such

that the series Y^o anz1 ts (C, 1) summable to a finite sum. Then we have the
following.

(a) / is regular in the open unit disk 7J) = {zeC:|z|<l}.
(b) If f has poles on the unit circle T, then these poles are simple.

(c) f = co + g with g a rational function regular in a neighbourhood of the

closed unit disk D and co(z) = Yf=x Aj/(l -Qjz), M > I, Aj £C, Qj = ei2n6',

0 < dj< 1 for all j - 1, ... , M and QX, ... , Qm are distinct.

Proof. Since Z)o°anz"(lzil = 1) *s (C> 1) summable to a finite sum, according

to Lemma 3, we have a„/n —> 0, as n —> +00 . It follows that the radius of

convergence of Yc? a"z" *s 8reater than or equal to 1. On the other hand, this

radius of convergence is the distance of 0 to the nearest pole of /. We conclude

that / is regular in the open unit disk. This gives part (a).

Expanding / to simple fractions, we obtain rational functions co and g,
such that f = co + g, g is regular in a neighbourhood of D and co. If g has

any poles in C U {00} , they belong to the unit circle T. We may also assume
co(oo) = 0.

Suppose co has distinct poles £1, ... , c\m with multiplicities vx, ... , vM,

respectively.   We have |£/| = 1  and Vj > 1  for j = 1,..., M.   We shall
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prove that Vj - 1 for all j = I, ... , M. Suppose on the contrary that

max{i/i, ... , vM} = m > 2, to arrive at a contradiction.

Consider the nonvoid set B = {k £ {I, ... , M} : vk = m} ; then co has the
form

m-\   M

co(z) = 53iy(i -ikZ)m + 53 53a,->s/(i -sjZy,
k€B s=\  7=1

where Tk / 0, for all k £ B.

The Taylor development 2^o°a«z" °f / *s tne sum °f those of co and

g. Since the Taylor development of g is convergent at zx, and 2^o°a"z" ^s

(C, 1) summable, we see that the series co(z) = Yc? PnZn is (C, 1) summable

at z = zx. According to Lemma 3, there holds /?„/« —» 0, as n—> +oo.

In order to compute /?„ , we need the expansion l/(l-£z)' = 2^o°C7-71K'lz"

= Zo"(" + ^- l)---(" + l)/(/-l)!^z", 1=1,2,....
It follows that

pn = (n + m-l)---(n + l)/(m-l)\   Y,T kTk + 0{\ I n)   .
-k<EB

Since m > 2 we see that (n + m - l)---(n + l)/n.(m - l)\ is bounded

below away from zero; we also have P„/n —> 0, as n —► +00. It follows that

YkeB ^k£k —> 0, as n —» +00. According to Lemma 2, we have T^ = 0, for

all k £ B ; this gives a contradiction and therefore, max{t<i, ... , vm) = m = I

and 5 = {1, ... , A7} . Thus, every pole of / in the unit circle is simple; this

gives (b). It follows that co(z) = £J£, Aj/(l - Qjz) with M > 1, A3 £ C, q}■ =

£j = e'2n6J, 0 < dj < 1, and qx, ... , Qm are distinct. This gives (c) and
completes the proof.    Q.E.D.

One can easily see that the converse of Proposition 4 holds. More precisely,

with the notation of Proposition 4, we suppose that (c) holds; then, one can eas-
ily verify that, for every z in T, z ^ p ■, j = I, ... , M, the series JZ^to a"z"

is (C, 1) summable to the finite sum cr(z) = f(z).

This verification reduces to the simple case 1/(1 — z) = Yc? z" ; then Sn-i(z)

= (l-zN)/(l-z) for z^l. It follows that aN(z) = S0(z) + - ■■ + SN(z)/N+ 1

= 1/(1 - z) - [l/(N + l)]z(l - zN+x)/(l - z)2 and aN(z) -+ a(z) =

1/(1 -z), for all z, |z|= 1, z^ 1.
Now, we describe the elements of the set A introduced in Definition 1.

If in Proposition 4 we have co = 0, then / = g is regular on D and the

Taylor development f(z) = Yc? a"z" converges, for every z in the unit circle

T. If co is not identically zero, then we have co(z) = Y%x Aj/l-QjZ, M > 1,

Ajj^O, \Qj\ = 1 for all j = 1, ... , M and QX, ... , Qm are distinct. We have

the Taylor development co(z) = Y7=o^"z" with Pn = Yf AjQ" ■ According

to Lemma 2, /?„ cannot converge to zero. It follows that YT=o P"z" does not

converge, for any z in T. Since g is regular on D, its Taylor development is

convergent to any z in T. It follows that the Taylor development of f = co+g

is not convergent at any z in T (provided co = 0). Thus, we have proved the

following characterization of the elements of the set A (see Definition 1).
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Proposition 5. A function f belongs to the set A, if and only if f = co + g_ with
g a rational function regular in a neighbourhood of the closed unit disk D and

co(z) = Ejli Aj/(l -Qjz),M>1,Aj?0,Qj = ei2*B> ,O<0j<l, for all j =
I, ... , M and QX, ... , Qm are distinct.

2. Distribution of partial sums

Let f = co + g be a function belonging to the set A introduced in § 1.

According to Proposition 5, g is a rational function regular on D and co(z) =

Ejti Aj/(l - Qjz) with M > 1, A} ^ 0, Qj = ei2nei, 0 < 0; < 1, for all

j = I, ... , M and QX,... , Qm are distinct.
We denote by SN(z), coN(z), gjv(z) the Nth partial sums of the Taylor

developments of /, co and g, respectively. Obviously SN(z) = gf/(z) + (Off(z)

and, for every z, \z\ = 1, we have the convergence gif(z) —► g(z), as N —►

-f-oo, because g is regular in a neighbourhood of D. By a direct computation

we find 5W_i(z) = ^(z) + w(z) + {Y%Mj/(Qjz - l)]Q?}zN . For every

z in the unit circle T, we have gw-i(z) + co(z) —► g(z) + w(z) = /(z),

as N —> +oo, and f(z) is the (C, 1) sum of the Taylor development of

/. Therefore, it suffices to study the distribution of the sequence Sn(z) =

{Yf=x[Aj/(QjZ-l)]Qjv}zN , N = 1,2, ... , and its angular distribution around

0.

Lemma 6. Let SN(z, w) = {Yf=x[Aj/(QjW - l)]QjN}zN, N = 1, 2, ... , where

M > 1, Aj ^ 0, Qj■■ = ei2ll6>, 0 < dj < I, and QX, ... , Qm are distinct.

The parameter w is complex and different from ~q~j, j = I, ... , M. Let V =

(I, dx, ... , dM)o. oe me vectorspace over the rationals generated by I, dx,... ,

dM and let X = el2nV, which is a denumerable subset of the unit circle T. We

also denote by E(z, w) the set of limit points in C U {oo} of the sequence

Sn(z, w), N = 1,2,.... Then, there is a finite set B c C, such that the

following hold.

(a) For every z £ T\X the set E(z, w) is a compact subset of C, it has a
finite number of connected components and it has circular structure with

center 0.
(b) For every z £ T\X and every w £ C\B, there is a probability measure

Xz,w compactly supported in C such that

(i) The sequence Sn(z ,w), N = 1,2,... , is uniformly distributed
with respect to the measure Xz,w .

(ii)  The measure kz w is invariant under rotations with center 0.

(iii) Az,w({0}) = 0.  '
(iv) The sequence card{7V : 1 < N < P,SN(z,w) £ 0}/P, P =

1,2,..., converges and its limit is AZi„,(<P) = (/? - a)/2n, where
0> = {relt :0<r,a<t < B}, a< 0 <a + 2n.

Proof. Let 1 = coq , cox, ... , cos, 0 < s < M, be a Q-base of the vector

space V = {I, di, ... , 6m)q- Therefore, there exist a natural number m > 1

and integer numbers aj, BJk, j = I,... , M, I < k < s, such that 0j =

(l/m)[aj.l + p\cox +■■■ + picos], for all ; = 1.M.
Fix z = ei2nx with x £ R\K; that is, z € T\X. Obviously the system

I, co\, ... , cos, x is Q-independent. Kronecker's Theorem [1] asserts that the
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sequence £„ = (ei2na"u , ... , ei2n(a°v , ei2nxv), v = 0, 1, 2, ... , is dense in the

torus Ts+X . Further, by Weyl's uniform distribution theorem [7], the sequence

C, v = 0, 1, ... , is uniformly distributed with respect to the normalized
Lebesgue measure as+x on Ts+X .

For every fixed v = 0, ... , m — I and z = ei2nx £ T\X we consider the

sequence yvv(z,w) = S„m+V(z, w) = {Yf=x[Aj/(QjW - l)](6jzf(ei2^")Pi---

(ei2xw,V\ifii}(ei2*xu\im > I/ = o,l,2,..., where we use the fact that the expo-

nents P]k and m are integer numbers. We denote by Ev(z, w) the limit set

of the sequence yvv(z, w), v = 0, 1, ... . Obviously

m-l

E(z,w)= (J Ev(z,w).
v=0

We introduce the functions

glw(zx, ... , z„ z0) = I Y,[Aj/(qjw - l)](QjZf(z^-..zl') 1 .z0m

s»!>.z,w

which are continuous on the torus T^"1-1 (see also [6 and 11]). Obviously

yl(z, w) = *Z%(C) e ^jr^1), for all i/=0, 1, 2,... . The set gvz>w(Ts+x)

is connected and compact; therefore, the limit set Ev(z, w) satisfies Ev(z, to)

C gz,w(Ts+x). Since the sequence Cu = (ei2nco'u, ... , e'2*^", e'2**"), ^ =

0, 1, 2, ... , is dense in Ts+X and the function gvzw is continuous on Ts+1,

we conclude that the sequence yvv(z, w) = gz,w(Cv), v = 0, 1, 2, ... , is dense

in gz,w(Ts+x). There follow the equalities

m-l

E"(z,w) = glw(Ts+i)   and   £(z, w) = |J ^,w(r5+1).
v=0

In order to prove (i), it suffices to show that, for each v = 0, ... , m - I,

the compact and connected set gz,w(Ts+x) c C has circular structure around

0, where gvz w = hvz w(zx, ... , zs).z$ . Indeed, let d £ R and (zx, ... , zs, z0)

£ T5+1; we have ei0[g* w(zx, ... , zs, z0)] = ew[K,w(zx, ... , zs).z$]

= hlw(zx, ... , zM)• (<?'0/mzor = ^,»,(zi, • • •, zs, eif)lmzo) and

(z1,...,z,,^/mzo)ers+1.

This completes the proof of (i).

To prove part (ii) we consider the measures kvz>w, z = el2nx £ T\X, v =

0, ... , m-l, defined as follows: XVZW(A) = os+x[(g^w)~x(A)], for every Borel

set A of C; equivalently, / cp dkvzw = J <p o gvzw das+x, for every continuous

function cp on C. In other words Xvzw is the measure image by gzw of

the normalized Lebesgue measure os+x on Ts+X . It follows that Xvzw is a

probability measure supported in the compact set gz>w(Ts+1) = Ev(z ,w).

Since the sequence &, = (ei2™^ ,..., ei2n<0>" , en*xv), v = 0, 1, 2, ... , is

uniformly distributed with respect to the measure os+x and gvzw is continuous

on Ts+X , passing to the images by gz<w , we have the following (see [7, p. 179]):
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The sequence g^w(Cu) = ll(z, w) = Svm+V(z, w), v = 0, 1, 2, ... , is

uniformly distributed with respect to the measure kZtW.

Claim. The measure kvz^w is invariant under rotations with center 0.

Indeed, let A be a Borel subset of C and d £ R; then using Fubini's theorem

we have

klw(ewA) = os+x[(glJ-x(eieA)]

= <r5+i({z1, ... , zs, z0)£ Ts+X :gvzw(zx, ... , zs, z0)

= hlw(zx,...,zs)zZ£eieA})

= as+x({zx,...,zs,zo)£Ts+x:

hlw(zx,...,zs).(e-w/mzo)m£A})

= crs+x({zx,... , zs,eieJmx) £ Ts+X:hlw(zx,... , zs)rm £ A})

= /  ax({eif)lmz £ T : hvz,w(zx,..., zs).xm £ A})das(zx, ... , zs).
Jts

The invariance of the Lebesgue measure ax on T by rotations with center
0 gives

ox({eif>lmT : hlw(zx, ... , zs).rm e A}) = ox({x : hvz,w(zx, ... , zs).rm £ A}).

Therefore,

kvz<w(eieA)= f  <jx({t £T :hlw(zx, ... , zs).rm £ A}) das(zx, ... , zs).
Jts

Repeating the previous calculations with d = 0, we see that this last integral is
equal to kzw(A). Therefore, we have kvzw(el6A) = kvz W(A), which proves the

claim.

Next we claim that, for every u) in C, except a finite set Qw , measure kvz w

satisfies kvzw({0}) = 0, for all z in T\X.

Indeed, if kvzw({0}) > 0 then g?iW=0 on a subset of Ts+X with strictly

positive Lebesgue measure. We can multiply gvzw by a monomial to obtain
a polynomial in S + 1 variables. This polynomial must vanish identically.

Therefore, all its coefficients must be equal to zero. A specific coefficient has
the form

Y,[Aj/(QjW - l)](QjzY = Cv(w).z\

where T= {7 6 {1,... , M} : B{ = B\, ..., fij = #}, 1 £ T.

Since Aj■■ ± 0, for all j = I, ... , M and QX, ... , Qm are distinct, we see that
Cv(w) is a rational function of w with pole at ~qx ; therefore, Cv(w) is a

nonidentically zero rational function. Its zero set is finite. We call Qv this set
and we have the claim.

Let z e T\X and w £ C\(QWU{^1, ... , £M}) for some v = 0,..., m-l.
Since kvz>w is a probability measure, invariant by rotations with center 0 and

kvzw({0}) = 0, we have the following:

(i) For every closed half line e starting at 0, we have kZtW(e) = 0.

(ii) If <J> = {reil :0 < r, a < t < B}, a < p <a + 2n, then k\ w(<£>) =

(P-a)/2n and lvXiW{d9) = 0.
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Further, since kvz w has compact support in C, we can find a closed disk

Dvzw centered at 0, containing in its interior the compact support of kvz>w.

We may restrict our attention in the compact set Dvz w . If O is as in (ii)

above, then A^JOnT^ J = A«>u;(*) = (fi-a)/2n and XZiW(d[<l>nDz,tW]) =
0. We also have the equivalence: yvv(z, w) e O <& yvv(z, w) £ Q>n DvZyW .

Since the sequence yvv(z, w), v = 0, 1, 2, ... , is uniformly distributed with

respect to kvz w, we conclude that (see [7, p. 175]) the sequence card{i/ : 0 <

v < N, yl(z, w) £ <p}/(A/ +1), N = 0,1,2,... , converges and its limit is

kZtWm = (B-a)/2n.
Therefore, the angular distribution of the sequence y1(z, w) = Svm+V(z, w),

u = 0, 1,2,... , exists and is uniform.

Let B = cf u ... u Qm-i u {g,, ... , £M} , which is a finite set. For every
z 6 7,\AT and w £ C\B we consider the probability measure

Az,u, = (l/m)(A°ZiU) + --- + A--1).

We easily obtain part (b) of the lemma.   Q.E.D.

Since SN-i(z) = gN-X(z) + co(z) + SN(z, z) and gN-\(z) + co(z) -* g(z) +

co(z) = f(z), as N —> oo, Lemma 6 implies obviously the following.

Theorem 7. Let f = co + g be a rational function belonging to the set A; that

is, g is a rational function regular on D and co(z) = Yf=\ Aj/(l - Qjz) with

M>l,Aj^0,Qj = ei2n6>, 0 < dj < 1, for all j = 1, ... , M and qx , ... , qm
are distinct.

Let V = (1, 0X, ... , 0m)q be the vector space over the rationals generated

by 1, 6>,, ... ,0M and let X = ei2nV .

Let YV anz" be the Taylor development of f and SN(z) = Yo anz" ■ we

denote by L(z) the set of limit points in C U {oo} of the sequence Sn(z) ,
N = 0,l,2,....

Then we have the following:

(a) For every z in the unit circle T, except the denumerable set X, the set
L(z) is a compact subset of C, it has a finite number of connected components

and it has circular structure with center the (C, 1) sum a(z) = f(z) of the

series YV a" z" •
(b) There is a finite set B, such that, for every z in T\(XliB) the following

hold.
(i) There exists a Borel probability measure pz with compact support

in C, such that the sequence Sn(z) , N = 0,1,2,..., is uniformly distributed

with respect to the measure pz .

(ii) pz({a(z)}) = 0, where a(z) = f(z) is the (C, 1) sum of the

series YV anz" ■

(iii) The measure pz is invariant under rotations with center a(z) =

f(z).
(iv) Let <J> be an open angle with vertex a(z) = f(z) and opening cp ,

0 < cp < 2n. Then the sequence card{« : 0 < n < N, S„(z) £ <P}/(A/ +1),
N = 0,1,2,..., is convergent and its limit is equal to pz(<P) = cp/2n. Thus,
the angular distribution of the sequence Sn(z), N = 0, 1,2, ... , around the

(C, 1) sum a(z) = f(z) exists and is uniform.
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Remark. In Theorem 7 the set V may be replaced by a smaller one. To see

this it suffices to set z = qxz and apply Theorem 7. Thus, V may be replaced

by the Q-affine space Vx = (1, 02 - 0X, ... , dM - dx)Q - dx.

Example. As an illustration of the previous results we consider the following

example:
f(z) = co(z) = [1/(1 - z)] + [1/(1 - qz)], where q = ei2nf> with d i Q.

Let z = ei2nx with x $ (l,d)Q. Then m = 1 and

g°(zX , ZQ) = {[1/(Z - 1)] + [l/(QZ - 1)]Z,}Z0 .

The limit set L(z) is the closed annulus with center co(z) = [1/(1 - z)] +

[1/(1 - qz)], small radius | |l/(z - 1)| - \1/(qz - 1)| | = rx and great radius

|l/(z-l)| + |l/(l-<?z)| = r2. we set |l/(z - 1)| = a > 0 and \1/(qz-1)\ =
b > 0 and write for the position vector co(z) + re" , rx <r<r2,0<t<2n.

Then for the measure pz , we find

dpz = crdrdt/\J(a + b + r)(a + b- r)(a -b + r)(-a + b + r)

where c = l/n2.

Remark. Under the assumptions of Theorem 7, one can show that, for every z

in T except the poles of /, the sequence of partial sums Sn(z) = Yo anz" >

N = 0, 1, 2, ... . is uniformly distributed with respect to some compactly

supported in C probability measure pz, which may not be invariant under

rotations with center a(z) = f(z) in general. The proof uses Weyl's Uniform

Distribution Theorem and is a modification of the proof of Lemma 6. Further,
for every z in T except a finite set, we have pz(f(z)) = 0. This implies

that, for every z in T except a finite set, the angular distribution of Sn(z) ,

N = 0, I, ... , around a(z) = f(z) exists but it is not uniform in general.

Remark. One can also derive the following.

Proposition. Let f be a rational function regular at 0 and let YV anz" be its

Taylor development. We denote by S^(z) = Yo anzn the partial sums. Let w

be a point in the plane, then the following are equivalent.

(a) The sequences Sm(w) , N = 0, 1,2,..., is uniformly distributed with
respect to a probability measure pw with compact support in C.

(b) The series YV anw" /5 (C> 1) summable to a finite sum.

(c) (i) w is not a pole of f.

(ii) / is regular in the disk {z £ C : \z\ < \w\}.

(iii) If f has any poles on {zeC:|z| = |wj|}, these poles are simple.

3. Angular distribution

Theorem 7 does_not cover the case of a rational function / regular in a

neighbourhood of D. In this case we have SV(z) —* f(z), as N —> +oo,
z £ T; therefore the distribution of the sequence SN(z), N = 0, 1, ... , is
the Dirac mass at f(z). This does not give any information about the angular
distribution of the sequence SN(z), N = 0, 1, ... , around (j(z) = f(z).

However, we prove the following.
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Proposition 8. Let f be a rational function regular in a neighbourhood of D,

which is not a polynomial. Let Sn(z) , N = 0, 1,... , be the sequence of partial

sums of the Taylor development of f. Then there is a denumerable subset Q of
the unit circle T, such that the following holds.

For every z in T\Cl, the angular distribution of the sequence Sn(z), N =

0, 1, ... , around f(z) exists and this angular distribution is uniform.

Proposition 8 is a special case of the following theorem, where (C, 1) sum-

mability is not assumed.

Theorem 9. Let f be a rational function regular at 0, which is not a polynomial.

Let Sn(z) be the partial sums of the Taylor development of f. Then there is a

set Q, which is a denumerable union of straight lines passing through 0, such

that the following holds.
For every z in C\Q, the angular distribution of the sequence Spf(z) , N =

0,1,2,..., around f(z) exists and this angular distribution is uniform.

In order to prove Theorem 9 we use Lemma 6. The following trivial fact will

also be useful: If K„ > 0, n = 1,2, ... , then for every complex sequence P„ ,

n = 1,2,..., the sequences P„ and KnPn are equivalent as regards angular

distribution; if one of them has angular distribution, then the other does also

and the two angular distributions coincide.

Suppose an £ C, n = 1,2,..., is a sequence with uniform angular distri-

bution and bn —> 0, as n -* +oo; then we cannot in general determine the

angular distribution of the sequence an + bn . However the following holds:

Suppose an £ C, n = 1, 2, ... , is a sequence uniformly distributed with

respect to a compactly supported probability measure p. Suppose also that

M{0}) = 0; then, the angular distribution of an , n = 1,2,..., around 0

exists. Further, suppose bn —* 0, as n —> +oo. Then a„ + b„, n= 1,2,... , is

uniformly distributed with respect to p . It follows that the angular distribution
of the sequence an + b„ , n= 1,2, ... , around 0 exists and coincide with that

of a„ , n = 1, 2, ... .
We also need the following lemma.

Lemma 10. For m = 1, 2, ...  we denote fm(w) - 1/(1 - w)m .

Let YV=oan'w'' be the Taylor development of the function fm and let S™(w)

= Yn=o a™wn . Then we have:

(i) ~[(l/m)fm]' = fm+x and [(l/m)S%+l]' = S%+ x.

(ii) SxN(w) = fx(w) -wN+xfx(w).
(iii) For m > 2 we have

S%(w) = fm(w)-(N + ™)   wN+xfx(w) + JTc?(N)wN+kfk(w)   ,
VW J   L k=2

where ckn(N) —» 0, as N —> +oo.

(iv) For m > 1 and w ^ 1 we have

S^(w) = fm(w) - (^Nm+_^wN+x[fx(w) + o(l)], asN^+w.

Proof. Parts (i) and (ii) can easily be verified. Combination of (i) and (ii)

implies easily

S2N(w) = f2(w) -(N + 2){wN+xfx(w) + [l/(N + 2)]wN+2f2(w)}.
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This gives (iii) for m = 2. We proceed by induction on m and we assume
that (iii) holds for m to prove it for m + 1.

We have

S%+x(w) = [(l/m)S"N+x(w)]>

um   \f ,   yv     1 {N+l + m\
= [(l/m)fm(u>)]--{   m_!    J

r m v
x   wN+2fx(w) + J2ckn(N+l)wN+x+kfk(w)

k=2

,     ,   .      1 /iV + m+lV.. , .,
= fm+l(W)-—I       w      , ^+2)

W \     AM — 1     /

x J(u>"+2/i(t/;))7(;V + 2)

+ £>?(* + l)/(Ar + 2)].(^+1+Vfc(^))'} ■
k=2 )

We observe that (l/m)(N+x+{").(N + 2) = ("+™+1), as required. Further

(wN+2f(w))'/(N + 2) = -wN+xfx(w) + [l/(N + 2)]wN+2f2(w)

and

[Ck"(N + l)/(N + 2)][wN+x+kfk(w)]'

= cF(N+ l).[(N+ l+k)/(N + 2)]fk(w)

+ [Ck"(N + l)k/(N + 2)]wN+x+kfk+x(w).

Since c^(N + 1) —<■ 0, as N -> +oo, we see that (iii) holds for m + 1 also.
This proves (iii).

Part (iv) follows immediately from parts (ii) and (iii).   Q.E.D.

Now, we are ready to prove Theorem 9.

Proof of Theorem 9. Developing in partial sums we take

M

f(z) = P(z) + 53^/(1 - QjZ/R,)m>, where \Qj\ = 1, R} > 0,
y=i

mj integer, ntj > 1, Aj■ ̂  0, m} > 1, and P is a polynomial. The vectors
(Rj, Qj, mj), j = 1, ... , M, are distinct. We set

R = min{7*, :j =1, ... , M}

and

m = max{w; : j — 1,..., M, Rj = R}.

For z different from 0 and the poles of /, we write z = \z\q , |z| > 0, |p| = 1,

and we consider the partial sum S>(z) of the Taylor development of /. For
N > degP, using Lemma 10 we obtain the following.

SN(z) - f(z) = Y^QjlzlQ/Rj^C^OUAjH-l + QjZ/Rj)] + o(l)} =
I + II + III, where
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I is the sum on {j = I, ..., M:Rj = R, trij = m},
II is the sum on {j = I,..., M: Rj = R, ntj < m},
III is the sum on {j = I,..., M : Rj > R].

We consider the resulting formula for [SN(z) - f(z)](R/\z\)N+x.l/(!m+_x).
Term I gives

53  AjQjN+1/{-1+Qjz/R)   QN+x+o(l), since \Qj\ = \q\ = I.
Rj=R

_ mj=m

Term II gives

E (SjQ)n+1 (^+_7) (^T){[^/(-1 + ejz/Rj)] + o(l)} = 0(1),

n\j<m

because we have \qj\ = \q\ = 1 and (^"jO/C-T) growsas j\rK-»0, mj < m.

Term III also gives

Y;(qjq)n+1wrj)n+i (^+_7) / (Nm+J(){i4/(-i+Qizim+od)}

= o(l),

because \Qj\ = \q\ = 1, 0 < *//?,■ < 1 and (Nm+™{)/C+_mx) grows as Art"1/-"1).

Thus we find [SN(z)~ f(z)](R/\z\)N+xl/(Nm+}{) = Sn+x(q , z/r)+o(l),where
following the notation of Lemma 6 we have

SN(Q , z/R) = J    YI   [AjQ?l(-\ + QjZ/R)] \ QN.
R,=R

( mj=m )

We notice that the q/s entering in the sum are distinct and therefore, Lemma
6 applies! It follows that there are a denumerable subset T c T and a finite set

B c C, such that for q = z/\z\ £ T\T and z/R £ C\B the following holds:
The sequence Sn(q , z/R), N = 0, 1, ... , is uniformly distributed with

respect to a compactly supported in C probability measure ke Z/R = pz . The

measure pz is invariant under rotations around 0 and pz({0}) = 0.

It follows that for z in C\{0} with z/R $ B and z/|z| ^ T the sequence

[SN(z) - f(z)](R/\z\)N+x 1 j (^7) = <WZ/IZI, Z/R) + 0(1)

is also uniformly distributed with respect to pz. By the invariance of pz under

rotations around 0 and the fact that yUz({0}) = 0, it follows that the angular

distribution exists and is uniform. We set Q to be the union of all straight
lines through 0 and the points of B U T and the poles of / and we obtain the
result.   Q.E.D.

Remark. One can also prove that under the hypothesis of Theorem 9, for every

z in C except a finite set, the angular distribution of the sequence SV(z),

A/ = 0,l,2,..., around f(z) exists, but it is not in general uniform.
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Example. Let us consider the simple example f(z) = 1/[1 - z]. For z ^ 1 the

partial sum SV-i (z) of the Taylor development is Sn-\(z) = f(z) + zN/z - 1.

Set z = \z\ei2ne ; then SN_x(z) - f(z) = [\z\N/(z - l)]ei2n8N . We see that, for

all z ^ 1, 0 the angular distribution exists. Furthermore, if d $ Q, then this

angular distribution is uniform.
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