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ARITHMETIC CALCULUS OF FOURIER TRANSFORMS BY
IGUSA LOCAL ZETA FUNCTIONS

TATSUO KIMURA

Abstract. We show the possibility of explicit calculation of the Fourier trans-

forms of complex powers of relative invariants of some prehomogeneous vector

spaces over R by using the explicit form of p-adic Igusa local zeta functions.

Let (G, p, V) be a regular prehomogeneous vector space defined over R,

and /i, ... , fr the basic R-relative invariants of (G, p, V) (cf. [F. Sato 2,
p. 444]). For explicit calculation of Fourier transforms of the complex power

\Axw = f[\Mx)\«
1=1

with s = (s\, ... , sr) eC , two general methods are known. When (G, p, V)

has finitely many C7-orbits, one can use a microlocal calculus established by M.

Kashiwara according to M. Sato's idea (see p. 404 in [M], [K-K-M]). When
r = 1 and the relative invariant is linear for each variable, one can use Igusa's

method (see p. 8 in [Igusa 2]).
In this paper, we shall show the possibility of calculation for some cases by

using the explicit form of the Igusa's local zeta function, based on the idea of

Iwasawa-Tate theory [Iwasawa], [Tate].
As an example, we shall calculate the Fourier transform of |/(x)|* for (GL\ x

SL2m+x, A2©A1©A*©Af, Alt2m+i©Aff2m+1©Aff2m+1©Afr2'"+1) which has
infinitely many orbits and r = 4 so that it has not been calculated by other

methods.
The Igusa local zeta function of this prehomogeneous vector space has been

explicitly calculated by [Hosokawa]. Our method is applicable for a prehomo-

geneous vector space with Za — xZm for some constant t > 0. For example,

irreducible (resp. simple, 2-simple of type I) regular prehomogeneous vector

spaces with finitely many adelic open orbits satisfy Za = xZm (see [Igusa 4]

and [K-K]).

This paper has four sections: §1, Preliminaries; §2, Functional equation; §3,

Unramified T-factors and Igusa local zeta functions; §4, Arithmetic calculus
(example). The last section of this paper was completed when the author was
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staying at the Japan-U.S. Mathematics Institute (JAMI), 1993, at The Johns
Hopkins University. The author would like to express his hearty thanks to

Professor J. Igusa and Professor F. Sato whose encouragement and suggestions
stimulated this work.

1. Preliminaries

Let G be a connected linear algebraic group and p : G -► GL(V) a rational

representation of G on a finite-dimensional vector space V. Put G = p(G) c

GL(V). When V has a Zariski-dense G-orbit Y,■ we call a triplet (G,p,V)
(or a pair(C7, V)) a prehomogeneous vector space (abbrev. P.V.). A point

of Y is called a generic point and the isotropy subgroup at a generic point is
called a generic isotropy subgroup which is unique up to isomorphisms. The
complement S of Y is a Zariski-closed set which is called the singular set of
(G, V). An irreducible component 5, of codimension one is the zeros of some

irreducible polynomial f(x) (i=l, ... , r). Then these polynomials are alge-

braically independent relative invariants, i.e., f(p(g)x) = Xi(s)fi(x) forg£G

and x £ V with some rational characters Xi of G. Moreover any relatively

invariant rational function f(x) is of the form f(x) = cfx(x)mi ■■■fr(x)m'

with (mx, ... , mr) £ II and some constant c (see p. 60 in [S-K]). We call

fx, ... , fr the basic relative invariants of (G, p, V). Now a P.V. is called

regular if the Hessian Hf(x) = det(aax^x (x)) is not identically zero for some

relative invariant f(x). In this case, we have detp(g)2 = Xi(g)2K' ■ • ■ Xr(g)2Kr

for some k = (K\, ... , Kr) <G (\l*)r (see p. 61 in [S-K]). When r = 1 , we have

k = j with d = deg / and n = dim V .
When G is reductive, it is regular if and only if a generic isotropy subgroup

is reductive, and it is so if and only if the singular set 5 is a hypersurface (see

p. 73 in [S-K]). In this case, without essential loss of generality, we may assume

that a generic isotropy subgroup is semisimple (cf. §3 and §4 in [K-K]). Let
k be an algebraic number field. From now on, we assume that (G, V) is a

reductive P.V. defined over k with a connected semisimple generic isotropy

subgroup, and all coefficients of f(x) are in k . We denote by Ga, Va, etc.,
the adelization of G, V, etc., with respect to k . Let Q(k% /kx) be the space of

quasicharacters of the idele class group k%/kx of k and &(VA) the Schwarz-

Bruhat space of VA . For co = (cox, ... , cor) £ ^i(k^ /kx )r, we write co(x(g)) =

(ox(X\(g)) ■ ■ ■ o)r(Xr(g)) and co(f(x)) = cox(fx(x)) ■ ■ ■ cor(fr(x)) ( g £ GA , x £

YA) for simplicity. Now we define the two adelic zeta-functions Za(co, G>) and

Zm(co,d>) of (G,V).

(1.1) Za(a>,<l>)= [       co(x(g))Y,®(8Z,)dGA(s),
JGA/Gk ££yk

(1.2) Zm(G>,<D)= / co(f(x))®(x)dYA(x)   (®ee(VA)).
JYa
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Here daA is a right-invariant measure on Ga while dyA is a Ga -invariant
measure on YA. Since a generic isotropy subgroup is connected semisimple,
we may take the same convergence factor for dgA and dyA . Note that, for the

simplest P.V.( GLX , Aff1), we have

Zm= f   co(x)®(x)d*x = /        co(x) V <t>(xc;)dxx = Za

which appears in the original Iwasawa-Tate theory. For s = (sx, ... , sr) € Cr

and x = (xx, ... , xr) £ k%r, we put cos(x) = \xx\sj ■ ■ ■ \xr\s^ . For any co £

Q.(kA</kx)r, we have \co(x)\ = coa(x) for some a = (ax, ... , o>) £ W. In

this case, we write o(co) = (ox, ... , ar) £ W. It is known that Zm(co, O)

is absolutely convergent when o(co) = (ax, ... , ar) > k = (kx , ... , Kr), i.e.,

ct, > Kj for i = 1, ... , r (see [Ono], p. 90 in [F. Sato 1]). One can see

that Zm(co, <J>) has an Euler product Zm(co, O) = Ylv€l,Zv(cov , $„) for O =

®u€£ ®v wriere ^ denotes the set of places of k. We can express the local

factor Zv (cov , 0„) by the Igusa local zeta function for almost all finite places v .

We define Zv(s) to be the Igusa local zeta function /0„ l./Kx)!*1 • • • \fr(x)\Srdx

with  L„ dx = 1. It is a rational function of /, = qyS'    (i = I, ... , r).

Theorem 1.1 ([Igusa 4], [K-K]). Let (G, p, V) be an irreducible (resp. sim-

ple, 2-simple of type I) P. V. defined and split over an algebraic number field k

satisfying |G^\Y^| < +oo. Then we have Za(co, <J>) = xZm(co, $) for some

constant x > 0.

From now on, we assume that Za = xZm for some x > 0 so that Za(<y, O)

converges absolutely when o(co)> k .

2. Functional equation

We have assumed that (G, p, V) or (G, V) is a reductive regular P.V.
defined and split over an algebraic number field with a connected semisimple

generic isotropy subgroup and Za(co, <1>) = xZm(co, O) for some x > 0. We
may assume that f(x) £ Ok[x] (i = I, ... , r) where Ok is the maximal order

of k . Let p* be the contragredient representation of p on the dual vector space

V* of F. Then (G, p*, V*) is also a reductive regular P.V. defined over k

with the singular set S*, and Y* = V* - S*. Since G is reductive, we have

the basic relative invariants fx*, ... , f* satisfying

j?(p*(g)y) = xi(g)-lj7(y)    (i=i,...,r)

forg£G and y £ V*. By taking a basis, compatible with the Ac-structure

of (G, p, V), we may identify V and V* with Aff" so that p*(g) = 'p(g)~x

for g £ G. We write g* • y = 'g~xy for g = p(g) £ G = p(G), and y £ V*.

We define ZZ(co,*¥) and Z*(w,4') as follows:

(2.i) z;(co,W)= f     co(x~l(g)) J2 v(g*n)dGAg),
•'GA/Gk r\£V
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(2.2) Z*m(co,*¥)=f   co(r(y)my)dY.(y)       («Fg6(K;)).

For any place v £ I of k, let ky be the local field corresponding to v . For

Q>v £ &(VV) with  Vv = k", let 6„ be its Fourier transform with respect to

the self-dual measure so that Q>v(x) = 0„(-x) holds. For a finite place t;, the

self-dual measure dxx satisfies Jn„dxx = N(dv)~i where dv is the different

of ky, and hence note that it is not the measure dx satisfying jQ„ dx = 1

which appears in the definition of the Igusa local zeta function. For cov =

(col, ... , wv) where co'v is a quasicharacter of kx , we define the local zeta

function Zv by

Zv(cov , <P„) d=  /   cov(f(x))<t>v(x)dYv(x).
Jyv

Similarly we define Z* by

z*v(cov,vv) =f / w„(r(y)mWr,.O0.

Lemma 2.1. For any infinite place v £ X^ , r/We exists 0>v £ &(VV) satisfying

0„ ^ 0, <J>„|5t, =0,and Qv\s. =0.

Proc/ Put F* = fx* ■■■ f* so that S* is the zeros of i7*. Take a nonzero

0>o G Q^r,,) and put <D„ = F*(gradx)d>0 . Since ®v(y) = ±7-*(y)O0(y), this
<J>„ satisfies our conditions. This is a well-known argument.   □

We denote by Af the restricted direct product over the finite places.

Lemma 2.2. There exists <P/ £ &(VAf) satisfying Oy ^ 0, 0>/\sA = 0, and

4>/|c.  =0.

Proof. For a finite place v, take a e K(0„) = O" satisfying \F(a)\v = 1

with F = /i •••fr. Since |F(a + 7t6)|„ = \F(a) + nc\v = 1 for any b £ 0% ,
we have a + nO" c Yv . Let Ow be the characteristic function of a + nO" .

Then we have <!>„ e 6(F„), <!>„ ̂ 0, and O^ = 0. Take a finite place
v' ^ v and let <lv be the Fourier transform of the characteristic function of

a' + nO", with \F*(a')\vi = 1. Since <Jv ^ 0 and 4vls- = 0, if we put

<£/ = <J>„ • <lv • Iliu^t; v' c^oj where ch0» is the characteristic function of C7£ ,

this satisfies our condition.   □

To prove the following proposition, we shall use the argument similar to the

one on p. 468 in [F. Sato 2].

Proposition 2.3. For $ £ &(VA) satisfying <P\Sa = 0|s« = 0, the functions

Za(co, O) and Z*(co, <P) can be analytically continued to the whole Q.(k^/kx)T

and they satisfy a functional equation Za(co, <1>) = Z*(co, 4>) where co =

coKco~x and O is the Fourier transform of <I>.

Proof. Note that Za(co, <t>) (resp. Z*(co, <f>)) converges absolutely on A =

{co £ <7l(kx/kx)r ; a(co) > k} (resp. A* = {co £ <71(kx/kx)r ; a (to) < 0}).

Take cob £ A and cob. £ A* with b, b* £ II. For c = b-b* and e = ±1,
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put

ZE(co, O) = / co(X(g)) £ *(gZ)dGA(g)
J GA/Gk , y

<oc(x(g)Y>i ce k

and

Z«(d), O) = / ^U))^^-1^)) £ *(S»^te)-
J GA/Gk y.

<oc(x(g)y>i ,fc *

We have Z0(w, <D) = Z+(w, <D) + Z-(w, O) and Zfl*(<y, <P) = Za*+(w, <t>) +

Z*~(cb, 4>). Then ZE(co, Q>) converges absolutely on

5£ = {w g £l(kx/kx)r ; coco? £ A for some * > 0}

and Z*E(co, <P) converges absolutely on

B*e = {co£ Ci(kx/kx)r ; coco? £ A* for some t > 0}.

Note that we have B+ = B*~ = Q.(k^/kx)r since o(coc) > 0. For example, for

any co £ Q(k^/kx)r, take t > 0 satisfying rr(&><y£) > k , i.e., ww[ £ A . Then

we have

oo > Z:(coco'c, <D) = / <M*(*))'' *>(*(*)) E *(*0<*<m(*)
J    GA/Gk .

a>c(x(g))>l iErk

>Z+(co, O).

On BE n B*E, by the adelic Poisson summation formula

z2®(gt) = o>K(x-Hg))z2*(s*ri
ierk nerk-

for our O, we have ZE(co, 4>) = Z*E(cb, <J>) so that Zj(w, 3>) and Z*E(cb, 4>)

are analytically continued to 5£ U B*E = 0.(k^/kx)r. Hence Za(a>, O) =

Z+(w, <D) + Z~(co, O) and Za*(w, «P) = Z*+(co, <fc) + Z"-(d>, <f>) are an-
alytically continued to the whole (7l(kA</kxy and they satisfy the functional

equation Za(co, <b) = Z*(co, 4>).   a

Theorem 2.4. For our P.V. (G, V), the Euler product T[v Zv(cov , <P„) has a

functional equation:

(2.3) J]  Zy(COy,    <t>y)   =    ]\  Z^COy  ,    <P)

where cov = (cov)KcOyX.

Proof. For any <D7 £ &(VAf), put «D = <D^ ® $>f where 0^|Soo = d>^|% = 0

and O^ ^ 0 (cf.   Lemma 2.1).   Then we have Q>\Sa = Q>\sA = 0 and by
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Proposition 2.3, we obtain

Zoofwoo, <&»,) -Zf(cof, <!>f)=Z*00(ih00,&00).Z}((bf, 4>/)

for any O^-.

On the other hand, for any Ooo € 6(1^), put O = Ooo <g> O^ with 09- as in

Lemma 2.2. Similarly we have

z00(Woo, ou • z/(W/, o°) =z*00(co00, (Poo) • z;(&/5 0°)

for any O^.

Multiplying equations (2.4) and (2.5), we have Zm(co, 0)Zm(<y, O0) =

Z*(w, 0)Z*(<y, 6°) with 0 = 000(2)0/ and O0 = O^ <g> 0°.. By (2.4)

with O/ = O^., we have Zm(w, O0) = Z^(w, O0) and hence Zm(w, O) =

Z^(cb, O) holds for any O.   □

3. Unramified T-factors and Igusa local zeta functions

By Theorem 2.4, we have

(3.1) Zy(COy ,   0„)  •   YI   Zm(COw ,   <PW)   =  Z* (COy ,   6„)  •    [J   Z* (C0W ,   0>w).

(3.2)    Z*v(cbv , *„) • J] Zi(&» . *«<) = Z«(w„ , %) • II Z">^ ' *«)•

Multiplying (3.1) and (3.2), we have

(3.3) Zy(COy , 0„) -Z;(COy , Vy ) = ^(6, , O,) • Z„ (w„ , ¥„).

Namely, there exists r„(tow) satisfying

(3.4) Zt,(tuv,0„) = rt,(tu„)Z„*(G)„,6„)    for any Ow £&(VV).

Thus we can obtain the local functional equation. However, it has already

been obtained in more general cases [Igusa 1], [Gyoja].

In this section, we express a T-factor Yv(cov) by the Igusa local zeta function

Zv(s) when cov is an unramified quasicharacter covtS = (\ \svl,..., \ \svr) for a

finite place v of k . For one variable case ( r = 1), including ramified case, see

[Igusa 2].

Lemma 3.1. For a finite place v of k, we have Zv(cov,s, ch0») = cvZv(s - k)

where c~x = lim,,, ... ,Jr^oo Zv(s).

Proof We write |/(x)|* = cov,s(f(x)) = |/,(x)|2 • • • |/,(x)|* . Then

Zy(COytS,   Ch0;)= \f(x)\SydYv(x)
Jrvno;

where <7y„ is a t7„ -invariant measure with jY0 dYv = 1 . Here 7° = {x £

0%; \F(x)\v = 1} with F(x) = fx(x)- ■ ■ f(x). "Therefore if we put dYv(x) =
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Cv]W)\i with Jo? dx = 1' we have

Zy(COVyS ,   Ch0n)   =  Cy     I \f(x)\y-KdX  =  CyZy(S  ~ K).
JYvnO;

The last equality holds when Re(s - k) > 0, i.e., \0\V~K = 0, and then it holds

for all 5 by analytic continuation. We have

I =       dYv = cv      dx = cv dx
Jy° Jy$ J\f(x)U=\

= cv lim /   \f(x)\vdx = cv lim Zv(s)
s->oo Jn„ s->oo

since f(x) £ nOv implies lim^oo \f(x)\v( = 0.   □

Lemma 3.2. For a finite place v of k,

Z:(COy,s,   ChOS)   =  N(dy)-(d'S^-CyZ;(-S)

where dv — the different ofky , and (d, s) = sx deg/i + •■• + srdegfi where

Z*(s) is the Igusa local zeta function Zv(s) for f*.

Proof. By using the self-dual measure, we have ch0« = N(dv)~%ch,H-i.„ and

hence

Z*(cbv>s, ch0n) = Z„*(w„, K-s, N(dv)~ich{d-i)n)

=   N(dy)-i-Cyf ^(X^dX.
JYv-n(d-])"

Now if d~x = n~'Ov , then N(dv) = qv . By the change of variables x = n~'y,

we have dx = N(dv)ndy and \f*(x)\~s = N(dv)-(d's> • \f*{y)\ys. Hence we

obtain our result,   n

By these lemmas, we obtain the following theorem.

Theorem 3.3. For any finite place v of k, we have

ZV(COy,S,   0„)   =Ty(COy,S)Z*(COy,K-S,   6„ )

for any Ow e &(VV) where Yv is given by Yv(cov s) = N(dv)(-d's)~i •

Zv(s - K)/Zv*(-s) where Zv(s) = /0„ \f(x)\vdx and Z*(s) = /^ \f*(x)\vdx

with /0„ dx = 1 is the Igusa local zeta function and (d, s) = sx degfx -\-h

srdegfr.

4. Arithmetic calculus (example)

Theorem 4.1 (Principle of Calculus of Fourier transforms). Let (G, p, V) be

a reductive regular P. V. defined over an algebraic number field k satisfying Za =
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xZm . Then for any Ooo € S(J'oo), we have

Zoo(|      loo»*oo)-   II   ̂ Z»(*-«C)

(4.1) '
= |Z>fc|-<<M>+! .Z^(|      |^,Ooo).   n^Zr'H)

vv/We T)j. is //re discriminant of k, Zv(s) = the Igusa local zeta function, and

E/- = the set of finite places of k .

Proof. By Theorem 2.4, Lemmas 3.1 and 3.2 for O = O^ <g> (<S>„ez cho*) and

w = l    loo * riwes <«,,,j, we obtain our result.   D

This theorem shows that we can obtain Fourier transforms over R or C

if we have the explicit form of the Igusa local zeta function. In this section,

we shall calculate the Fourier transform of the complex power of the relative

invariants of the following (G, p, V) where V = {x = (X ; y, z, w) ; 'X =

-X £ M2m+X, y, z, w £ M2m+X, i}, and p(g)x = (aAX'A ; 0Ay, y'A~xz,

S'A-Xw) for g = (a, 0, y, S ; A) £ G = GL\ x SL2m+x with m > 2. Then
ker/> = {l, (1,-1,-1,-1; -I2m+l)}. Put

(( °    Im   o\ \

\\    o "Toy J
where

i
ei = t(0,... ,0, T, 0,... ,0).

Then

/i(*) = Pfaffianof (4^)

is a relative invariant corresponding to Xi(g) = oimP. Similarly, f2(x) =

(y, z) (resp. h(x) = (y, w), fa(x) = 'zXw) is a relative invariant corre-
sponding to xi(g) = M (resp. Xi(g) = P$, X*(g) = ayd). Then we have

S = {/, = 0} U {f2 = 0} U {f = 0} U {/4 = 0} with V - S = p(G) ■ Z and a
generic isotropy subgroup />(C7,j) = Spm-X is connected semisimple. We have

det/?(g)2 = x]{2m~l)X22xlxtm , i-e., * = (2m - 1, 1, 1, 2m). By [K-K], this
P.V. satisfies Za = xZm for some t > 0.

Proposition 4.2 (Hosokawa). Let K be a p-adic field with the maximal compact

subring 0K ■ Let dx be the Haar measure on VK satisfying /K(0!|c) dx = I.

Then the Igusa local zeta function ZK(s) - JV{0k) \fi(x)\K ■ ■ ■ \f4(x)\Kdx is given

by

7M-TT      (2/~1}        TT        (1)
^M^-J.1 , _     (il+2(-i) "ll j _ a-(Sk+\)

(4.2) '=i        * fc=2       *

(2m) (2m + 1)
* 1 _ q-(Si+2m) '  J _ ^-(j5+2m+l)
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where (i) = 1 - q~', ss = sx H-1-54 and q = the module of K.

Now we take k = Q in Theorem 4.1 and we have

(4-3) /       \f(x)\sROu(x)dx = y(s) f       \f(x)\^-K^>u(x)dx
7kr-5r Jvk-sr

with y(s) = Ylp cpZp(-s - k)/ Y[p cpZp(s) since

ZR(|rR,0R)= /       \f(x)\sR-K^(x)dx.
JvR-sR

Since
m

c~x = ^Jira^Z^s) = Y[(2i - 1) • (l)3 • (2m) -(2m + l)
1=1

by Lemma 3.1 and Proposition 4.2, we have

m 4

l[cpZp(s) = n^(^i + 2i - 1) • II Z(sk + 1) • t(*4 + 2m) ■ C(s5 + 2m+l)
p ;=i k=2

where C(s) is the Riemann zeta function. Since -s - k = (-sx - 2m + 1, -s2 -

1, -53 - 1, -S4- 2m), we have

m 3

n cpzp(-5 - K)=n c(-5, - 2/+2). n a-**) • «-*+1 - 2m)
P 1=1 fc=2

• C(-^4) • C(-55 - 2m).

Thus, by using the functional equation of the Riemann zeta function:

C(-s)/C(l +s) = (2k)-*-1 • 2• (-siny) • T(l + s),

we have

y(s) = J[ cpZp(-s - k)/ Y[ cpZp(s)
p p

fr   C(-(sx+2i-2))     A   C(Sk)       C(-(s4 + 2m-l))       C(-(j5 + 2m))
l\ C(l + (Ji + 2/ - 2)) ' 1=1 C(l +ft) * CO + (* + 2m - 1)) ' C(l + (*, + 2m))

= n(^)_i,"2'+1 • 2 • (-sin7^1^2'-2)) • I>, + 2i - 1)

.n(27r)^-1.2.(-sin^).r(l+5,)
k=2

• (2«)--a- • 2 • (- sin «(* + *»-*)) > ̂  + ^

. (2k)—2'"-' • 2 • (- sin ̂ 1+M\ . r(s5 + 2m + 1)

with 55 = sx + s2 + Si + s<\
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f\   \-t    i    ~,\m+5    TT   •    x(S\+2i-2)     -i-r   .    7lSk       .    7l(S4 + 2m-l)
= (2k)    • (-2)m+:' • [[sin -*-'- • [[ sin -£- • sin -^—^-

i=l fc=2

m 4

•sin 2^1 +52 + 53+54 + 2m)-]^[r(51 +2/- 1). JJr(^fc + 1)

1=1 k=2

• Y(s4 + 2m)' T(sx +s2 + si + S4 + 2m+ I)

with t = (m + l)sx + 2s2 + 2s3 + 3s4 + (m + 2)2.
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