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SINGULAR POLYNOMIALS FOR FINITE REFLECTION GROUPS

C. F. DUNKL, M. F. E. DE JEU, AND E. M. OPDAM

Abstract. The Dunkl operators involve a multiplicity function as parameter.

For generic values of this function the simultaneous kernel of these operators,

acting on polynomials, is equal to the constants. For special values, however,

this kernel is larger. We determine these singular values completely and give

partial results on the representations of G that occur in this kernel.

1. Introduction and notations

Let o be a real vector space of finite dimension N, equipped with an inner

product (•,•)• Let G c 0(a(-, •)) be a finite (real) reflection group. We may
and will assume that (•, •) is (/-invariant. Let R be the corresponding root

system, where we will assume that (a, a) = 2 for all a £ R. Choose and fix a
positive system R+ in R.

Let & = C[o] denote the polynomial functions ona. ^ has a natural grad-

ing & = ©„>0^'n ; we let «^+ = (&n>x£sn • There is a natural representation

of G in AutcJ(^), given by

(g-f)(x):=f(g~lx)       (g£G,f£&,x£a).

The (/-action preserves the degree.

Any £ £ a defines an element t\* £ Homc(a, C) = a* = £?x by £*(>/) =

(£,, n) (n £ a). Let K be the complex vectorspace of C-valued (/-invariant
functions on R. An element of K is called a multiplicity function (the reason

for this terminology is a connection of the theory of Dunkl operators with the

harmonic analysis for the Cartan motion group; the values ka of k £ K are
then determined by the multiplicities of the restricted roots). To each £, £ a

and A; e AT we assign an operator T$(k) £ Endc(^a) as follows:

Ti(k)f=dif+ £ ka(a,Z)£^£       (fe&),
a£R+

where <% is the directional derivative corresponding to £ and ra is the reflec-
tion in the hyperplane orthogonal to a.

These operators were introduced in [D2]. In that paper it was shown that

{T((k)\£ £ a} is a commuting family of operators, for all fixed k £ K. They
are homogeneous of degree -1 and (7-equivariant:

(1-1) goTi(k)og~x = Tgi(k)       (t£a,g£G).
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For k = 0, Dunkl's operators reduce to the ordinary directional derivatives, so

the simultaneous kernel of the T$(k) (£ e a) consists of the constants alone.

For generic k £ K this is still true, but there exist exceptional k for which this
simultaneous kernel is strictly larger than the constants. This paper is concerned

with the study of such singular values. Let us introduce some terminology. For

k £ K, put S(k) = {p £ ^+\T^(k)p = 0 V£ £ a}. If S(k) ^ {0}, then k is
called singular, and regular otherwise. We use the notation A^sing (resp. A^reg)

for the set of all singular (resp. regular) k £ K . Similarly, a polynomial p £ 3°+

is called singular if p £ S(k) for some k £ K. Put S = z2k€K $(k) ■ As a
consequence of the homogeneity and the (7-equivariance of the T^(k) one may
split S according to homogeneous degree and (/-type:   S = 0 g1^"1'

where G denotes the dual of G. There is an easy first observation on A^sing.

Let {ex, ... , e^} be an orthonormal basis for o. Then

N N

(1.2) £ e- Tei (k) = £ e*dei + £ ka( 1 - ra).
;'=1 i=\ a€R+

Due to the (7-invariance of k , zZa€R ka(l-ra) is a central element in the group

algebra of G. Hence it acts as a scalar XT(k) in any irreducible representation

t £ G. If ka = k £ C (Va £ R), then it is easy to see that Xx(k • Ir) =

k Sqs.r+O _ Xx(ra)/Xi(l)), where Xr denotes the character of x . Now if p £

S(k) is of isotype t and homogeneous degree m, then p is annihilated by

the operator in (1.2); this gives the inclusion Sm<T c S(-m/Xr(lR)) in the

case of equal ka . In other words, we can determine ATSing completely if we

know the embedding degrees of all t 6 G in S. One might hope that A^sing =

{-m/Xx(lR)\m > 0, x £ G, x occurs in &>„,}, but this is false (the easiest

counterexample is furnished by G = S4). Let us note that Xt(Ir) is an integer;
this follows from general representation theory of finite groups. It is easy to
see that this integer is nonpositive and equal to zero iff x = triv . So A'sing will

consist of strictly negative rationals in the case of equal ka .

One of the reasons for our interest in S is the fact that S(k) turns out to be

the only obstruction for the existence of a linear isomorphism V(k): £P 1-+ & ,

homogeneous of degree 0, that intertwines the action of T^(k) and the ordinary

derivative d$ on iP (see Corollary 3.5). There are many other different de-

scriptions for S or A?mg and their role with regard to the Dunkl operators. For

example, J^sing is also the set of poles of the simultaneous r^(/c)-eigenfunction

ExpG(A, k, x), considered as a function of k £ K (see [O]). Using monodromy

arguments this set of poles was described in terms of the zeros of the Poincare
polynomial of the coinvariant algebra of G [O, Theorem 9.7]. This leads to an
explicit description of A^sing. If ka = k  Ma £ R, then the result is

*s,ng=UUU{i:-'4>
m>l,=l j=\   la' >

where the d, are the primitive degrees of G. Yet another meaning for this set

^smg is the following. As a consequence of the commutativity of the T^(k) for

fixed k, there exists an algebra homomorphism from !? to Endc(^) which

sends £* to T^(k) and 1 to the identity. If we define the bilinear form (•, -)k
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on & *& by (p, q)k = (p(T(k))(q))(0), then Ksin& is the set of all values for

which this form is degenerate.
The purpose of this paper is twofold. First of all, we explain these different

interpretations of the space S and the set ATsing. Secondly, we try to get a

better understanding of the structure of A^smg with regard to the representation

theory of G. The optimal result in this direction would be a list of irreducibles

x £ G that can occur in S, and for each of these a description of the function

m t-> dimc(5,mT). As yet this seems out of reach, but we will be able to

give estimates for dimc(SmiX) entirely in terms of decomposition numbers for

Hecke algebras.

2. The existence of intertwining operators

The present section is concerned with the existence of operators that inter-

twine the action of two sets of operators in a graded vectorspace. The presence

of a grading for which the various actions are homogeneous enables one to use
induction. This fact and an additional assumption (formulated in the language

of differential forms) are surprisingly powerful tools for the construction of

certain intertwining operators. The underlying ideas were used more or less

parenthetically in [D3]; this section can be regarded as an abstraction and ex-

tension of the proof of Theorem 3.11 in [loc. cit.]. The results show that, in the

context of this section, there is an equivalence between the commutativity of

sets of operators, the triviality of the first cohomology-group of a certain com-
plex and the existence of intertwining operators. We will use this equivalence to

give a new proof of the commutativity of Dunkl's operators and the existence

of the intertwining operator (see [loc. cit.]).

Let L be a vectorspace with a grading L = ©°^0L,. Put L_x - 0. Let k

be a positive integer and suppose {dj}k=l are linear operators in L such that

(i) djLiCLi-X   (j=l,...,k;i = 0, I...).

(ii) njL, Ker(d,) = L0 .
A sequence {/,}f=1 in L will be called a d-closed 1-form if djlj = d,lj

(i, j = 1, ... , k); it is a d-exact 1-form if there exists I £ L such that <9,7 = /,
(i = I, ... , k). Suppose in addition that

(iii) every d-closed 1-form is 9-exact.

Theorem 2.1. Let {Sj}k=l be linear operators in L such that

(i'J  dj(Li) c U-\   (j=U...,k;i = 0,l...);
(ii') the dj commute.

Let {dj}ki=x be linear operators in L satisfying (i), (ii), and (iii) above and

let A: Lo >-* Lq be linear. Then there exists a unique linear map B: L i-> L

such that:
(a) B extends A;
(b) djB = BSj   (j=l,...,k);
(c) BLiCLi   (* = 0, 1,...).

If A is injective and f]j=i Ker(Sj) = L0 , then B is injective.

Proof. Existence. We will construct a family of operators 2?,: L, *-> L,   (i —

0, 1, ...) such that:
(a)   B0 = A;

(P)  djBi = Bi_xdj   (j=l,...,k;i=l,2,...);
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(y)  BiL.cL,   (i = 0,l,...).
Assuming for the moment that this has been done, we can take B\l, = Bi

and extend by linearity to obtain an endomorphism of L, which satisfies (a),
(b), and (c).

The construction is by induction. Put Bo — A. Next, let I £ Lx . Consider

the 1-form L4<5|7}*=1 . Since A8,l £ Ln, this 1-form is trivially d-closed by
(i), so there exists /' e L such that dtl' = A5,l (i = I, ... , k). Properties (i)

and (ii) imply that any such /' is in Lo©Li . By (i), we may take /' in Li and

it is then uniquely determined as a consequence of (ii). We can thus define Bxl

to be the unique element in Lx satisfying djBxl = ASf (i = I, ... ,k). The
uniqueness makes it clear that Bx: L, i-» Lx is linear. For the induction step,

assume that Bq, ... , Bd (d > 1) have been constructed and satisfy (a), (/?),

and (y) (for i = 0,... , d). Let I £ Ld+X and consider the 1-form {Bddil}k=l.
Since the <5, commute, we have, using the induction hypothesis

djBdSil = Bd-Xdjdil = Bj^Sidjl = diBd5jl.

Hence the form is d-closed and there exists V £ L such that 3,7' = BdSil

(i = I, ... , k). The same argument as above shows that we can determine /'

uniquely by requiring it to be in Ld+X . Again, the map Bd+X: Ld+X i-> Ld+X,

defined by Bd+Xl = I' is linear and by construction we have djBd+xl = 3,7' =

BdSjl  (i — I, ... , k). This completes the induction step.
Uniqueness. Let B' be any other operator in L satisfying (a), (b), and

(c) in the Theorem. Put B'd = B'\Ld. We prove by induction that B'd = Bd

(<i = 0, 1, ...). For (7 = 0, this is just (a). Assuming B\-Bi (i = 0, ... , d),
we have for / e Ld+X arbitrary

dj(Bd+x - B'd+l)l = (Bd - B'd)djl = 0       (j=l,...,k),

so (Bd+l - B'd+l)l £ L0 by (ii). But then (Bd+X - B'd+l)l £L0n Ld+X by (c),
which is the zero subspace since d + 1 > 1.

We now prove the last statement of the theorem. Put Ld = 0,=o L, (d —

0, 1, ...). We prove, again by induction, that B is injective on Ld . For

d = 0, this is the injectivity of A . Assuming the statement for i = 0, ... , d,
let / £ Ld+X and suppose Bl = 0. Then, by (b), BSjl = 0 (j = I, ... ,k).

Since Sjl £ Ld , (5,7 = 0 (j - 1, ... , k) by the induction hypothesis. So, by
the assumption on the simultaneous kernel of the dj, / is in L0. But then

Al = Bl = 0, so / = 0.

Corollary 2.2. Let L and the Lt be as above and suppose in addition that

dim(L,) < c» (/ = 1, 2, ...). Suppose that {dj}k=l are linear operators such

that:
(i) djLiCLi-i   (j=l,...,k;i = 0, I,...);

(ii) f|J_i Ker(3,-) = L0 ;
(iii) every d-closed l-form is d-exact;

(iv) the dj commute.

Suppose {Sj}k=i are linear operators in L such that

(i')  SjLiCLi-,   (j=l,...,k;i = 0, 1,...);

(ii')   rr)=,Ker((57) = Lo.
Then the following are equivalent:
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(a) The dj commute.
(b) Every S-closed l-form is 6-exact.

(c) There exists an automorphism A of Lo that extends to an automorphism
B of L such that djB = BSj   (j =1, ... ,k).

(d) Every automorphism A of Lo uniquely extends to an automorphism B
of L such that djB = BSj   (j = 1, ..., k) and BLi = Lt  (i = 0,l, ...).

Proof, (a) =>■ (d): Theorem 2.1 applies. Since B is injective on the L,, it is an
automorphism by the finite dimensions of the L,. The implications (d) =>■ (c)
and (c) => (a) are obvious.

(b) => (d): Apply Theorem 2.1 with the roles of the dj and Sj interchanged.
Again the finite dimensions of the L, ensure that B is an automorphism.

(c) =>■ (b): This follows from (iii).   □

3. The perturbed de Rham complex

We consider the differential forms on a with polynomial coefficients, on
which we introduce a tentative boundary operator d(k) (based on the Dunkl

operators). A calculation and subsequent appeal to the results of the previous

section will enable us to conclude that the Dunkl operators commute; it is then

immediate that d(k) is a boundary operator. We conclude with an alternative
characterization of singular polynomials.

For / = 0, 1, ... , let Kl = 3° <8>c A/ a* (this Kl has no relation to the

space K of multiplicity functions) and put K' = 0^1O Kl. Let {ex, ... , e^}

be an orthonormal basis for o. We will denote a typical generator of Kl by

p ® de*t A • • • A de*, where p £ 3s is a polynomial. An element g £ G acts on

Kl as follows:

(g ® g) • (P 9 del A • • • A de*) = (g • p) ® d(g • e*x) A • • • A d(g ■ e*).

We introduce operators d(k): Kl ■-► Kl+X by the action on generators:

N

d(k)(p ® de*{ A "'" A del) = z~^,(Tej(k)p) 0 de* A del A • • • A de*ir
7 = 1

Lemma 3.1.  d(k) commutes with the G-action.

Proof. The well-known fact that d(0) commutes with the action of GL(a) fol-

lows from an easy computation which is based on the linearity of the map

t\ i-> d( and on the C7L(a)-equivariance of the ordinary directional deriva-
tives. Hence, the same computation applies for d(k) and G, using the G-
equivariance of the T^(k).   □

We recall the definition of the Koszul-operator d: Kl >-* Kl~x:

i

d(p ® del A ''' A de*) = £(- l)r+le*p ® de? a ■ • ■ A de*rX A de*r+l A ■ • • A de*.
r=l

Proposition 3.2. On K1, we have

(dd(k) + d(k)d) = l(l® l)+ [iZe*jdej\ ® 1+ zZ ka(l®l-ra®ra).
\j=\ J a€R+
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Proof. Let co = p ® de*{ A • • • A de* £ Kl. We calculate as follows:

(dd(k) + d(k)8)co

= dlj2 Tej(k)p 0 de* Ade*h A • •• A </<?,*. J

+ d(k) \T(-iy+xe*rp ®de*xA---A de*r_x A de*r+1 A • • • A ̂  j

v

7 = 1

TV      /

+ E ZZ(~ lYeiTej(k)P ® ̂  A </< A • • • A (7<_, A </<+] A • • • A <fc£
7=1 r=\

N      I

7=1  r=l

An easy calculation shows that

(3.1) [Tej(k), e*] = Stj + Y^ ka(a, et)(a, ej)ra,
a€R+

SO

N

(dd(k) + d(k)d)co = Ye*Tei(k)p ® rftf? A • • • A <te*
7=1

+ tt(-|)r+' (*A + E M«,*i,)(«>*y)'1«,]p
7=1 r=\ \ a£R+ J

<S> de* A de*, A ■ ■ • A de*    A de* , A • • • A Je*

N

= E eJ t*j (k)p®de*xA---A de*
7=1

/

+ y^(-l)r+1p®de; A del A---Ade*    Ade*   A---Ade*,
/    jk ' c '/■ '1 Lr—\ 'r+1 '/

r=l

N      I

+ E kaZ2J2(-l)r+x(a,eir)(a,ej)(rap)
aeR+        7=1 r=\

eg) ate* A del A---A de*    A del   A--- A del
J «1 h-[ *r+l */

V

= ^2 e* Tej (k)p ® (ie* A---Ade* + lco
7=1

/

+ s^E^-irv^xr^)
q€/?+        r=l

Cgi rfa* A dte.* A • • • A rfe*    A de* , A • • • A del,.
'1 *r— 1 *r+l */
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Now note that

(ra®ra)(p®del A---Ade*)

i

= (rap) ®de*hA---Adel + E^-1^"' eh)(.raP)
r=\

®da* A del A--- A del    ^de*t    A---Ade*it.
l\ lT—\ <r+l */

Thus, if we invoke (1.2), we see that

N

(dd(k) + d(k)d)oj = J2(e*dejp)®delA---Ade*+lco+ ]T ka(l®l -ra®ra)co.
7 = 1 <*€R+

a
For m = 0, I, ... , let ^m denote the homogeneous polynomials of degree

m , and put Klm = &>m <g>c A/a* ■ The A^, are invariant under the (/-action, so

there is a further splitting K'm = @ ~Klm T, where Klm T is the r-isotypical

component in Klm. If <y e L{„ T, then (dd(k)+d(k)d)co = (l + m+XT(k))co. It

follows from Corollary 2.2 in [D3] that Re(At(fc)) > 0 if Re(fc) > 0. Note that
K9 is a direct sum of finite-dimensional subcomplexes K*(n) = 0/+m=„ K'm .

Corollary 3.3. Suppose that Re(k) >0,co£ Kl(l > 1) and d(k)co = 0. Then
co£d(k)Kl~x.

Proof. By Lemma 3.1 and homogeneity, the statement reduces to the case that

co £ K'm T. But for such co the Corollary is obvious from the above remarks.   □

Corollary 3.4. We have

Tt{k)Tn{k) = Tn(k)Tt(k)       (Z,n£a,k£K)

in Endc(^).

Proof. By linearity, it is sufficient to prove this for <* = e, and n = ej . Further-

more, as a consequence of the polynomial dependence on k , we may assume
that Re(rc) > 0. In the notation of Corollary 2.2, take L, = ^ , dj = Tej(0)

and Sj = Tej(k); the conditions (i) to (iv), (i') and (ii') are then satisfied.

We verify (b) in Corollary 2.2. To this end, let {Pj}^ be a closed 1-form (in

the terminology of Corollary 2.2). Consider co = Y^j=xPj ® de* £ Kx ; then

d(k)co = 0.   By Corollary 3.3,  co is exact and we conclude (a) in Corollary

2.2.    □

As a consequence of Corollary 3.4 we see that d(k) is a boundary operator

on K* (this statement is in fact equivalent to Corollary 3.4); hence we may

form the cohomology groups H'(K*, d(k)) of the complex (K*, d(k)).

Corollary 3.5. The following are equivalent:
1. k£KK*.

2. There exists a linear isomorphism V(k) of 3°, homogeneous of degree
0, such that V(k)\c?0 = id and T^k)V(k) = V(k)di  V^eo.

3. There exists an endomorphism V(k) of &, homogeneous of degree 0,

such that V(k)yo = id and T^(k)V(k) = V(k)di  V<^ e a.
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If V(k) exists, it is uniquely determined by the four properties in 2.

Proof.   1 => 2. Combine Corollary 3.4 and Corollary 2.2.
2 => 3 . This is trivial.
3 => 2. Using the intertwining property, it is easily seen by induction with

respect to the homogeneous degree that V(k) is necessarily injective.
2 =>■ 1 . This is trivial.

The uniqueness statement is part of Corollary 2.2(d).   □

Corollary 3.6. The following are equivalent:

1. Hj(K*,d(k)) = 0 V/>0.
2. dimc H°(K\d(k))= 1.
3. k£K™i.

Proof. This is a consequence of Corollary 3.5, except for the implication 1 => 2.

But this follows from the fact that the Euler characteristic of K'(n) is zero if
n >0.   □

In the case where ka — k £ C (Va € R) we can give an alternative description

for the singular polynomials:

Theorem 3.7. Let p £ £Pn,T (the x-isotypical component of 3°„). Then the

following are equivalent:

1. (3k £ C such that d(k)p = 0) V (t = 1).
2. 3kx, k2 £ C, kx^k2 such that d(kx)d(k2)p = 0.
3. VA:,, k2 £ C we have d(kx)d(k2)p = 0.

Proof. 1 => 3. By continuity, it is sufficient to prove this for kx ^ k. Then

there exists a £ C such that k2 = akx + (1 - a)k . Now the result follows from

the observation that d(k2) = ad(kx) + (1 -a)d(k) and the fact that d2(kx) = 0
(see Corollary 3.4). If x = 1, then d(k2)p — d(kx)p .

3 =>• 2 . This is trivial.
2 => 1.  If d(kx)d(k2)p = 0, then dd(kx)d(k2)p = 0.  Since dp = 0 we

have, using Proposition 3.1 and 3.2,

(8d(kx) + d(kx)d)d(k2)p = d(kx)(dd(k2) + d(k2)d)p

=> ((m + kxXx)d(k2) - (m + k2XT)d(kx))p = 0

=>T= lv [t^ 1 A(7(-^U = 0J.   □

Corollary 3.8. Let {ex, ... , e^} be a basis for a. Put

A,= T(a,et)^-^       (i=l,...,N).

77?erc

{p £ 0>+\(diAj - djAi)p = 0 V/, /}

= {/> g ^+|(A,d; - A,(3,)/> = 0 Vi, ;}

= Span({/> G ̂ +|3A: g C s.t.Te(k)p = 0 V£ e a} U 7+)

= S + 7+,
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where I+ denotes the invariant polynomials with zero constant term.

Proof. This follows from Theorem 3.7 if one notes that A, = Tei (1) - Te. (0).   □

4. The singular set

In this section we determine the singular set. A bilinear form on & (intro-

duced in [D4]), together with the work of Heckman [H] on shift operators, will

enable us to reduce the question to the determination of the zero locus of a cer-

tain polynomial. This zero locus already occurred in the work of Opdam [O] as

the poles of the generalized Bessel function. The results in [loc. cit], combined

with the explicit form of a certain Poincare polynomial (introduced and deter-

mined by Macdonald), turn out to be sufficient to determine the aforementioned

polynomial explicitly in all cases.
As a consequence of the commutativity of the T^(k) for fixed k , there exists

an algebra homomorphism from & to Endc(^) which sends t\* to T^(k)
and 1 to the identity. If p £ £P , we will denote the corresponding operator by

p(T(k)). We can thus make the following definition:

(p,q)k = (P(T(k))q)(0)(p,qe&).

Let us collect some basic properties in the following lemma.

Lemma 4.1.   1.  (•, -)k is symmetric.

2- (Z*P,q)k = (p,Ti(k)q)k   (£ £ a, p, q £ &>).
3- (Ti(k)p,q)k = (p,c;*q)k   (£ £ a, p , q £<?).

4- (g-P,g-q)k = (P,q)k   (geG,p,q£&>).
5.  (&>r,T,&s,o)k = Q ifr^s or t#ct.

Proof. 1. This was proved in [D4].
2. Obvious from the definition.
3. This follows from part 1 and 2.
4. This is a consequence of (1.1).

5. It is obvious that homogeneous polynomials of different degree are orthog-

onal. The statement concerning the (/-type follows from 4 and the fact that the

characters of the representations of G take the same value on g and g~' for

all g £ G. This is a consequence of a result of Springer [S], stating that any

g £ G can be written as g — 6X62 with 62 = Q\ = 1, which shows that g and

g~x are in the same conjugacy class.   □

The form (•, -)k can be degenerate. We therefore define

Rad(fc) = {p £ <?\(p ,q)k = 0Vq£ &}.

Remark 4.2. It follows from Lemma 4.1 that Rad(/c) is a graded ideal in &

which is invariant under the T$(k) and the (7-action. If p £ Rad(Ac), then

UgeG S • P € Rad(/c); thus, if Rad(fc) ^ 0, Rad(Ac) contains a nonzero G-

invariant and hence all (7-types. Note that the only constant in Rad(A:) is

0.

Proposition 4.3. The following are equivalent:
1. k £ /c"reg.

2. Rad(&) = 0.
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Proof.   1 => 2. If Rad(Ar) ̂  0, take any nonzero homogeneous p £ Rad(/:) of

minimal degree. By the properties of Rad(A:) and the choice of p, p must be

annihilated by the T%(k), which is a contradiction.
2 => 1 . This is obvious.    D

As it turns out, ATsing is invariant under translations over negative integers.

An important ingredient for our proof of this fact is the following theorem

of Heckman [H]. Let 9°G denote the (/-invariant polynomials, and let n =

TlaeR+ a* De tne fundamental alternating polynomial. The multiplicity function

that is constant with value 1 will be denoted by Ir .

Theorem 4.4. For all p, q £ £PG we have

p(T(k))(nq) = np(T(k+lR))q.

Corollary 4.5. Let p, q £ 3s0. Then (np, %q)k = (it, n)k(p, q)k+XR .

Proof. We may assume that p and q are homogeneous and of equal degree.
Then

(np , nq)k = (n, p(T(k))nq)k = (n , np(T(k + lR))q)k

= (n(T(k))n,p(T(k+lR))q)k.

Now both arguments in the right-hand side are constants, so the pairing is just
the product of these constants.   □

Corollary 4.6. If k + lR£ tfsing, then k £ yTsing.

Proof. If k + lR £ ATsing, then Rad(A: + lR) ^ 0 by Proposition 4.3. By
Remark 4.2, we see that Rad(A: + Ir) contains an invariant nonzero q, homo-

geneous of some degree n . From Corollary 4.5, we infer that (np, nq)k = 0

for all p £ 3bG , homogeneous of degree n . But then nq is orthogonal to the

isotypical component (in degree n + \R+\) corresponding to the determinant
representation of G. Thus, as a consequence of Lemma 4.1.5, nq £ Rad(A:)
and k £ ATsing .    □

Lemma 4.7. Let k £ yTsing and put n0 = maxn€N{n\k + n-lR £ Ksin*} . Then

(n, n)k+no.iR = 0.

Proof. Recall that k £ KK& as soon as Re(k) > 0, so «o is finite. Since

k + no- Ir £ Ksin&, we see by Remark 4.2 that there exists a nonzero q £ 3s0

such that (np, nq)k+n(j.iR - 0 for all p £ 3s0. Thus, by Corollary 4.5 we

have (n,n)k+no.lR(p,q)k+ino+l).lR = 0 for all p £ &>G. Now (p, q)k+(no+xyiR

cannot be zero for all p £ 3°°. For, if this were the case, then

q eRad(rc + («0+ 1)-1*)

by Lemma 4.1.5 and consequently k + (no + 1) • Ir £ K%m% by Proposition 4.3,

contradicting the definition of «o • Thus (n, n)k+no.lR = 0.   □

Theorem 4.8. Let K° = {k £ K\(n, n)k = 0}. Then tfsing = U^0{^° -»•!*}■

Proof. From Lemma 4.7 we have " c ". For the reverse inclusion, note that if

(n, n)k = 0, then n £ Rad(k) (for reasons of G-type) so k £ A^sing. Thus

" D " is a consequence of Corollary 4.6.   D

The sets A^sing and K° already occurred in [O], where they were denoted by

Z and ZB . In fact, the description of ATsing in Theorem 4.8 and the results in
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[loc. cit, §9] show "by inspection" that ATsing is the pole set of the generalized

Bessel function. There is also a more direct way to see that this must be the
case. To this end, fix k £ K and consider the problem of finding a family of

(7-invariant formal power series {Jg(X, k, £)|A £ ac} in £ such that

(4 1)        [p(T(k))JG(X,k,-)=p(X)JG(X,k,.)       (VAGoc,V/>e^G),

\ JG(X,k,0) = l (VAeoc).

Evaluating at zero, a solution of (4.1) apparently has the following reproducing

property:

(JG(X,k,-),p)k=p(X)   (VAeac,V/7G^G).

From this one sees that one must have k £ Kreg and that JG(X, k, •) is then

uniquely determined for all A, hence equal to V(k)-^ z2g£G exp(gA, •). On the

other hand, if k £ KTeg then V(k)rk Z^gGexP(<^' 0 satisfies (4.1). Hence

(4.1) has a formal solution if and only if k £ Kre% and this solution is then

equal to F(/c)j4- z2geGexP(S^, ') ■ This family of formal power series is in

fact meromorphic on etc x K x ac; the poles occur exactly when the restriction

of V(k) to the (/-invariants has a pole, i.e., in Ksm&. But (4.1) is just the

defining equation for the generalized Bessel function, so KSine and the pole set

of the generalized Bessel function coincide as claimed.

In view of Theorem 4.8, all that remains to be done is the determination

of K°. If R is reducible, then one sees easily that (n, n)k factors as the
product of the corresponding polynomials for the irreducible components of

R. Hence we may assume that R is irreducible, implying that K is at most

two-dimensional.

We recall some definitions and results from [O].

Let B £ C[K] be defined by B(k) = (n, n)k and introduce the polynomial b
in one variable by b(s) = B(sIr) . Then (see [loc. cit.]) b has degree |7?+|. Let
R = U™i Q be the decomposition of R into minimal (/-orbits. For g £ G,

let li(g) be the number of simple reflections ra with a £ C, that occur in

a minimal expression for g (this is well defined). For k — Y^Likilc, € K,

put k'-W = []£, k-l{g), and let PG(k) = E5€G k'-W be the Poincare polynomial

of (7. These polynomials were introduced and determined by Macdonald [M].

If one takes the /c, all equal, they reduce to the Poincare polynomial of the

coinvariant algebra of G. From the results in [O] we extract the following.

Theorem 4.9. 1. Ksin* c Kp, where Kp is the zero-locus of k ^ PG(exp(2nik))

and exp(2nik) is to be calculated componentwise.

2. b(k) = \G\ n"=i Ylfj\l (dtk + j), where the d, are the primitive degrees of
G.

If m = 1, Theorem 4.9.2 answers our question. So let us assume that m = 2.

It follows from Macdonald's list that Kp consists of a countable union of lines.
Since in particular K° c Kp , the following lemma allows us to conclude that

B must be a product of these lines.

Lemma 4.10. Let L be an algebraically closed uncountable field. Let F £

L[X, Y] be nonconstant and suppose that V(F) c USi V(Fi) where the Ft
are irreducible (here V(P) denotes the algebraic set determined by P). Then F

is the product of a finite number of the Fj, up to a constant.
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Proof. We use results of §1.6 in [Fu]. First of all, we may assume that F

is irreducible. Since V(F) = \JZi(v(F) n V(Ft)) and V(F) is uncountable,
there is F,-0 such that V(F) n V(Fj0) is infinite. Hence at least one of the

irreducible components of V(F) n V(Fia) is an irreducible curve V(C). But

then it is a well-known consequence of the Nullstellensatz that F and C must

be multiples of each other. Since the same argument applies to Fio and C, the

proof is finished.   □

Thus B splits as a product of linear factors, to be taken from the lines

constituting Kp . Now inspection of Macdonald's list shows that each of these

lines is of the form pk\ + qk2 + r where p and q are both real (in fact integer)

and nonnegative. This implies that B factors as a product of exactly R+ (the

degree of b) linear factors, each of which (by Theorem 4.9.2) intersects CAr

in (-1,0).
Let us show how we can now determine B for the dihedral groups I2(2m)

of order 4w . There are 2m positive roots. From Macdonald's list we have

PG(t\, h) = (I + tx)(l + t2)(l - um)/(l - u) where u = txt2. It is then easy to

see that Kp consists of three sets of lines:

1. fci = i + /(/GZ).

2. k2 = \ + I (I G Z).
3. kx+k2 = -L(l£Z,m\l).
By inspection, there are only 2m lines that intersect CAr in (-1,0),

namely kx + \ , k + \ , and kx + k2 + ^ (j = 1, ... , m- 1, m+l, ... , 2m- 1).
So B is known up to a constant, which then follows from Theorem 4.9.2. This

method also works for Bn and F4 . We summarize the results in the following

theorem.

Theorem 4.11. Let R be irreducible. If there is only one G-orbit in R, then

n   dt-l

(n,n)k = \G\\\l\(dik + j),
i=i j=\

where the di are the primitive degrees of G. In the remaining cases (n, n)k is

equal to

Bn:

{«-l7+l \       [n-\   j ~\

T] Y\(2jkx + 2k2 + 21 - 1) \ • m n(C/ + l)kx+l)\ ,
7=0 1=1 )       [j=ii=l )

where kx corresponds to the long root in the crystallographic root system.

F4:

22034 • J] {(2k( + l)(3k, + l)(3ki + 2)(2kt + 2u + 1)
1=1,2

■ (2kj + 2u + 3)(2kt + 2u + 5)}

• (2« + 1)2(2m + 3)2(4w + l)(4w + 3)(4k + 5)(4« + 7)

•(6w+1)(6w + 5)(6m + 7)(6u+11)

where u = kx + k2.
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h(2m):
2m-1

4m2(2fc1 + l)(2A:2 + l) JJ (m(ki+k2) +j).
7 = 1
Jitm

5. Singular polynomials: One-dimensional representations
and the dihedral groups

The singular set was determined in the previous section for arbitrary G. In

general, the set of singular polynomials (as in the introduction) is still unknown.

We can, however, determine the singular polynomials completely if G is a

dihedral group. For general G, we are able to give a description of the singular

polynomials that transform according to a one-dimensional representation of

G.
We recall the definition of the £>Laplacian:

N

m=zZT&k)>
i=i

where {£x, ... , £#} is any orthonormal basis for o. If / e <^„ and k £ K,

we say that / has a fc-Laplace decomposition if / can be written as

f=zZ\x\2ifn-2j,
7>0

with fn-2j £ 3°n-2j and A(k)f„-2j = 0 for all j . We will investigate the values
of k sufficient for existence and uniqueness of decompositions of this kind. The

result will be helpful in the dihedral case.  Put y = Y,a(zR ka .  Suppose that

x £ G and that x is realized on V„ c £P„ . Let «o = rnin7£N{" - 2y'|T occurs in
3°n-2j} • If n = «o > then A(k)Vn = (0), and the decomposition is trivial (but

unique).

Lemma 5.1. Each f £ V„ has a unique k-Laplace decomposition if -(y + y) ^

no, no + I, no+ 2, ... ,n-2.

Proof. By Theorem 1.11 in [DI], we have the decomposition

f=zZ   \x\2Sfn-2j,
J<n/2

valid for generic values of k, with

fn-2j= Uif.(j + 7 + n-2j>))

*    E     (4'/! (-T - y ~ n + V + 2) )    \x\2iA(k)i+Jf
'<[«/2]-7 '

and A(rc)/„_2; = 0. The verification is based on the identity

£; j\{l - MA - 2j)j(-A + 2j + 2),_j
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for / = 1,2,.... There are poles at A = 2, 3, ... , 2/. The sum appears
as the coefficient of A(k)'f, hence it must be valid for n -21 > no, that is

/ < ("~"o) . This occurs if f + y + n avoids 2, 3, 4, ... , n - n0, as claimed.

(The effect of the forbidden values is to allow the situation A(k)(\x\2j fn-2j) = 0

and A(k)fn-2j = 0, resulting in "too many" harmonics of degree n .)   D

The one-dimensional representations. Suppose G has two orbits Cx and C2

in R and k has the values kx and k2, respectively. There is an alternat-

ing polynomial for each class, namely p, = Yla€C a€R a*. For a £ R we

have rapj = -p, if a € C, and rapj = p, otherwise. The present discussion

specializes easily to the case that G has only one orbit in R.

Recall the definition of the A:-gradient:

nk)f=Vf+zZkJl-^-f)a.

Obviously, / is singular if and only if V(/c)/ = 0 for some k .

Proposition 5.2. The singular polynomials of the isotypes of the nontrivial one

dimensional representations of G are p2"l+l (if kx = -nx - \), pj"2+l (if

k2 = -«2 - \) and p2n>+xP22"i+x (if kx = -nx - \ and k2 = -n2 - \) for

arbitrary nx,n2 = §, 1,2,....

Proof. The general function of the same isotype as pxp2 is pxp2g where g is

invariant. Then

V(k)(pxp2g)=pxp2Vg+pxp2g(l+2k) V  ^ + pxp2g(l + 2k2) V  4-
a6C| a€C2
a€R+ a€R+

For p\p2g to be singular, g must satisfy

2.-(i+ii,iEi-iit2«Ei.
aGCi a(zC2
a€R+ aeR+

Thus, g is a scalar multiple of \px \-^+2k^\p2[~{-x+2k^ . For this to be an invari-

ant polynomial we must have -1 -2kx —2nx, -1 -2k2 = 2n2 for nonnegative

integers nx, n2 . The other cases p2"'+1 , p2"2+1 are shown similarly.

The dihedral groups.    The dihedral groups I2(m) act on R2 ~ C. Let co —

exp(2ni/m), then the group G consists of the reflections z >-* Ico* and the

rotations z i-> zco> (0<j<m-l,zeC). G has one conjugacy class

of reflections when m is odd, and two classes when m is even. When m is

odd, we use k to denote the value of the parameter and write T(k), T(k) for

the operators of Definition 3.1 in [D2]. The singular polynomials / are those

for which T(k)f = T(k)f = 0. In [D2] we already determined the solutions
of T(k)f — 0, for any k. Essentially we only have to apply the condition

T(k)f=0.

The dihedral groups, odd case. Let m be odd (m > 3). Span({z', z1})

and Span({zm_/, zm_/}) are of the same isotype for 1 < I < m - I (and

this includes all two-dimensional representations of G). For each such / and
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each « = 0,1,2,..., there is a unique (up to scalar multiplication) polyno-

mial of isotype /, degree nm + I, in the kernel of T(k), namely fnm+l(z) =

zlCnk'k+i)(zm) (see [D2, p. 181]). Here C{ns'c)(z) is the Heisenberg polyno-

mial defined by

c}e,e){z) = J2^mnzljJ2n-j (z g Q ,

;=0   •''^ •'^-

generated by
oo

(l-tY)-s(l-tz)-£ = z2CnS'e)(z)t".
«=0

The polynomial C„ 'e' is nonzero, unless S — —nx , e = -n2 with nx, n2 =

0,1,2,... and n > «i + «2 • Now T(k)fnm+,(z) = (l + mn + mk)fnm+l_x(z).

Setting k = -n - l/m gives the singular polynomial (k $ Z, so C„k'k+1\zm)

is not zero). The complex conjugate of fnm+i is the other basis element for the

singular polynomials of degree nm + l. There are no other singular polynomials

of this isotype and degree. They would be harmonic, since A(k) = 4T(k)T(k),
but by Lemma 5.1 there are only two linearly independent harmonic polyno-

mials provided -(1 + mk) avoids n0, «0 + 1, ... , nm + 1-2, and of course

-1 - mk = -1 + mn + I.
By Lemma 5.1 the alternating polynomial p(z) = zm -~zm , gives rise to the

singular polynomials (zm - zm)2"+i with k = — j — n.
This is the entire list of singular polynomials because the only other repre-

sentation of G is the trivial one.

The dihedral groups, even case. Let m > 2 be even and let G = I2(2m). Put
co = exr>(ni/m). Associate the parameter values kx to the reflections z h-> ~zco2>

and Mo 2 h zco2j+x(0 < j < m - 1). We will write A(kx, k2), T(kx, k2)

and T(kx, k2) for the operators. For each /g{1,2,...,w — 1} there is an

isotype realized on span{z', z'} and on span{z2m_/, z2m~l) .

The polynomials of degree sm + I (I < I < m — 1,5 = 0,1,2,...) anni-

hilated by T(kx, k2) are (see 3.19 in [D2]) zlfs(zm) where

f2n(rew) = r2nP^-^k>-b(cos2e) + (i)r2n(sin20)P*+i'fc2+*)(cos20),

f2n+i(reie) = r2n((n + kx + {)(rcos6)P{nk ,-i,*2+i)(cos20)

+ i(n + k2 + \)(rsinO)P(nkx+ll'kl~ij)(cos2d))

(r>0,0<6 <2n,n = 0, 1,2, ...).

The Jacobi polynomial is

p(s,e)(A     ($ + l)n   j, (-n, n + S + e+ 1 . 1 - t\ ,
Pn    {t) = ~H\~lFx\       s + i        >—)>

there are no poles (parameter values) and the polynomial is of degree n , pro-
vided (n + S + e + l)„ j= 0. This condition applies in the present case. By the

formula in [D2, p. 183] we have

T(kx, k2)z'fs(zm) = (l + ms + m(kx + k2))z'~x fs(zm).
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Thus for kx +k2 = -s-l/m, zlfs(zm) (and its complex conjugate) is a singular

polynomial. The parameters (S, e) in the Jacobi polynomials in f2n , f2n+x

satisfy n + y + S+l - n + kx+k2+ s with 5 = 0,1 or 2, and kx+k2 £ Z.
There are no other singular (or harmonic) polynomials for these parameter

values and this degree. By Lemma 5.1, -(1 + m(kx +k2)) must avoid «o,«o +

1,... , ms+l-2 and -(l+m(kx+k2)) = ms + l-l. The singular polynomials
of alternating isotype are (zm - zm)2"i+1, (zm + zm)2"2+1 and the product of

these two, with kx = -nx - \ for the first, k2 = -n2 - \ for the second and
both conditions for the product. Lemma 5.1 does not apply in the product case.

Here -1 - m(kx + k2) must avoid 2m ,2m+ I, ... , 2m(nx + n2 + 1) - 2 but

here kx+k2 = -nx-n2-l and m(nx+n2 + l) appears in the list if nx+n2 > 2.

Again we have described all the singular polynomials.

6. Estimates for dimc(5'm,T) if ka = k Va £ R

Recall the following constructions from [D5]. Let b = a <8>r C. The form

(•, •) extends to a bilinear form on f), which will again be denoted by (•,•)•

Any £ £ f) gives rise, via this form, to £* £ b* as in the Introduction. Put
hTe& = {$£ b\a*(cl) ^ 0 Va € R} . Let ^(rjreg) denote the holomorphic functions

on rjreg. Let x £ G, and let Vr be the corresponding representation space of

dimension dT. Define the following connection V(k) on cf(hTeg) ® VT (the

holomorphic sections in the trivial bundle f)reg x Vr):

V}(k)(f®v) = (dj) ® u + fc £ (a, 0 (4) ® (1 - <ra))v.

This connection is integrable and has regular singularities.

Let p denote the natural representation of G on cf(\ft%):

(g ■ f)(z) = f(g~xz) (g£G,f£ Cf(^) , Z £ I)reg).

Then Vr(k) is equivariant for p ® x in the sense that

V}(k)(p(g)f® x(g)v) = (p(g) ® x(g))(Vl_li(k)(f®v)).

Hence we can view VT(/c) as the inverse image of a connection VT(fc) on

f? = cf(G\bTe*) ®cVr, where FT is the local system on X = G\f)reg defined by

VT = f)reg xG FT. The fundamental group of X is the braid group of G (see

[B]). The monodromy representation of Vx(k) factorizes through the Hecke

algebra HG(q(k)) where q(k) = exp(-27r/rc), and where we use the conven-

tion that the generators of 77G(<?) satisfy (Tj - 1)(T, + q) = 0. The resulting

representation of 77G(<7) is called YT(k). From the construction it is clear that

7r is defined over the ring W of entire functions on K = C. By deformation

theoretical arguments it was shown in [D5] that YT(k) is irreducible and prin-

cipal when 4/,(^_l) = q ^ffin ^ t^ 0 (here dx is the generic degree of x and

PG is the Poincare polynomial of the coinvariant algebra of G). Hence loss

of irreducibility of some YT(k) can occur only if PG((q(k))~x) = 0. Conse-

quently, the zeros of PG(q~x) correspond to nonsemisimple specializations of

77G (see [GU, Y]). Also observe that the trivial representation is never principal

if 77G(<7) is not semisimple.
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We will now apply results of the theory of algebras defined over local do-

mains that are complete. Let ko £ K = C, and write x = k - ko. Let

3? = C{x}. (It is important that 31 is a complete local principal ideal do-
main for these statements and this is the reason that we assume ka = k Va).

Let 3? = C{{x}} = {T,k>NckXk\N £ Z, ck £ C} be its quotient field. Define

Xx = R®e Yx and A = 3? ®c[g,g-1] Hg ■ Finally put Xx = Xx/(x)3l (a module

for A/(x)3f = A = HG(q(ko))), and (Xx)x = Xx ®<% 3? (a module for

Ajf = 3? ®gi A — 3? ®cfa,?-'] Hg) ■ Clearly {(Xx)x) g is a complete set

of representatives for the irreducibles of Ax ■ We are now in the situation as

described on p. 67 in [Fe].

Definition 6.1. Let triv be the one-dimensional representation of HG(q) that

is defined by sending the Tj to 1. The multiplicity of triv £ (A)iTT in a

decomposition series of Xx will be denoted by Sx(qo). The multiplicity of

triv in Xx as a submodule (i.e., the multiplicity of triv in the socle of Xx)

will be denoted by AT(rCo).

This definition makes sense because by [Fe, Theorem 17.7] the number Sx(qo)

depends on x and qo only. In fact, these decomposition numbers [Fe, p. 67]
have a different interpretation in terms of representation theory of A by virtue

of a theorem of Brauer. In our situation we have a one-to-one correspondence

between principal indecomposable modules of A and A = HG(qo) (since [Fe,

Theorem 13.7] applies). Let U denote the principal indecomposable module

of A that corresponds to triv £ (A)irr (hence U is principal indecomposable

for A = HG(q0) and c//rad(«J) = F/rad(F) = triv). We have

Theorem 6.2 (Brauer, see [Fe, Theorem 17.8]).

Ujr = ®ST(qo)(XT)jr.

zed

Corollary 6.3. If ko is such that HG(qo) is not semisimple, then there exists at

least one x £ G, x ^ triv such that Sx(qo) # 0.

Proof. Suppose that Sx(qo) = 0 if x ^ triv. Clearly StriV(qo) = 1 and by
Theorem 6.2 we obtain that Ux — (triv)x ■ This implies that U = triv , and

we thus conclude that triv is principal. This contradicts the results of Yamane

in [Y].   □

Remarks 6.4. 1.    Sx(qo) = 0  if ^^q^1) ^ 0, since Yamane proved that

^(tfo"1) 7^ 0 implies that Xx is principal and irreducible.

2. Of course Ax(ko) < Sx(q0) and AT(rCo) = 0 if k0 > 0.

Proposition6.5. Assume x ^ triv and ko £ 5N. Then dimcSx(ko) = dxAx(ko).

Proof. Choose an explicit unitary matrix realization Mx of x on Cdr (where

dx is the dimension of the representation space of t) , and let CVX, V*(ko)) be

the associated connection as above. Let F c S(ko) be a copy of x embedded in

S(ko). There exists a 1-dimensional space of column vectors (fx, ... , fdr)'(ft £

F) such that

(6.i) (fxg,...,fl)' = Mx(g-x)(fx,...,fdxy
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and 7i(*b)/ = 0 Vi implies V\(h)(f ,...,fdt)' = 0. Hence a = (/.,..., fdt)1

is in (S^1)^^) and because of (6.1) we see that rj is fixed for the monodromy

action. This sets up a one-to-one correspondence between (Yx(ko))tTiv(= (Xr)triv)

and vectors (fx, ..., fdy of elements f £ S(ko) satisfying (6.1). Namely,

suppose on the other hand that we are given a = (fx, ... , fdz)' e (2^')VT(*o)

that is trivial for monodromy. The exponents along the walls for the equation

Vl(ko)a = 0 are 0 and -2k. Since we assume that k £ ^N we may conclude

that f extends holomorphically along the walls, and that (6.1) holds. Finally we

consider the equation (]£JLi XiV}(ko))o = 0. It follows that f is homogeneous

of degree -koXx. Hence -koXx £ N, fi£ 3s_koXr, and f satisfies T^kojfi = 0
(V/). The result follows easily from this one-to-one correspondence.   □

Corollary 6.6. If x ^ triv then dimc(5'w,T) < dxSx(exp(2^)).  Hence m (->

dimc(Sm>x) is bounded by a function that is periodic in m with period Xx.

Proof  Sm,x = Sr(-%).   □

Remark 6.7. We hope that in fact equality holds. This would be very satisfying,

since this would mean that the equations of Corollary 3.8 completely describe
the decomposition of (U)x ■

Examples 6.8.

1. x — sign representation. Then Sx(q) = 1 if q = — 1, and zero otherwise.

Moreover AT = |U|, so q = exp(^) = -1 iff m = (p - ±)\R\ (p £ N).

On the other hand, if we let n = Y\a€R a* denote the fundamental alternating

polynomial, then

Ti (\ -p) n2"~x = Idz - (1 - 2p) £ (a, 0^ ] Tr2""1 = (7^-^)1 = 0.

Hence dimc(5'miT) = 1 if m — (p - \)\R\ and zero otherwise.

2. The dihedral cases. According to [CIK], the two-dimensional representa-

tions for Hl2(m)(q) can be defined explicitly as follows. Let ax, a2 be the stan-

dard generators. Then put nj(ax) = (x0 Zqq) and nj(a2) = (_2_7r\f+r-i) ,) where

C = exp(^i) and ;' = 1,..., ^f1 (if m is odd) or j = 1, ... , f - 1 (if m is
even). From this we find that Snj(q)=x if q — C±j and zero otherwise (if q - £±;

then nj(Oi)(q, q + I)' = -q(q, q + l)'(i - 1,2)). Furthermore, it is easy to

see that Xnj = m (Vj). Hence we infer from qf = £±7 = exp(-27n'(-^-)) that

mf = mp ± j (p £ N). By Corollary 6.6 we see that nj can occur in S„ only

if n = mp±j for some peN and that the multiplicity is at most 1. According

to the results of §5 this multiplicity equals 1 for all n of the form n = mp ± j

(p £ N). Hence, equality holds in Corollary 6.6 in this example.

3. The symmetric groups. We discuss some conjectures for the irreducible

representations of G — Sn (the Weyl group of type A„-X) which appear in the
space of singular polynomials. Recall that such representations correspond to

partitions p = (px, p2, ... , Pj) with pj £ Z+, px > p2 > ■■ ■ > Pj > 0 and

n = \p\ = Yli^i- We will use p as the label for the representation so that

X(„) = 1 and X(\, l,...,!) is the sign character.
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The conjecture is that the partitions p for which S^ko) ^ (0) for some ko
are those with three or more (nonzero) parts of the form p = (sd - 1, d -

I, ... , d - I, r) with 5= l,2,3,...,0<r<d-l and ko = -j/d with
gcd(7, d) = 1 (j > 1), and all of the two-part partitions (px, p2) with ko =
-Jl(Hi + l) for gcd(7, px + l) < (px + l)/p2. Here gcd denotes greatest common

divisor.
The evidence for this conjecture comes from the Specht modules for the

Hecke algebra HSn(q) constructed by Dipper and James [DJ1, DJ2]. Because of

our different defining relations (we use generators Tx, T2, ... , T„-X satisfying

T2 = ql + (l-q)Ti, TiTi+x 7} = TM TtTi+x (I < i < n - 2), TtTj = TjTt for
1 < i < i + 2 < j < n — 1, so that the eigenvalues of the generators are 1 and

-q, rather than q and -1), our partition labels are the transposes of those in

[DJ1,DJ2].
For each partition p, Dipper and James construct an HSn (q)-mod\xle M*1

whose basis vectors correspond to certain tableaux with shape p, and then an

irreducible submodule S>*, the Specht module. The action of the generators 7}

on this module is defined by the so-called Garnir relations. We are concerned

with the existence of an 77sn (^-invariant element of the dual of S11, that is, one

which annihilates v - TjV for each basis element v of S1* and 1 < i < n — 1.

From the Garnir relations one can show that the desired property holds exactly

when the Gaussian polynomial (in the parameter q)   [^+1]    = 0 for each

(nonzero) part Pj and 1 < i < Pj+X (provided pj+x > 0). The coefficient of ql

in the Gaussian polynomial ["/] = IT/=i(g tlx~l) iS the number of subsets E

of size i of the set {1, 2, ... , m} for which \{(nx, n2)\nx £ E, n2 £ Ec, nx >

n2}\ = I. This is related to the action of 7", on S*1.

For a partition p, let Z(p) be the common zero set of {[^+1] |1 < i <

Pj+X} . Then Z(p) = 0 except for the partitions described above. Let P(j) —

{q £ C\qj = 1 and qs ^ 1 for any 5 = 1,2.j — 1} (that is, the primitive
jth roots of unity). For p = (sd-l,d-l,...,d-l,r) (with s > 1, 0 <
r < d - 1), Z(p) = P(d). For p = (px, p2), Z(p) is the union of all P(d)
such that d divides (px + 1) and d > p2 > 0.

It is not difficult to see that for each n and px < n - 1 and each divisor

d of px + 1 there is exactly one partition p (\p\ = n) with P(d) c Z(p),

and so each zero of (<j^1+1 - l)/(q - 1) is associated to a unique p . Recall the
equation q = -e2n,k .

Several tasks remain to be done to prove our conjecture. One must establish a

correspondence between the Specht modules and the monodromy representation
Y,i (see the beginning of §6), and further show that there is a function with

trivial monodromy (a singular polynomial) exactly when the dual of the Specht

module has an invariant vector, as decribed above.

Another problem is to prove the existence of singular polynomials in Sf,(k)

for the appropriate degrees of homogeneity, that is, -kX^ (see (1.2) for
the definition of X^). The zero-set of each factor of the Poincare series

\{d=2((qd - l)/(q - I)) of Sn corresponds to the union of zero-sets Z(p) with

px = d - 1. By use of Young's formula we see that

X, = (n- px)((px + l) + l(p2 + 1)) - p2(p2 + 1)1(1 + l)/2

for p = (px, p2, ... , p2) with (/ + 1) parts or p = (px, p2, ... , p2, r) with
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(1+2) parts, and this supports the conjectured link to the singular values —j/d ,

gcd(j, d) = 1  (when px = sd - 1, p2 = d - 1).
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