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ASYMPTOTICS FOR ORTHOGONAL RATIONAL FUNCTIONS

A. BULTHEEL, P. GONZALEZ-VERA, E. HENDRIKSEN, AND O. NJASTAD

Abstract. Let {a„} be a sequence of (not necessarily distinct) points in the
open unit disk, and let

50=1,     Bn(z) =n-^ip^i),        ,, = 1,2,...,
Xi, \am\ (1 -amz

( t^t = -1 when a„ = 0). Let n be a finite (positive) Borel measure on the

unit circle, and let {<p„(z)} be orthonormal functions obtained by orthogonal-

ization of {B„: n = 0, 1, 2, ...} with respect to n . Boundedness and conver-

gence properties of the reciprocal orthogonal functions pj(z) = Bn(z)<p„(l/Y)

and the reproducing kernels kn(z, w) = 5Zm=0 <Pm(z)(pm(w) are discussed in

the situation |<*„| < R < 1 for all n , in particular their relationship to the

Szego condition J"* \np.'{6)d6 > -oo and noncompleteness in L2(fi) of the

system {q>n(z): n = 0, 1,2,...}. Limit functions of (f*n{z) and k„(z, w)

are obtained. In particular, if a subsequence {an^)} converge to a , then the

subsequence {<P*,s)(z)} converges to

1 - az    Of,{z)

where

<j„(z) = \/2Jrexp   ^- /"    e'fl + Z ln^(0)rfg   .
47T j—k e z

The kernels {kn(z, w)} converge to 1/(1 - zw)aft(z)ali(w).

The results generalize corresponding results from the classical Szego theory

(concerned with the polynomial situation a„ = 0 for all n).

1. Introduction

By a Caratheodory function we mean an analytic function in the open unit
disk mapping this disk into the open right halfplane. The Caratheodory Coeffi-

cient Problem for an infinite sequence {cn: n = 0, 1, 2, ...} can be formulated

as follows: Find a Caratheodory function whose Taylor coefficients at the ori-

gin are the {cn}. This problem is equivalent to the Trigonometric Moment

Problem: Find a (finite) measure p on [-n, n] such that

(1.1) [" e-in6dp(d) = cn   forn = 0, 1,2.
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A measure p solves the moment problem if and only if the Caratheodory func-
tion

rn e'e + z
(1.2) Clfl{z)=  /    e-r^dp(d)

J-n " z

solves the coefficient problem. These problems are again closely related to the

theory of Szego polynomials, i.e., orthonormal polynomials (with respect to p)

on the unit circle. In particular, if {tp*} are the reciprocals of the Szego polyno-

mials {cpn(z)} (defined by <p*(z) = zntp„(l/z)) and {y/*} are the reciprocals

of the associated Szego polynomials (given by

/K deie -I- z _
[tPn(eie)-tPn{z)]^e_dn(B),     ^(z) = z>„(l/z)),

-n e       z

then {y/*(z)/tp*n(z)} converges to Q^(z) locally uniformly for \z\ < 1. Fur-

thermore {l/<p*(z)} converges locally uniformly for \z\ < 1 to the spectral

factor

(1.3) aii{z) = y/2Hexp^ j^^±^lnp'(d)dd^

when the measure p satisfies Szego's condition

(1.4) f   lnp'(d)dd>-oo.
J — 71

In addition the reproducing kernel k„(z ,w) (given by

n

K(Z, W) = J2 (Pn(z)<Pn(w))
m=0

then converges locally uniformly to

(1.5) s(z,w) =-=1-.
(1 - zw)o(z)a(w)

For more information on these matters we refer to [1, 13, 19, 20, 22, 24, 26,

27, 29, 38].
Let {a„:n = 0,l,2,...} be an arbitrary sequence of not necessarily dis-

tinct points in the open unit disk (for convenience ao is taken to be the origin,

which can always be obtained by a simple substitution), and let {w„: n =

0, 1,2,...} be a given sequence of complex numbers. The Nevanlinna-Pick

Interpolation Problem for this situation is the following: Find a Caratheodory

function F with the interpolation property F(a„) = wn for all n. (When

points a„ are repeated, the interpolation requirement involves the appropriate

number of derivatives.) (See [1, 28, 32, 35].) This problem is connected with

the problem of finding measures p generating generalized moments appearing

as coefficients in Newton series expansions for F(z) : A measure p generates

the moments if and only if the Caratheodory function Q^(z) defined above

solves the interpolation problem. Also these problems are related to a theory of

orthogonal functions, here rational functions (with poles at the points 1 /a„~) •

The approach to Nevanlinna-Pick theory from the point of view of orthogonal

functions is more recent than the study of other aspects of the theory. From a
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purely mathematical point of view the theory of such orthogonal rational func-

tions as far as we now was initiated by Djrbashian about 1960 (see the survey

paper [17]). Independently, partly from an applied point of view, the same

constructions were used by Bultheel, Bultheel and Dewilde, Dewilde and Dym

about 1980 (see [2, 3, 16]). General moments of a measure p were as far as

we know first introduced and used by Lopez (see [30]). Special cases involving

cyclic repetition of a finite number of points have later been discussed in de-

tail (see [5, 9, 21]). The groundwork for a systematic general treatment can be

found in [4], and the theory has been further developed in [6, 7, 8, 10, 12]. See

also [33, 34] and [31].
Surveys of applications of Szego theory and Nevanlinna-Pick theory in digital

signal processing and circuit theory with references to other work in the same

direction can be found in [14, 15].
The aim of this paper is to study boundedness and convergence properties

of the reciprocal orthogonal functions {(pn(z)} and the reproducing kernels

{k„(z, w)} . The results generalize corresponding results from the Szego theory

(concerned with the polynomial situation). The investigation is carried through

for the situation when all the points {an} are contained in a compact subset of

the open unit disk. Main results are about convergence properties of {cp*n(z)}

and {k„(z, w)} when the Szego condition (1.4) is satisfied. In particular, we

show that for a subsequence of {a„} converging to a, the corresponding sub-

sequence of {^T^y} converges to

(i-6)        -4-r=g'A !r^zl2Mz)'  agr'
Ka(z) y/l - \a\2

where <fy(z) is given by (1.3), and the whole sequence {k„(z, w)} converges

to the function s(z, w) given by (1.5). See Theorem 6.12 and Theorem 6.14.

In [4] we proved that {kn(z, w)} converges to s(z, w) in L2-norm on

[-it, it] under the weaker restriction (than the one above) zZT=\ (1_ la"D = °° •
We also stated the result above about locally uniform convergence in this more

general case. We have so far not been able to extend our argument here to the

more general situation.

For basic theory of orthogonal rational functions when the interpolation

points {a„} lie on T, see [11].

2. Preliminaries

We shall use the notation T = {z e C: \z\ = 1}, D = {z £ C: \z\ < 1} for
the unit circle and the unit disk. The kernel D(t, z) is defined as

(2.1) D{t,2) = L±l.

Let p be a finite Borel measure on [-n, it]. The Caratheodory function QA

is defined as the integral transform (Herglotz-Riesz transform)

(2.2) aM(z)= r D(eie, z)dp(d).
J—71

The substar conjugate /„ of a function / is defined by

(2-3) Mz) = f~(l/T).
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When / is a rational function, this may be written as

(2.4) f(z) = f(l/z),

where the bar denotes complex conjugates of the coefficients. The inner product

( ,  ) is defined by

(2.5) (/, g) = f" f(eie)gje^)dp(d) = f f(ei6)g,(eie)dp(d).
J—71 J— 71

For an arbitrary a in D we define the Blaschke factor £(a, z) by

(2.6) Q(a,z) = -r-- j-——r.
\a\    (1 — az)

(By convention we set A = -1 when a = 0.)

Let {an: n = 1, 2, ...} be an arbitrary sequence of (not necessarily distinct)

points in D. For convenience we use the notation

(2.7) {„(z) = £(an,z).

The Blaschke products Bn are defined by

n

(2.8) 7?0(z)=l,        Bn(z) = l[tk(z)   for n = 1,2,....
k=\

We define the spaces Jz^ by

(2.9) ^„ = Span{5m: m = 0, 1, ... , «}.

The functions in Sfn are exactly the functions that may be written in the form

(2.10) L^ = lTT7vn„(z)

where

n

(2.11) nn(z) = \{(l-ak-z),     n=l,2,...,

k=l

and pn £ n„ (the space of polynomials of degree at most n). This follows
by partial fraction decomposition. In particular the situation reduces to the

polynomial case 2Cn = Wn when a„ = 0 for all n. For f £ S?n - S?n-X we

define its superstar conjugate /* by

(2.12) f*(z) = Bn(z)fi(z).

(Note that this transformation depends on n . It must be clear from the context

what n is.) Observe that f* £2'n when f £^f„.
Let the sequence {<P„:n = 0, 1,2,...} be obtained by orthogonalization

of the sequence {B„ :n = 0,2,3,...} with respect to the inner product (2.5).

The following orthogonality properties are valid:

(2.13) <<!>„, <d„) = <<&;;, <d;;)^o,

(2.14) </,<&„> = 0   for/€^„_i,

(2.15) (f,**n) = 0   for/eC^-i-
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(Here f £ Cn-^n-i means that / may be written on the form f(z) = („(z)g(z),

where g£^fn-X.)

Each <!)„ has a decomposition

n

(2.16) <S>n(z) = Y,bkn)Bk(z).

k=0

By calculating O^(z) and substituting a„ for z we verify that

(2.17) 0*K) = /#).

We shall reserve the notation 0„ for the monic functions, i.e., those for which

bn"^ = 1. We denote by k„ the inverse of the norm of <t>„ , i.e.,

(2.18) KH = {9n,9H)-112.

We denote by <p„ the normalized functions,

(2.19) <pn(z) = KnOn(z).

We thus have

(2.20) tp*n{cxn) = Kn,     *;(a„)=l.

It can be shown that cp*n(z) solves the extremal problem

(2.21) max{|/K)| :(/,/) = 1, fe X}.

(See [4, p. 27].) The sequence {Jz^} is nested, i.e., £?„ c £?n+\. It follows that

if an = a for all n , then {k„} = {#>*(«„)} is a nondecreasing sequence. This

monotonicity property of {k„} does not follow in general.
The functions cp„ have all their zeros in D, while the functions cp* have all

their zeros in E = {z e C: \z\ > 1} .
The associated functions {i//n} are defined by

r>™     ^o = -!-, Wn(z)= I'D(eie,z)[tpn(eie)-g,n(z)]dp(d),
(2.22) Ko 7_„

« = 1,2,....

Their superstar conjugates {<y*} can be written

(2.23)

V5 = Z^, Vn(z) = ~  f ^(e'° , Z) ["ItSt^^) ~ <Pn(z)\ dp(d) ,
Ko J-Tz \_Bn(ew)

n=l,2,....

The reproducing kernel kn(z, w) for the space ^ is defined by the property

(2.24) L(w) = (L,k„)= f   L(eie)kn(eie , w)dp(d)   for L £ &n.
J —71

It has the representation

n

(2.25) kn(z ,w) = Y^ <Pm(z)cpm(w).
m=0
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The following Christoffel-Darboux formula is valid:

(2 26) k  (Z    W) -  ^(z)K(w) ~ Cn(z)Cn(w)<Pn(z)<Pn(w)

l-Zn(z){n(w)

From (2.25)-(2.26) follows

(2.27) ^(z)^-C;(z)^(z)^) = £ 9m{z)7^7-y

I - Cn(z)Cn(w) ^o

The following interpolation property holds:

(2.28) l§£--afl(z) = Bn{z)Hn{z)

where 77„(z) is analytic in D, 77„(0) = 0. Furthermore the following conver-

gence property holds:

(2.29) (44) -. n„(z)

locally uniformly on D, if Y^=\(^ ~ la«l) = °°-
For more details on this introductory material, see [4, 6, 10].

We easily observe that for given positive numbers r, R, both less than 1, the

value of |C(a, z)\ has a maximum less than 1 for \z\ < r,  \a\ < R.   When

nothing else is indicated, we shall in the the following assume that there is a

constant R less than 1 such that \an\ < R for all n.

We then have

(2.30) \Uz)\ < m(r) < 1

for all n and all \z\ < r.

3.  BOUNDEDNESS AND CONVERGENCE

We shall in this section discuss in some detail boundedness and convergence

properties in D of the sequences {cp*n} and {k„} .

Proposition 3.1. Every subsequence {cp*n(s)} of {cp*n} has a subsequence {cp*n(sl<p))}

which converges locally uniformly to an analytic function n without zeros or

diverges locally uniformly to oc.

Proof. From (2.27) with w = z follows that

(3.1) \cp*n(z)\2 > k02(1 - |C(z)|2) > k2(1 - m(r)2) > 0

for \z\ < r < 1 . The existence of a locally uniformly convergent or locally uni-

formly divergent subsequence as stated then follows from the theory of normal

families (Montel's theorem, see, e.g., [23]). That the limit function n has no

zeros follows from Hurwitz's theorem, see, e.g., [23], since <p* has no zeros in

D.    □

Proposition 3.2. The sequence {cp*} is either locally uniformly bounded in D or

diverges locally uniformly to oo in D.

Proof. Assume that {cp*} does not diverge locally uniformly to oo. Then {<p*7}

has a subsequence containing no subsequence diverging locally uniformly to oo ,

hence by Proposition 3.1 there exists a subsequence {<P*ntq)} which converges
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locally uniformly (to a finite function) in D . It follows from (2.27) with w = z

that

"(9) \q,*     tz)\2

(3.2) kn(q)(z, z) = £ \cpm(z)\2 < '^(;2

m=0 ^  '

for \z\ < r < 1. Since W^iq)} *s locally uniformly bounded and the sequence

{k„(z, z)} is nondecreasing (by (2.25)), it follows that the whole sequence

{k„(z, z)} is locally uniformly bounded. Then {q>„} is locally uniformly

bounded by (2.25), thus {|?>*,|2} and hence {<p*} is locally uniformly bounded
by (2.27).   □

Corollary 3.3. The sequence {k„} is either bounded or diverges to oo.

Proof. Assume that {k„} does not diverge to oo. Since k„ = cp*n(an) this im-

plies that {cp*n} does not diverge locally uniformly to oo . Then by Proposition

3.2 {q>*} is locally uniformly bounded, hence {k„} is bounded.   □

We shall discuss relationships between various properties connected with the

measure p and the spaces 3? . In this section we consider the properties I-IV

and I*-II* below.

I. The sequence {k„} is bounded.

II. The sequence {cp*n} is locally uniformly bounded in D.

III. The series 2^m=o \(Pm(z)\2cpm(z)\2 converges locally uniformly in D.

IV. The sequence {k„(z, w)} converges locally uniformly for z, w £ D.

I*. The sequence {k„} is convergent.

II*. The sequence {tp*n} is locally uniformly convergent in D.

Note that I* implies I and II* implies II.

Proposition 3.4. Conditions I and II are equivalent.

Proof. Recall that k„ = <p*(an). Thus II obviously implies I. On the other

hand, I implies that {cp*n(z)} cannot diverge locally uniformly to oo , hence II

is satisfied, by Proposition 3.2.   □

Proposition 3.5. Conditions II and III are equivalent.

Proof. First assume that III is satisfied. Then {|^„(z)|2} tends locally uniformly

to zero, hence by (2.27) |^*(z)|2 is locally uniformly bounded. Next assume

that II is satisfied. By Proposition 3.1 there exists a locally uniformly convergent

subsequence {cp*nl<s)(z)} of {cp„(z)}. Arguing as in the proof of Proposition

3.2 we see that the whole sequence {kn(z, z)} converges and that {cpn(z)} is

locally uniformly bounded. Since {<P*niAz)} converges it follows by (2.27) that

ICn(*)(z)| converges and the convergence must clearly be locally uniform. It

follows, again by (2.27), that the convergence of {kn{s)(z, z)} must be locally

uniform, and hence the convergence of {k„(z, z)} is also locally uniform.   □

Proposition 3.6. Conditions III and IV are equivalent.

Proof. Obviously IV implies III. Assume that III is satisfied. Let n > p. We
have

n

(3.3) \k„(z, w)-kp(z,w)\ =    ^   <pm(z)tpm(w)  ,

m=p+\
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hence by Schwartz's inequality

(3.4)     \kn(z,w)-kp(z,w)\< I  £   \<pm(z)\A      [   it   \<Pm(w)\2)     ■

It then follows from III and Cauchy's criterion that {kn(z, w)} converges lo-

cally uniformly for z, w £ D.   □

Corollary 3.7. Assume that condition II is satisfied. Then a subsequence {(p^,s\}

of {cp*n} is convergent if and only if the subsequence {a„(S)} is convergent.

Proof. This follows from (2.26) and the fact that {k„(z, w)} converges by

Propositions 3.5 and 3.6.   D

Proposition 3.8. Assume that the sequence {a„} converges to a limit a. Then

conditions I and I* are equivalent and conditions II and II* are equivalent.

Proof. That II implies II* follows from Corollary 3.7. That I implies I* follows
from Proposition 3.4. (tp*(a„) converges to limn<p*(a) because of the locally

uniform convergence.)   □

We sum up the main results of this section.

Theorem 3.9. A. The conditions I, II, III, and IV are equivalent.
B. If {an} is convergent, then the conditions I,  I*,  II,  II*,  III,  and YV

are equivalent.

Proof. Follows from Propositions 3.4, 3.5, 3.6, and 3.8.   □

4. Recurrence relations

The sequence {cpn} satisfies the following recurrence relation:

<Pn(z) = En--—---Cpn-\(z)
1 — anz K„-\

(4.1) _"__^
+ S„-——- -—K-i(z),        n = l,2,...,

i — anz   a.„_i

,_*/„>, an T   Z — a„_i    Kn

9n{  ) = ~kH   " 1-cTz K    /"-'(Z),. ~N \an\ l       anz  f«-l

(4.2) _ _
-]—re„—:—=—--(P„-X(z),        n = l,2,....

\an\       1 -a„z   Kn-X

(4.3) «o = 0,        <Po = *o,        <P*o = Ko-

The coefficients 8n, e„ are given by

,, Ay j?       (1 - an-Xa^)<p„(an-X)

(4-4) S"=       d-\an-X\2)Kn       '

(A ^ . ®7i   (I -an~^\an)<Pn(an-l)

{      ' "~     K\       (1-K,_,|2)K„       •

It follows from (3.1) with z = an-X that |e„| #0.
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Note that

,.,-, Sn _     \a„\ (1 - a„-Xa^)tpn(an-X)

en o^ (1 -a^rxan)<p*n(an-x)'

By substituting for <p*_x(z) from (4.2) into (4.1) we get the three-term recur-

rence formula

(4.7, *«=-£ii':(z)+4[|£"'2-^2it^=f^-«-

n = 1, 2,....

Furthermore, the sequence {y/„} of associated functions (cf. (2.22)-(2.23)) sat-

isfies the relations

/   \ z     cxn— j   Kn .   .      c  1     otn—Xz   Kfj      ~    ,  *
,ao\     Wn(z) = en-—■=--—y/n-i z)-8n-——--r—y*n_x(z),
(4.8) l-anZK„-X l-anz   kn-X

n = 1,2,...,

.„*/„\       an t z —a„_i   Kn . .       a„      1 — an-Xz   Kn     .    . »

(4.9) ̂ (Z) = m*»7^Fk^-i(z) - Kffi»-rr^r^rr^^>
« = 1,2,....

<4,o) «■«-ralrt(z)+b"?~^t^f^-^-
n= 1, 2,....

(4.11) ao = 0, ¥o = —, Vo=— ■
Ko Ko

In particular, it follows from (4.2), (4.7), (4.9), (4.10) that the functions
-y/*(z)/g>*(z) are the even approximants and the functions y/n(z)/cpn(z) are

the odd approximants of a continued fraction of a certain form. (Continued

fractions of this kind are sometimes called Nevanlinna-Pick fractions.) For

proofs and more details concerning the recurrence relations presented here, see

[4, 6, 12].
Some auxiliary technical results used in this section and in §§5-6 are discussed

in §7.
We shall consider some properties connected with the recurrence coefficients

{Sn}, {e«} • We recall that convergence of an infinite product means conver-

gence to a finite number different from zero.

V. The sequence {IXUilI6'"!2 _ l^ml2]} is bounded away form zero.

V*. The product IIm=i[leml2 _ V>m\2] converges.

V**. The series Y^=x\Sm\2 converges.

Proposition 4.1. Conditions I and V are equivalent.

Proof. The result follows from Corollary 7.5.

Proposition 4.2. Assume that the sequence {a„} converges to a limit a. Then
conditions I* and V* are equivalent.

Proof. Follows from (7.23).   D



316 A. BULTHEEL, P. GONZALEZ-VERA, e. hendriksen, and o. njAstad

Proposition 4.3. Assume that an = a for all n. Then conditions V* and V**

are equivalent.

Proof. It follows from (4.5) that in this situation |e„| = 1. It is well known

that the product Ilw=,[l _ \°~m\2] converges if and only if the series YLm=i \$m\2
converges.   □

We sum up our main results so far.

Theorem 4.4. A. The conditions I, II, III, IV, V are equivalent.
B. If {a„} is convergent, then the conditions under A are also equivalent to

the conditions 1*, II*, V*.

C. If an = a for all n, then the conditions under A and B are also equivalent

to the condition V**.

Proof. Follows from Theorem 3.9 and Propositions 4.1, 4.2, and 4.3.   □

5. Szego condition

We shall in this section consider relationships between the Szego condition

(see VII below), cf. (1.4), completeness of the systems {cpn(e'6)} in L2(p), and

the conditions discussed in §§3-4.

Proposition 5.1. The closed linear span of {Bn(e'6): n = 0, 1,2, ...} in

L2(p) equals the closed linear span of {e'"e: « = 0, 1,2,...}  in L2(p) if

E~=,(l-|«m|) = 0O.

Proof. See [4, p. 63].   □

We now introduce the following two conditions.

VI. The sequence {<p„(e'e)} is not complete in L2(p).

VII. (Szego condition)   f*ffln p'(d)dd > -oo .

Proposition 5.2. The conditions VI and VII are equivalent.

Proof. Note that {cpn} being complete is equivalent to {B„} being complete.

Recall that we have assumed |a„| < R < 1 for all n . It follows from Proposi-

tion 5.1 that {<Pn(e'6)} is complete in L2(p) if and only if {e'"e: n = 0, 1,2,

... } is complete in L2(p). It is a known result that {e'n0: n = 0,1,2,...}

is not complete in L2(p) if and only if condition VII is satisfied. See, e.g., [19,
22].   □

We introduce the notation P(z, a) and pn(d) for

(5.i) jP(z,a) = ldH!;

(5.2) pn(d) = P(e'B,an).

Note that P(e'e, a) is the Poisson kernel, with

(5.3) r P(eie , a)dd = 2n.
J -71

Recall that some auxiliary technical results used in this and other sections are

discussed in §7.
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Proposition 5.3. Condition VII implies condition I.

Proof. The functions pn (d) are uniformly bounded an uniformly bounded away

from zero for d £[-%,%] and all n . Let m and M be such that

(5.4) 0<m<pn(d)<M <oo.

Then it can be shown by elementary calculations that

(5.5) r p„(d)ln\^-^-]dd>M f   lnp'(d)dd-  (M - m)^ + 2nlrrM   ,
J-Ti YPn(d)\ J-K L KfJ -I

and

(5.6) /   pn(d)lrv  ^t\  dd<mf   lnp'(d)dd-   (M - m)^+ 2nlnm  .
J-7i VPn(d)\ J-n L Kfj J

It follows by Proposition 7.6 that if f*nlnp'(d)dd > -oo, then {k2} is

bounded.   □

We shall in the next section, by invoking deeper function theoretic results,

prove the converse of this result. Here we shall indicate by more elementary

means how I implies VI and hence VII, in the special situation that a„ = a for

all n.

Proposition 5.4. Assume that an = a for all n. Then condition I implies condi-

tion VI.

Proof. We define

(5.7) F(z) = l-f^.
z — a

Denote by /?„ the «th Fourier coefficient of F with respect to the system

{<Pn}, i-e.,

(5.8) Bn = (F,<pn).

Then by (7.37) j3„_i = rfr^-. We recall that in this situation |e„| = 1 for all

n (cf. (4.5)). It follows from (7.41) that

(5.9) (i - H2) £ |/?„_,|2 = (i - M2) (1 - -1) .
m=l ^   0        KnJ

(Note that we may in this argument set a0 = a since formulas (4.1), (4.2),

(4.4), (4.5) are valid for n = 1 with an arbitrary value of ao.) It follows that

if {k„} is bounded, then

oo .

(5.10) El^-il2<72-
m=\ K0

On the other hand

/"" 11 - die'8 2 rn 1
(5-U) (F,F)=        -*-   dp(d)=       dp(d) = -2.

J -71 I   e u J-71 K-Q

Thus if {k„} is bounded, Parseval's equality is not valid for the function F £

L2(p), and so {cpn} is not complete in L2(p).   u
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6. Limit functions

The discussion in §3 shows that {cp*n(z)} may exhibit two different kinds

of convergence behavior in D: (1) {tp*(z)} diverges locally uniformly to oo.

(2) For each accumulation point a of {a„} there exists an analytic function

7ra(z) without zeros such that {<P^S)(z)} converges locally uniformly to na(z)

if {an(i)} converges to a. We shall sometimes use the notation ^4jy also

in case (1), and then mean the zero function. In Theorem 6.12 we shall give

explicit representations of the functions na(z).

We shall first (in Proposition 6.5) show that the functions -z-j^ belong to the

Hardy class H2 . (For the definition of this space and other basic material for

this section, see [18, 25, 36, 37].) We shall make use of the fact that the integral

/*„ ia"^/9)p is independent of n (Lemma 6.3). To obtain this we utilize the

interpolation property (2.28) of y/*(z)/cp*(z) to £lp(z) at the origin.

We again recall that some auxiliary technical results used in this and other

sections are discussed in §7.

Lemma 6.1. The following equality holds:

(     } Wn(eie)\     \n(eie)\2-

Proof. The real part of y/*(e'e)/cp*(e'e) may be written

<f,-?y Pr-K^l _ K(eie)^pWr) + n(^r)<Pn(eie)
[     ' [K(ei6)\ 2\n(e'°)\*

It is readily verified that

(6.3) ^7^=_L_^(^), ^7^) = _^_^(^).

By combining (7.1) and (7.23) we get

it as *, \    i s        t \   */ \     2zBn(z)(l - \a„\2)
(6.4) <p*n(z)y,n(z) + tpn(z)K(z) =  (? _ ^ _'_^.

Formula (6.1) then follows from (5.1)-(5.2) and (6.2)-(6.4).   □

Lemma 6.2. For z £ D the following inequality holds:

(6-5) Re l^yJ - ii-^zi2i^(z)i2-
Proof. The function Re[^*(z)/>*(z)] is harmonic in DUT, therefore by Pois-

son's formula we may write (since (6.1) holds):

(6.6) toffi]       'f^,,)^,1 lK(z)\      2nJ_„   v '\9*n(e,6)\2

Also the function, In ,, —j,""l    ,}   is harmonic in D U T. We observe that

«"> ir=^ "'<•"■■'
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for arbitrary a £ D. Hence (again by the Poisson formula)

(6.8)        In n    l_ltnl], o   = ±- f P(eW, z) In [   ?"(f>    1 dd.
(I - anz)2cp*(z)2       2nJ_n Ll^(^'e)|2J

From the inequality between weighted geometric and arithmetic means (cf.

(7.24)) we obtain

(6.9)

— r P(eie   z)   PnW   dd > exD f— f P(eie   z)ln [   Pn^6)   ] dd
2nJ_/[e   'Z)\9*n(eie)\2      ~    P[2nJ_/[e   ' Z)^[\n(eie)\2\     . '

Substitution from (6.6) and (6.8) then yields (6.5).   □

Lemma 6.3. The following equality holds:

,,.m r pn(d)dd     2% ...

Proof It follows from (2.28) that

SB-™-*
The function y/*(z)/g>*(z) then has a Taylor series expansion

(6.12) ^4 + E4V<Pn(z)        K2       ^   m

valid in a neighborhood of D U T, since cp*.(z) has no zeros in D U T. From

this follows that Re[^*(e'e)/<p*(ew)] has the following series expansion:

1       1   °° —
(6.13) Ke[¥*n(eie)/cp*n(eie)] = — + ~ 5>&V"" + ^""""l

K0       L m=\

uniformly convergent for d e [-n, n].
Term by term integration of the expansion (6.13) leads to

(6.14) rRe\^}dd=2^.
J-n lK(e'e)\ K2

Formula (6.10) now follows from Lemma 6.1.   □

Lemma 6.4. There exists a constant B such that

/7l Jfl

., \9*n(re'e)\2 ~

for all n and all r £ [0, 1].

Proof. Because of (5.4) Lemma 6.3 implies that there exists a constant B such
that

(6-'6) Lwik^-B
for all n . The integral

[*       de
J-n \K(rei6)\2
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is a nondecreasing function of r for r £ [0, 1] (see, e.g., [36, 37]), and so the

inequality (6.15) follows from (6.16).   □

Proposition 6.5. Every function jj^. belongs to the Hardy space H2, i.e., there

exists a constant B such that

(6.17) f       / ..sl.dd<B
J-n \*a(re'e)\2      ~

for all re[0, 1).

Proof. Let anis) —> a. For fixed re [0, 1), ll\cp*„,Az)\2 converges uniformly
s—>oo *• '

to l/\na(z)\2 for \z\<r. It follows that

Ln \K(s)(re«)\2

converges to

f"       d6
Ln \na(rew)\2 '

and so (6.17) follows from Lemma 6.4.    □

Since  l/na(z) belongs to H2, the limit of l/na(re'6), hence of na(re'e),

exists a.e. on [-n, n] as r tends to 1. We define na(e'e) by

(6.18) 7ia(e'e) = lim na(reie).
r—>l~

Proposition 6.6. For z £ D the following inequality holds:

<6-19> w^aiRca'{z]-

Proof. This follows from Lemma 6.2, the convergence of a subsequence of

{cp*n(z)} to na(z) and the convergence of {y/*(z)/tp*(z)} to QM(z) according

to (2.29) (recall (2.30)).   □

It is known that ReQ^(z) = $\P(z, e,e)dp(d) has radial limit equal to

2np'(d) a.e., i.e.

(6.20) lim Ren/t(re'e) = 2np'(d)    a.e.
r-*\-

(see e.g. [36]). It then follows from Proposition 6.6 (cf. also (6.7)) that

<6'2i) ^4-2"m ae-

Proposition 6.7. The following inequality holds:

(6.22) M«)2 > ^ exp (-± £ Pie», „, ln [_£W_] de).

Proof. It follows from (6.21) that

(6.23)

i- f" P(ew , a) ln [ nf^    1 dd > j- [* P(ew , a) In „   ,    \  _,, dd.
2?r y_7C   v ;     [P(e'6,a)\       ~ 2n J_n   v ;     2n\7ta(e'd)\2
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Poisson's formula gives

(6.24) J-/"   P(eie, a) In „  ,    \  ...nd0 = In ,   ,   \  ....
v      ' 2n J_n   K     '   '    2n\na(e'e)\2 2n\na(a)\2

Combining (6.23) and (6.24), taking into account that na(a) is real since

(p*n(a„) is real, we get

(6.25) ^- C P(ew , a) ln \ nf^ J dd > ln -—Vv> .
V       ; 2nJ_n   K     '   '     [P(e'e,a)\       ~     2nna(a)2

which is equivalent to (6.22).   D

Proposition 6.8. Assume that an<s\ —> a. Then

(6-26)    a *2«=sexp [-s £/,(e"'a) ln [t4^) ]Je •

Proo/. Follows from Proposition 7.6 and Proposition 6.7.  (Recall that k„ =

<p*n(a„).)     D

Proposition 6.9. Conditions I and VII are equivalent.

Proof. This follows from the proof of Proposition 5.3 and Proposition 6.8.

(Recall (5.4) and Corollary 3.3.)   D

We sum up our main result on equivalences here.

Theorem 6.10. A. Conditions I, II, III, IV, V, VI, VII are equivalent.
B. Assume that {a„} converges to a limit a. Then conditions I*, II*, V* are

equivalent to the conditions under A.

C. Assume that all an equals a fixed value a. Then condition V** is equiv-

alent to the conditions under A and B.

Proof. Follows from Theorem 4.4, Proposition 5.2, and Proposition 6.9.   □

Proposition 6.11. If condition VII is satisfied, the following equality holds:

ft™ 1 ,      fi'(d)(6.27) -—, .„,,- = 2n „,.).'       a.e.
\na(e,e)\2 P(e'e,a)

Proof. We recall that (6.21) is valid. Assume that strict inequality holds on a
set of positive measure. It follows from the proof of Proposition 6.7 that then

there would also be strict inequality in (6.22) in case the integral is finite. This

contradicts Proposition 5.3.   □

Let H(z) be an arbitrary function in H2 . Such a function has a representa-

tion of the form

H(z) = e'V [] {(zm , z) exp  ^ /   D(eie, z)dco(d)

(6.28) m=x L * J

•exp f-L r D(ew, z)ln\H(ew)\dd

where /leR, v e N0 , Z\, ... , zq, ... e D, and co is a singular (nonnegative)
measure. (See e.g. [18, 36].)
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Theorem 6.12. Assume that {a„(j)} converges to a. Then na(z) = limJ_00 cp*n,sAz)

has the following representation:

(6.29) na(z) = e~l_ ̂  ~ia|2 exp \-±- f" D(eif>, z) Inp'(d)dd] ,
y/2n    1-az I   4n J_K

where X £ R.

Proof. We recall that the function l/na(z) belongs to 772 and has no zeros in

D. We note that

(6.30) ^- j   D(ew, z) ln2ndd = ^ ln(2jr).

It follows from (6.27), (6.28), and (6.30) that we may write

-L. = V2^eaexp fi- f /)(<?*, z)dco(d)
,„n M^) L2n7_^ J
(6.31) r i    /•» r   »'rm   i     l

.„p[i_£C((,».Z)ln[J#L]rf<,

where A e R, and hence

r-4^r = v^exp fi- f P(e'e, z)ciw(0)
/r 70x Fa(z)| L27t ./_„ J

(     } r i   r* r   u'w   1    i
■Mp[s/./^'z'ta[i^]rfe.

From Proposition 6.8 then follows

(6.33) -i-r = exp fi- f P(e'e , a)£to(0)l . -I-.
na(a) [27t y_B J    7ra(a)

Consequently f*nP(ew, a)dco(d) = 0, hence w = 0. The function  ^'ji"'2

belongs to 772 and can hence by (6.7) and (6.28) be written as

(6.34) ^} ~iQ|2 = exp f-i- /"* 7>(<?'e, z) ln P(eie , a)dd  .
1-az [471 J-n

By combining (6.31) and (6.34), taking into account that co = 0, we obtain

(6.35) *     =^exp[JL f D(ei6,z)lrlp'(d)dd]   {)~".Z\,
«a(z) L47t ./_„ j yq - |a|2

which is equivalent to (6.29).   □

Note that na(a) is a real number. The value of X is therefore the imaginary

part of -£ £ D(eiB , a) ln /*'(0) dd . We recall (cf. (1.3)) that the spectral factor

a,, of p is defined by

(6.36) aM(z) = \/2nexp [^ /* 7)(<?'e, z)ln/i'(0)</0  .

Strictly speaking the definition is for the situation that the Szego condition (VII)

is satisfied, but a^(z) may be taken to mean zero otherwise.
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We may also introduce the modified spectral factor a^(a, z) defined by

1 — (XZ
(6.37) crM(a, z) = -_=j==ff (Z).

vi -M2

Corollary 6.13. The function na(z) may be written as

(6.38) na(z) = e~a—l—r ,        A e R.
0/i(<X, z)

Proof. Follows immediately from (6.36), (6.37), and Theorem 6.12.   □

Theorem 6.14. Let kn(z, w) denote the reproducing kernels associated with Jz?„

and p, as in (2.24). Assume that the equivalent conditions I-VH are satisfied.

Then

(6.39) lim k„(z, w) =——====--—,
n-00 a)1(z)all(w)(l - zw)

locally uniformly for z, w e D.

Proof. The locally uniform convergence is included in the condition IV. Let a

be an accumulation point for {a„} with an<S) —> a. Since {<p„(z)} tends to
s—»oo

zero, it follows from (2.26) that

cc ac\ vti        \ na(z)na(w)
(6.40) hm kn(s)(z, w) = -—-

•5-°° 1 - C(a, z)£(a, w)

Taking into account (6.37)-(6.38) we find by direct calculation that

(641) na(z)njw)    = = 1_

1 -C(a, z)C(a, w)      fj/i(z)fj/i(u;)(l - zw) '

from which the result follows.   □

7. Auxiliary technical results

We shall in this section prove some of the more technical results that are

used in the proofs of the main results in §§4-6.

Proposition 7.1. The following formula is valid:

{ia)     cp*n(z)¥n(z) + cpn(z)K(z) = I n[|£.|2 - \^\2]{z_1Zlf__z) ,

n = l,2,....

Proof. By using (4.1), (4.2), (4.8), (4.9) we get by direct calculation

<P*n(z)Vn(z) + cpn(z)\p*n(z)

,79, K2    57 (a„-i -z)(l -o^TTz)

[    ' k2_,K|        (l-a^z)2

• [|e„|2 - |r5„|2][^*_,^_i(z) + cpn_x(z)y/*_x(z)].

Repeating the process and taking into account that

(7.3) ^^0 + ^0^ = 2
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we then obtain

(pn(z)y/„(z) + cpn(z)y/*(z)

(7-4) -J^lr\^n_[p    \2_\x   |2i       (~Z) TT    (am~z)
~K2 11 \an\[Eml       ldml J(1-&7Z)2 11 (1-a^zY

u m=X m=\

Multiplication by (a„-z) in numerator and denominator then gives (7.1). (See

also [4, p. 45].)   □

We recall that we may write (cf. (2.16))

(7.5) <D„ = B„ + an-XBn_x + ■ ■ ■ + 0qBq

and hence

(7.6) cp„ = KnB„ + bn-XBn-X + --- + b0B0

where bk — Knak . It follows by orthogonality that

(7.7) (On,7i„) = (<Dn,<D„) = -^,
Kn

(7.8) (9n,BH) = -±-.

We also recall (cf. (2.15)) that

(7.9) (<p*,C„(z)P(z)) = 0   whenfe^.,.

Lemma 7.2. The following formula is valid:

(7.10) *S£ = 1[|£„|2 - \Sn\2] (iZ^zL^.,, Bn) .

Proof. This follows by scalar multiplication of (4.7) by Bn , and use of (7.8)

and (7.9).   D

Lemma 7.3. In the expansion (7.6) the coefficient 6„_i has the value

in  i i \ L r —77-vi  an    X       0!n—XOcn
7.11 bn-x = [k„ - cp*n Q„_i    |-r    -

|a„| a„_i -an

when a„_i ^ a„ .

Proof. We may write (7.6) as

(7.12) cpn(z) = KnB„(z) + bn-XBn-X(z) + L„_2(z),

where L„_2 £ -2^-2. By taking the superstar transform of this equation we get

(7.13) tp*n(z) = Kn + bnZlUz) + Zn(z)tn-l(z)Bn-2(z)[Ln-2(z)]t.

Note that Cn-i(a«-i) = 0. Therefore

(7.14) cp*n(an-X) = Kn + bn-XC,n(an-X)

hence (when a„_i ^ a„)

in  i c\ T-        r    */ \ n \an\  1 — a«— 1 a«
(7.15) &„_i =[9>*(a„_1)-K„]L=1-

otn   an     otn— i

from which (7.11) follows.   D
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Proposition 7.4. The coefficient sequences  {k„} ,   {<5„},   {e„}   are connected

through the formula

(7-16) ,1"'Q"l|2-%1 = le"l2-|g"'2-

Proof. By the Hermitian property of the inner product we have

(7.17) (t1^"-' • *«) = (*-i • '-^-Bn) .\ 1 -anz I      \ z-a„        I

We observe that we may write

,n 1fi% 1 ~ Qn-iz D , .      an — Q«-i D /  .      an (I — an-Xan) D      , .
K'Ao) —-B„(Z) --j-yr-Bn(Z) --1-j-tt-B„_X{Z).

z-otn 1 - \anr \an\     1 - |a«l

From (7.12) we then get

l-^ZBn(z) = f"~^2d<Pn(z) ~ bn-XBn.x(z) - Ln.2(z)]
(7.19) Z~an ^(1_-KI2)_

a„  (1 - an-Xan)
- f—i"7i—u \2\  h"-i(z)

\Cn\   (1 ~ \anr)

and by substitution for bn-X from (7.11) when a„_i ^ a„ this gives

1 -an-xz an-a„-x

z-an   B"{Z) = Knd-WV)^
(7.20) _       _    V_L^l_; _

aH-(l - an-xa.n)cpn(an-x) ^        a„ - a„_x    T

\an\Kn(l-\an\2)       "n-l[Z)     K„(l-|a„|2)^-2(Zj

For q„_! = a„ this formula is immediately verified. (Recall that tp*(an-X) =

cp*n(an) = K„.)

Scalar multiplication of (7.20) by tpn-.x , taking into account (7.8) for index

n - 1, then yields

<nnU /,. 1 -an-xz     \      -anf*n(an-x)(l - an-Xa=)
(/.zij < cp„-X, -an ) = —|—j——-1—p^r-

\ z-an        I \an\K„(l - |a„|2)/c„_,

and consequently by (7.17) we get

in 22) (Z~a"-X<p _     b\ = ~a"<9"(a"-1^1 -Qn-iQ«)

\l-a„Z    "   ''    "/ \an\K„(l - \an\2)K„-X

Substituting (7.22) for (^~<Pn-\, B„) and (4.5) for e„ in (7.10) we obtain

(7.16).    D

Corollary 7.5. The coefficient sequences {k„}, {d„}, {en} are connected through

the formula

(7-23) ^|(l-|an|2)=n[|em|2-|^|2].
" m=l

Ptoo/. Follows by multiplication of the equalities (7.16) for indices 1,2,...,
n.   D
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We recall the inequality between weighted geometric and arithmetic means,

see, e.g. [20, 36]:

(7.24) exp (^ J\(d)lnf(d)dd^j <jj\(d)f(d)dd,

where p(d) > 0 and integrable, P = J*np(d)dd, f{6) > 0. With p(d) = pn(d)
this in particular gives

(7.25) exp (J^fpn(d)lnf(d)dd^) < ± J*pn(d)f(d)dd.

Proposition 7.6. The following inequality holds:

(7.26) K2<^exp(-^/%„Wln[^]^).

Proof. Since $\\cp*n(ei6)\2dp(d) = 1  and S\g(d)dp(d) > !\g(d)p'(d)dd
for g(d) > 0, we obtain

(7.27) 1 > f \cp*n(e'e)\2p'(d)dd = f pn(d)\tp*„(ei6)\2 \^§r] dd.
J-n J-n LPn(V).

Using (7.25) we then get

(7.28)

= 2k exp (± J^pn(d)ln\<p*n(e'e)\2dd^ -exp (± J' pn<0)]n [£j^] dd) .

Since ln|^*(z)|2 is harmonic for zeDuT,

± JU Pn(G) ln \<p*n(ei(>)\2 d9 = ln \<p*n(an)\2.

The inequality (7.28) may then be written

(7.29) 1 > 27r|^(a„)|2exp (J-J%n(6) In [£|^] dd) ,

which is equivalent to (7.26).   D

We shall use the notations

(7.30) tf| = (i^H£,,„_,(z)),

(7.31) e. =(i_^£,,„_,(z)).   D

Lemma 7.7. The following equality holds:

(7.32) ,M=J£*L* n=l,2,....
"«   H-n—\

Proof. By definition cp*n_x(z) = 5„_i(z)(f?„_i)*(z), hence

(7.33) yn% = I^^Bn_x(z),cpn„x(z)).
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We observe that we may write

(7.34)       -j——— B„-X(z) = -j-.—Tj-fJn-iU) + —-:-;—7TBn(z).
l-a„z 1 - \a„\z a„   1 - \a„\l

By using (7.6), (7.34), and Lemma 7.3 we then get

(7.35)_ _     _
1— an-Xz n      .  .      (1 — an-Xan)cp*(a„-X) , . .  . r       . .

Tzk*B-M =  (i-\aJ)KnKn:x ^-(z)+Cl^(z)+C2L-2(7)•

where L„_2 6 -2$i-2, cx, and c2 are constants.

(In Lemma 7.3 it is assumed that a„_i ^ a„ .   If a„_i = a„, the result

follows immediately, with cx =0.)
From (7.33) we then get

(n ,/rx .,(n)   _ (1 -Q!H-iaw)y;(aw-i)

[       ' y"~l~     (l-|an|2)K„K„_,     '

and by (4.5) the right-hand side equals -J=^^- .   D

Lemma 7.8. The following equality holds:

(7.37) tfi^r'        n = l,2,....
\an\ /c„_i

Proof. We may write

(7.38) ^-(t^B-W.1)-

Scalar multiplication of (4.1) by 1 then gives

(7-39) o = en^rtTl+Sn-^-yWl,

hence by (7.32)

(7.40) ^T=^L,

which is equivalent to (7.37).   □

Lemma 7.9. The following equality holds:

XX^a-K-.i2)
(7.41) m=1

_ 1 ~ |o=ol2      1-KI2  , y^ (1 -Ittm-il2),,-   |2     n
k-2 K2     ' + 2^ „.2 Ufcrol 1')-
K0 K» m=i Km-\

Proof. From (7.37) we get

(7.42) I^JSil2"^.
Km-1

and from (7.16) we get

(1 &V\ M       U |2n l^ml     _ ty       i |2\ l£>»l " lQw|
(/.43) (1 - |aTO_i| )-2— - (1 - |am_i| )—^-~2-.

Km-\ Km-\ m
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The right-hand side of (7.43) may be written

I c,    |2 i  _ I        |2
M       I™         |2\ \bm\           l       \am\
(1 - |om_i|   J-j--j-

(7.44) m~\ m    ,

_l-|qm-i|2      l-\a.my  ,  (1 -|«m-i|2),i„   |2_n

*m-l Km Km-1

Consequently by summing (7.43) for m = 1,2, ... , n we get (7.41).   □
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