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CONICAL LIMIT POINTS AND GROUPS OF DIVERGENCE TYPE

SUNGBOK HONG

Abstract. We use the Patterson-Sullivan measure to generalize Agard's theo-

rem to all groups of divergence type. As a consequence, we prove that for a

nonelementary group T of divergence type, the conical limit set has positive

Patterson-Sullivan measure.

0. Introduction

For a nonelementary group T of hyperbolic motions of Bd+X, the critical

exponent S(T) is defined as

r5(r) = infia: £e-a<0-*°» < oo I

where (0, y(0)) is the hyperbolic distance from 0 to y(0). The group T is

said to be of convergence or divergence type according as the series

y^-<5(r)(o,?(0))

yer

converges or diverges.
S. Agard [A, Theorem 1] showed that if S(T) = d and T diverges at the

exponent d then the rf-dimensional Hausdorff measure of a certain subset of
the limit set of T is the same as the measure of Sd .

In this paper, we use the Patterson-Sullivan measure to generalize Agard's the-
orem to all groups of divergence type. The definition of the Patterson-Sullivan

measure for groups of divergence type is reviewed in section 1. The Patterson-

Sullivan measure can also be defined for groups of convergence type and the

details for that case can be found in [N].
To state our result, we must define the shadow and the projection of a point

a £ Bd+X. Denote by Bp(a) the ball of center a and non-Euclidean radius

p for a £ Bd+X and p > 0 , and by Bp the ball of radius p at 0. Given a

point a £ Bd+X, a ^ 0, define the projection pr {a} in Sd to be a/\a\ and the

shadow sh{a} in Bd+X uSd to be the closed line segment [a, pr{a}]. For a
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set E C Bd+l which does not contain 0, we define   prE = \Jx€E pr{x} and

shTi = UxesI* > Prxl • For a set E containing 0, we define   prE = Sd .

Let EP(W)C Sd be defined by

EP(W) =   pr{WT(B2p)n sh{W(Blp)}}.

for fixed T £T and any W e T, p > 0. For some enumeration Wx, W2 ,...
of T, set

oo     oo

Zpcn = n U ̂ to-
n=\ k=n

Using Agard's approach together with properties of the Patterson-Sullivan

measure po , we prove our main result Theorem 4.1.

Theorem 4.1. For every nonelementary discrete group T, there exists pr such

that if there is a T e T with

(i)   T(BPr)nBPr = 0 and

(ii)   po[%Pr(T)\ = 0,

then T is of convergence type.

Theorem 4.1 implies the following result.

Corollary 4.2. 7/T is of divergence type, then po[^Pr(T)] > 0 for all but finitely

many T £T.

_ Define another subset of the limit set of T as follows.

^P(T) = {q £ A ; for every p £ Sd  (p ^ q), there exists a sequence {Wk} C

r, with the geodesic with endpoints p and q meeting Wk(Bp), WkT(Bp) in
order from p to q , and Wk(Bp) —> q as A; —> oo} .

Making use of the above corollary, one can prove the following theorem.

Theorem 4.3. If Y is of divergence type, then Po[^»Pr(T)] = ^o(A) for all but

finitely many T £ F.

As an application, we have following results.

Corollary 5.1. Let T be a nonelementary discrete group acting in Bd+X. IfT is

of divergence type then the conical limit set Ac has positive Patterson-Sullivan

measure.

Corollary 5.2. If Y is a nonelementary group of divergence type, then there exists

pr such that Po[^Pr(T)] > 0 for all T e T.

This paper is organized as follows. In section 1, we explain the Patterson-

Sullivan measure and its properties which are needed in later sections. Most of

these are from [S] and [N]. In section 2, we examine some properties of shadows

and projections. In section 3, the connection between the measures px and px<

will be discussed. In section 4, the main theorems are stated as Theorem 4.1
and Theorem 4.3. For the proof of these theorems, Sullivan's Shadow Lemma

and Theorem 3.3 are indispensable. In section 5, we give applications of the

main theorems.
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1. Preliminaries

A conformal density of dimension a on a manifold M is a function which

assigns a positive measure p(p) to each element p in a nonempty collection

of Riemannian metrics on M. It is assumed that if p and p' are conformally

the same, i.e, p = <j>p' where 0 is a positive function, then p = p(p) and

p' — p(p') belong to the same measure class and the Radon-Nikodym ratio

dp/dp' is 4>a. Thus
dpL_(p\a

dp'     \p'J  ■
We will employ a construction of Patterson-Sullivan to obtain a conformal den-

sity of a certain dimension a on the limit set A of an arbitrary infinite discrete
group T of hyperbolic motions of Bd+X . This conformal density p will be in-

variant under T in the sense that y*p(p) = p(yp), for all y in T where yp is

the metric such that y is an isometry between p and yp . For each x in Bd+X,

Patterson and Sullivan construct a measure px by looking from x at the orbit

under T of some point y .
A unit object at the point yy appears from x to have size e~(x'yy) where

(x, yy) denotes the hyperbolic distance from x to yy. Thus in dimension a

we want to associate the scale factor e~a^x'yy"> to the point yy. For each point

x in hyperbolic space we now show how to construct px . For 5 a positive real

number, consider the infinite series gs(x, y) = ^2yere~s^x,yy^ ■ For x and y

fixed this series is proportional to

00

(1.1) $>e-k*

k=0

where sk is the number of orbit points in a half-open annulus of radii in
(k - 5 , k + 5] centered about x. The series (1.1) converges for s > 8 and di-

verges for s <S where 8 = limsup^^ £ log sk . Since T is discrete, sk < cedk

for some constant c depending on the minimal separation of the orbit points

Ty . Thus 8 < d.
If we define nk to be the number of orbit points in the closed ball of radius

k + j about x, then nk = J2i=osi > so we may write 8 = limsupj._00 j lognk .

Using the triangle inequalities (x, yy) < (x, y) + (y, yy) and (x, yy) >
(y, yy) -(x,y) yields

(1.2) e-«x'rtgs(y, y) < gs(x,y) < es^^gs(y,y).

In particular 8 depends not on x or y but only on the discrete group T.

We call 8 the critical exponent and say that T is of convergence or divergence

type according as the series 2^,yere^'°'^0" converges or diverges. Since we are

interested in groups of divergence type at the critical value 8, we will assume

that lim^a £)r e~s{-x<yy) = 00 for s> 8, and this true for all x, y using (1.2).

Now we consider the family of measures ps(x) = ,x , ^re~s^x'yy'lD(yy)

where D(yy) is the unit Dirac mass at yy.   Appealing to Helly's theorem,
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there is a measure in the limit as s,> —> 8 , namely, px = limj^ pSi(x) ■ Since

gs(y, y) -* oo as s —► 8 , px is concentrated on the cluster points of the orbit

Y(y). Thus px is a measure on the limit set A(r).
Here are some facts which will be useful in later sections.

Proposition 1.1. There is a conformal density of dimension 8(Y) supported on

the limit set and invariant by Y.

A proof of Proposition 1.1 can be found in Theorem 1 of [S].

Proposition 1.2. For a nonelementary discrete group Y, the critical exponent

8(Y) is positive.

Proof. See Corollary 1 in LS] and Corollary 3.4.5 in [N].

Proposition 1.3. If Y is a nonelementary discrete group which diverges at its

critical exponent then the measures px have no atomic part.

Proof. See Theorem 3.5.8 in [N].

Let do be the metric on Sd defined by do(£, n) = |cos_1 (£ -n)\. Then the

<7o-radius ry of pr{y(Bp)} c Sd can be obtained from hyperbolic trigonometry

(see Lemma 4.3.1 in [N]) as follows.

(1 3) tanr   - tanh,(l - |y(0)f)(L3) tanr, - 2|y(Q)|

Hence for |y(0)| close to 1 and sufficiently large p, we note from (1.3) that

(1.4) (l-|y(0)|)*rr.

The following result gives much useful information on the local structure of

an invariant conformal density.

Proposition 1.4 (Sullivan's Shadow Lemma [N, Theorem 4.3.3]). Let Y be a

discrete group acting in Bd+' and p a Y-invariant conformal density of dimen-

sion a which is not a single atom. Then there exist constants m, M such that,

provided p is large enough, for all except finite many y £Y,

m < "><**'» < M.
r'y

The above proposition is saying that near conical limit set, the measure class

behaves somewhat like a Hausdorff a-dimensional measure. Note that po refers

to picking a prescribed point in hyperbolic space.

Proposition 1.5. Let Y be a nonelementary discrete group acting in Bd+X and

p a Y-invariant conformal density of dimension a. If A is a Y-invariant subset

of the conical limit set, then either px(A) = 0 or px(A) = px(Sd).

Proof. See Theorem 4.4.4 in [N].

Now for y, t € Y and a conformal density p of dimension a we have:

Lemma 1.6. For all sufficiently large p and for each t, there exists a constant

K(p, t) so that if (y(0), t(0)) < t then po{y(Bp)}/po{r(Bp)} < K(p, t).

Proof. By Proposition 1.4 we have m < po{y(Bp)}/r^ < M for almost all y

in T. Note from (1 - |y(0)|)/2 < e-t0-*0)) < (1 - |y(0)|) and from (1.4) that
there exists positive constants ko(p) and Ko(p) such that for almost all y,

(1.5) MP)e~(0,y(0)) <rr< K0(p)e-(°>yWK
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Using this observation and Proposition 1.4, there exist positive constants mo

and Mo such that, provide that p is large enough, for all except finite many

yeY,
, r«>{y(BP)} „ .,

m0 < g-a(0,y(0))   < M*'

Therefore
p0{y(Bp)}     Mp (e-W'Wy

p0{r(Bp)} < mo \e-(°'yW)   '

So, it suffices to show the boundedness of (e-(°.r«»)/e-(°.J'(0)))a . But

p-(0,r(0))
£_ _ z,(0,y(0))-(0,T(0)) < ptg-(0,y(0))       t

Hence /io{y(5„)}/>o{T(fl„)} < *(/>, r).

2. Shadows and projections

From now on, we shall denote by Bp(a) the ball of center a and non-

Euclidean radius p for a £ Bd+X and p > 0. We denote by 5,, the ball of

radius p at 0.
Given a point a £ Bd+X, a / 0, we define the projection pr{a} in Sd to

be a/\a\ and the shadow sh{a} in Bd+X \JSd to be the closed line segment

[a, pr{a}]. For a set EC Bd+X which does not contain 0 , we define pr£ =

(Jxe£pr{x} and shE = Uxgel-* > Pr{x}] • For a set E containing 0, we define

pr£ = Sd . Also we denote by b(0:a, p) the projection of the hyperbolic ball

of center a and radius p from the origin onto Sd . For later use, we require

some simple relations among shadows and projections.

Proposition 2.1 [A, Lemma 3.1, 3.2, 3.3].

(i) If two geodesic rays with common terminal point £ £ Sd both meet a ball

Bp(a), and if one meets Ba(b) between £ and Bp(a), then the other

meets Ba+2p(b). The estimate is sharpened to Ba+P(b) if one meets a

itself.
(ii)   Bp(a) C sh{B2p(b)} if any radius r meets, in order, 0, b, Bp(a).

(iii)   Bp+T(a)Csh{B0+T(b)} whenever Bp(a) c sh{Ba(b)}.

For Bp(a) a ball in Bd+X , we consider the collection p c Bd+X u Sd of

all radial segments [0, pr{x}], x £ Bp(a). This set is called the solid angle

supporting Bp(a). Any image y(0) (y £ Y) will be a solid angle with vertex

y(0). It is not hard to see geometrically that for all sufficiently large p, there

is a positive function coo(p), such that

(2.1) (io[pnsd]>coo(p)

where /? is a solid angle containing Bp (for more details, see the proof of
Theorem 4.3.2 [N]). From now on we only consider those elements {y„} c r
such that (0, ^(0)) > p. We need to define a set called a half-ball. By this we
mean a set x Q Bd+X U Sd , bounded by a Euclidean sphere orthogonal to Sd .

We agree that x includes its closure in Bd+X .
For the next three lemmas, we assume that the measure po has no atomic

part and 0 < po(A) < oo .
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\. ^---_-^^ I //   Sd-b(z;0,p)

Figure 1

Lemma 2.2. Suppose that Y is a nonelementary discrete group. Then there

exists po sufficiently large such that for every p > p0, for every T £ Y with

T(Bp)f)Bp = 0, and for every half-ball x such that x n A ^ 0 and x^Bp = 0,
there exists A£Y, with A(BP), AT(BP) C x, and AT(BP) C sh{A(B2p)}.

Proof. Let X = po(A)/3 . Then X > 0. Since po has no atomic part, we may
assume that there exists e > 0 such that if A is a ball in Sd of cfo-diameter
at most e then

(i) p0(A) <X <p0(A).

Choose po so large that if (z, 0) > po . Then

(ii) afo-diameter of Sd \ b(z; 0, p0) < |

where b(z ;Q,po) is the projection of BPo onto Sd from z as in Figure 1.

For p > po, let x be a half-ball with x n Bp = 0 • For each p e dx n Sd ,
we consider the half-ball x(P, Bp) such that x(P, Bp) is tangent to x at P,
to Bp and x(P, Bp)nx = {p}- Note that from (ii),

(iii) cVdiameter of   I     [j    x(P, BP)\J x> nSd    < y < e.

. [Pedxns<< J

Now take a half-ball Xr with Xt 3 7"(B^) and xt^Bp — 0 . Then from (i)
and (iii) and reducing x if necessary (in case T(BP n j; ^ 0), we can choose

another half-ball x' with x' n ^(^/)) = 0 but ^' n A ^ 0 such that every ray
from T(0) to a point in x' meets Bp . Now by the Double Density Theorem

[B], Theorem 5.3.8, we can choose a loxodromic element A with fixed points

£ e x and r\ £ x' so that the axis of A meets Bp as in Figure 2.  Taking
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/ / ~^~~~~      Z^\v'(0)\

Figure 2

sufficiently high powers of A , we may assume that A maps B\x' inside x ■
This completes the proof.

Lemma 2.3. Given Y, T and p > po as in Lemma 2.2, there exist a finite

set of half-balls {#«,... , Xn- *, n A ^ 0} and sf = {Ax, ... , A„} C Y,
such that for any solid angle fi containing Bp, there exists k with Xk c ft,

Ak(Bp), AkT(Bp) C0, and AkT(Bp) C sh{Ak(B2p)}.

Proof. Choose a finite collection of round disks {Dk}%=l in Sd so that each of

which bounds a half-ball Xk that does not meet the ball Bp and \Jk=x Int Dk d
A.

Using (iii) in the proof of Lemma 2.2, for any half-ball x with / n A ^ 0

and x n Bp = 0, we can find an open set U(x) in Sd as in Figure 3 (in
case d = 1) so that the part G(x) between Bp and U(x) has the property
that if a solid angle ft containing Bp has a vertex in G(x), then x Q P and

Ui=i U(Xi) = Sd . Then if ft is any solid angle containing Bp , its vertex lies in

some G(x). For each Xk with ^nA^0, find Ak £ Y with the property of
Lemma 2.2.

Lemma 2.4 [A]. Given s/ as in Lemma 2.3, there exists a positive constant M0

such that for any y e T,  there exists W = W(y) £ Y, with the properties

(i)    W(Bp),WT(Bp)£sh{y(Bp)},
(ii)    WT(Bp)Csh{W(B,p)},

(iii)    p0[y(Bp)] < MoPo[WT(Bp)].

Proof. Given y £ Y, let /? be the solid angle supporting y(Bp). Then y~x(fi)
is a solid angle containing Bp , and therefore containing A(BP) and AT(BP) C
sh{A(B2p)} , for some A £ sit. Define W = yA.
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u(xk)

/ G(xk) I \ /^ \

(     X*      Dk

Figure 3

Part (i) is obvious from the construction. For (ii), take any radius r = Oq

meeting WT. From y~x(q), draw the radius s' to 0, and geodesic r' =

y~x(r). Set s = y(s'). Now r' meets AT(BP) and Bp, and therefore s' meets

AT(B2p). Hence s' meets A(Bip), s meets W(Bip), and r meets ^(77^).
Here Lemma 2.1 has been used. Part (iii) is evident from Lemma 1.6, once we

calculate that

(WT(0), y(0)) = (AT(0), 0) < (AT(0), .4(0)) + (,4(0), 0)

= (r(0),0) + (^(0),0)

< t0 = max(^(0), 0) + (T(0) ,0):Aesf.

Now we will characterize the conical limit set in terms of projections. First

of all, we need the following result for the characterization.

Proposition 2.5 [N, Theorem 1.2.1]. Suppose a £ Bd+X and c;,n £ Sd, £^n.

Let s be the hyperbolic distance from a to the geodesic joining £ and n. Then

coshs m   2\a-t\\?-n\m

\Z-q\(l-\a\2)

Note that a point t\ £ Sd belongs to b(0:a, p) if and only if the radius

to £ passes within a hyperbolic distance p of a. By Proposition 2.5 , this is

equivalent to

(2.2) |a-£||a + £|<(l-|a|2)cosh/>

With this result in hand, we next state the connection between conical limit set

and projections.
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Proposition 2.6 [N, Theorem 2.4.5]. Let Y be a discrete group acting in Bd+X

and £ £ Sd . Then £, is a conical limit point for Y if and only if for some a £
Bd+X and p > 0, t\ belongs to infinitely many projections b(0 : y(a), p) :y £Y.

3. Derivatives

Now we consider the connection between the measures px and px, . We

will notice that it may be expressed in terms of the derivative of a Mobius

transformation y with y(x) = x'. The derivative used in this connection is

derived from the metric obtained on Sd by radial projection. We begin with

the great circle metric do on Sd defined by

d0<Z,ri) = \cos-x(^-n)\.

Now for x £ B choose a Mobius transformation V preserving B such that

V(x) = 0 and define
dx'Z,ri) = d0(V(cl),V(n)).

If x £ B, y is a Mobius transformation preserving B, and £ £ Sd we define

ir-*     dx(£, v)

The next proposition gives the relation between the derivative and the ratio

of Poisson kernels.

Proposition 3.1 [N, Lemma 3.4.2]. For any Mobius transformation y preserving

B.for x£B and t\ £ Sd,

where P denotes the Poisson kernel.

Proposition 3.2. There exists a positive function M(p) such that, for all y £Y,

if £i, £2 G S are confined to y~x(pr{y(Bp)}), then

(3.D mA<M(p).
|yo(«)i

Proof. If y(0) = 0 then put M(p) — 1 ; otherwise note that

\Mi)\_P(7-l(Q),Zi)     (\J2-y-l(Q)\\2

\y'o(Z2)\~ P(y-x(0),z2) " \\zx-7-x(0)\) ■

Consider the projection of y~x(0) to the boundary of Bp(0) and denote by x

the point of projection onto dBp(0). Take the hyperplane 77 which is tangent

to Bp(0) at x and perpendicular to S. Let us denote by Sh the sphere of

intersection of 77 with 5. Then we have

\Z1-y-l(0)\>mm{\C-r1(0)\},

which shows the existence of M(p).

Theorem 3.3. If x £ B, y is a Mobius transformation preserving Bd+X, and E

is a Borel subset of Sd then

/V'w(£)= f \y'x(S)\6 dpxtt).
Je
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Proof. This is a consequence of Theorem 3.4.1 and Lemma 3.4.2 in [N].

Theorem 3.4. If Y is a discrete group preserving B and if y £Y, then for any

X£B

y*'fix   = l*y-l(x) ■

Proof. This is an immediate consequence of Theorem 3.2.4 in [N].

Remark. The last theorem, combined with Theorem 3.3, implies that for a Borel

set E of S and y £Y

(3.2) px(y(E)) =  f \y'x(Q\6 dpx(Q.
Je

4. Main theorems

For fixed T £ Y any W £ Y, p > 0, let EP(W) C S be defined by

EP(W) = pr{^r(7?2/,)nsh{^(7?7/,)}}.

For some enumeration WX,W2, ...  of Y, let

oo    oo

%p(t) = n u £p(wk)-
n=\k=n

The purpose of this section is to prove the following.

Theorem 4.1. For every nonelementary discrete group Y, there exists pr such

that if there exists T £Y with

(i)   T(BPr) nBPr = 0 and

(ii)   p0[^Pr(T)] = 0,

then Y is of convergence type.

Proof. If po has an atomic part then by Proposition 1.3, Y is of convergence

type. Therefore we assume that po has no atomic part. Our object is to show

that
£(l-|y(0)|)'5 <oo

yer

where 8 is the critical exponent of Y. Using Proposition 1.4 and (1.4), it is

sufficient to show X^er^oty^r)] < °° • To do this, we take an enumeration

yx, y2, ... of T, fix t > to where to is chosen as in the proof of Lemma 2.4

and choose a new sequence y^ , yki, ykl, ... with the property that y^ = id,

and for j > 1, kj is the first index k such that (^(0), ykj(0)) > 3t, for
i = 0, 1, 2,... , j- 1. The sets 9} = {y £ Y : (y(0), ykj(6)) < 3t} are of
constant cardinality N(t), and \J9] = Y.

By Lemma 1.6, po(By)/po(Byj) < K(pr, 3t) whenever y £ 9]. Hence

oo oo

£>W <EE fo(By) <^N(t)K(pr, 3t)p0(Bykj)
y€T j=0 ye9] y=0

and so it suffices to prove Y^JLo ̂o(Byk) < oo. Now relabel this sequence

yx,y2, ... ,   and set 8j  -  W(yj)T, where  W(yj) is as in Lemma 2.4.   By
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Lemma 2.4, it suffices to show that

oo

j=0

We note that the 8j(0) are well spaced because

(<5;(0), <5,(0)) > (7j(0), 7,(0)) - (yj(0), Sj{0)) - (y,(0), <5,(0)) > 3t - 2t0 > t.

Therefore we denote by Bj the ball 8j(BPr), and we shall assume that t > 3pr,

so that these balls are disjoint.

We set up classes of balls:

lo = {BPr}
7i  = {Bk : Bk is not eclipsed by any Bt}

Im = {Bk : Bk is not eclipsed by any Bt <£ \Ji<j<m Ij} .

In any class Im , the shadows sh{Bk} are disjoint. Further, every Bj £ Im+X

is eclipsed by some Bk £ Im , for it were not, it would have been selected in an

earlier class. Our main object is to show that

£   Ho(Bj) < \ £ Po(Bk).
Bj€lm+\ Bkeim

Then we get

oo oo oo     s ~ s. m

Y^MBj) =  E   E MBj) < E ( 3 J    A*o(A) < oo.
7=0 m=0 Bjel„ m=0 ^    '

We shall further partition each class Im+X into two subclasses:

I'm+l = {Bj £ Im+X : Bj is partially eclipsed by some Bk £ Im} ,

I'm+i = {Bj s Im+\ '■ Bj is totally eclipsed by some Bk £ Im} .

We first consider the class I'm+l . Fix Bj £ I'm+l, partially eclipsed by Bk£ Im.

Then there exists q in the boundary of pr{Bk} such that the radius from 0 to

q meets dBk at a point bk and Bj at a point bj in the order 0, bk, bj . Let

us also denote 8j(0) = aj and 8k(0) = ak . Putting p = pr,

t<(ak, aj) < (bk , bj) + 2p

= (bj,0)-(bk,0) + 2p

< (aj, 0) - (ak ,0) + 4p

Hence from (1.5), we have

-(0, aj) < -(0, ak) + 4p-t,    e^0-"^ < ^-(o^*)+4/»-( f

e-(0,ak) - '     rk~ ko(p) ' - ko(p)K     '      k'

where rj is the d0 radius of pr{8j(BPr}) on Sd. This implies that the pro-

jections pr{2?y}, Bj partially eclipsed by Bk , all lie inside an "annular" region

on Sd, of Euclidean inner radius asymptotic to rXn = rk(l - 2C(p)e~') and

rout = rk(l +2C(p)e-<) where C(p) = {K0(p)/ko(p)}e4f>.
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Figure 4

To complete the partially eclipsed case, we need the following lemma. Here

we denote by A(rout, r;n) the annular region determined by roM and rXn on Sd

as in Figure 4.

Lemma. p0 [A(rout, rin)] < ^p0(Bk) for all t sufficiently large relative to p.

Proof. Let poul be the hyperbolic radius of the ball centered at the origin such

that the <7o-radius of 8k(Bout) is r0ut • Similarly we may define pXn. Hence we

have

^(r0Ut, rin) = b(0:8k(0), PoM) - b(0:8k(0), pin).

Let

X(t) = Po[b(8~»:0, pout)\b(8^x(0):0, pilt)]

^ p0[8,;x{b(0:8k(0), pout)\b(0:8k(0), pin)}}

= Psk{o)[b(0:8k(0), Pout)\b(0:8k(0),pin)].
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However, we have, from Theorem 3.3, Proposition 3.1, and (3.2) that

fiskio)[b(0:8k(0), pout)\b(0:8k(0), piD)]= f l^Bjf]  dp0(c;).
JA(r0M,r{n)l     AU,^)     J

Now we approximate the Poisson kernel P(8k(0), £). Note that 7^(4(0), c;) =

(1-|4(0)|2)/|4(0)-£|2.
To get the lower bound we note that if £, £ b(<d:8k(Q), pout) then from (1.4),

we have

14(0)-£|<1 -|4(0)| + rout

= l-\8k(0)\ + rk(l + 2C(p)e-')

» 1-|4(0)| + (1-|4(0)|)(1+ 2C(p)e-').

Since (4(0), 0) > p, we see that for a positive constant a, depending only
on p,

14(0) -{| < (l+a(l+2C(p)e-'))(l - \8k(0)\).

Therefore

/ T>(4(0), Z)* dp0(Z) > .,.„,, _Ln     ,.,-■■■, / dpo
JA{r0M,rm) (A + 2C(p)e   ')(1 - |4(0)|)* Mrout,rin)

=_^oM(rout, rin)]_

~ (A + 2C0(p)e-')2S(l-\8k(0)\)d

>    cp0[A(rout, rin)]

~ (A + 2Co(p)e~t)2Srsk

where A = a + 1, Co(p) = aC(p), and c is a positive constant. But

W<M4(M<M)
rk

therefore we have

»o[A(roul,rin)] < M{A + 2Co(p)e-')2Spo(Bk).

Hence we conclude that for all t sufficiently large relatve to p,

Vo[A(rout, rin)] < ^po(Bk).

Now we finish the argument of the partially eclipsed case by summing this

over Bk £ Im. Then we can conclude that for all sufficiently large t, we have

(4-1) £   Po(Bj) < j £ Po(Bk).
Bj&'m+i Bkam

Now we consider the class 7^'+1. Fix Bk £ Im , and let Jk be the indices

such that for j £ Jk , the balls Bj £ I'^+l are all totally eclipsed by Bk . Let

Ek = pr{\JBj:j £ Jk} = \Jj€Jkpr{Bj} and Fk = 8~x(pr{Bk}) 2 8~x(Ek).
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Let /? be the solid angle supporting Bk , and consider 8kx(fi),  a solid angle
containing Bp . From (2.1), (3.1), and (3.2), we have

(Oo(p)lio[Ek]<p0[8kx(B)]  f \(8k)'0fdp0(Z)
JS-\Ek)

< »o[8kl(pr{Bk})] max\(8k)0f P-o[8k\Ek)]
i€Fk

< f  dpog) M(p)min\(8k)'0f po[8k~l(Ek)]
JFk i^tk

< I l(4)o(^)l"dpo(Z) M(p) p0[8kx(Ek)]
JFk

= Ho[Sk(Fk)]M(p)p0[8k-x(Ek)]

= Po[Bk]M(p)p0[8-x(Ek)].

Hence we get

p0[Ek] < ^^no[Bk]Po[8k\Ek)l

From exactly the same argument as on p. 246 of [A] we have

(4.2) 8-x8j(Bp)Csh{8k-x(yV(B6p))}

and

(4.3) 8-x(pr{Bj})Csh{8-x8j(B2p)}

where 8j = W(yj)T.
It follows that

8k-xWT(B2p) = 8kx8j(B2p) C sh{8kxW(Blp)}

and therefore we get from (4.3) that

Ep[8kxW] = pr{8kx8j(B2p)}D8kx(pr{Bj}).

Observing that

(8kxW(0),0) = (W(0), 8k(0)) = (8jT~x(0),8k(0))

>(8j(0),8k(0))-(8j(0),8jT-x(0))

>t-to,

we have

skl(£k) = U 4"'(Pr{^})=IJ^^): (^(0).o)>t-t0.
J€Jk

By taking Patterson-Sullivan measure, and using the hypothesis that

Hdf){jEp(A) :^er] = 0,

we see that

Po[Skl(Ek)]^0       (f-co),

and therefore we may select t sufficiently large that
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This shows that

£   lk>[Bj] =   £ Po[Ek]<j £ p0[Bk],
Bj€i'm'+1 Bkeim Bkeim

which along with (4.1), completes the proof of Theorem 4.1.

Corollary 4.2. IfY is of divergence type, then poWpr(T)] > 0 for all but finitely
many T e T.

_ Define a subset of the limit set of Y as follows.

%p(T) = {q £ A :  for every p £ S, there exists a sequence {Wk} C Y, with

the geodesic with endpoints p and q meeting Wk(Bp), WkT(Bp) in order from

p to q, and Wk(Bp) —> q as k —» oo} .

Theorem 4.3. 7/T diverges at its critical exponent, then Po[%$Pr(T)] = ^o(A)

for all but finitely many T e T.

Proof. By the definition of ^P(T) and Theorem l(v) in [B-M], every point

q £ &P(T) must be a conical limit point. Moreover %>p(T) is T-invariant. To

show this, let q £ £?P(T). For each p ^ y(q), namely y~x(p) ^ q, there

exists a sequence {Wk} c Y, with geodesic with endpoints y~x and q meeting

Wk(Bp), WkT(Bp) in order from y~x(p) to q and 1^(7^) -» i? as k -* oo.
Now we take the sequence {yW^} C Y.

Since the set  £?P(T)  is a T-invariant, Proposition 1.5 shows that either

Po(^p(T)) = 0 or Po(£P(T)) = /^o(A).   By definition,  q £ ^Pr(T)  if and

1 ill Ur(B2J/J^Jjj

\ W(B7p)  /

Figure 5
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only if q lies in infinitely many of the sets Ep(Wk). If this occurs then there
exist infinitely many W £ Y with the radius from 0 to q meeting in order 0,

W(Blpr), WT(B2px) . This implies that any line from p to q meets, near q ,

infinitely many pairs W(BSpr),  WT(Bipr), and that q £ ^ipv(T).  In other

words, gp(T)c §sp(T) for all T£Y such that T(B2pr)f]B7pr = 0 . (In case
T(B2pr) n Blpv is nonempty, it is conceivable that we may have an example as

in Figure 5. Namely, the radius from 0 to q meets 0, W(BiPr), WT(B2pr)

in that order but it meets in order 0, WT(BSpr) and W(BSpr), failing to show

that q £ %%Pr(T).) Therefore po[%&Pr(T)] = po(A) for all but finitely many
T£Y.

5. Applications

Corollary 5.1. Let Y be a nonelementary discrete group acting in Bd+X. If Y

is of divergence type then the conical limit set Ac has positive Patterson-Sullivan

measure.

Proof. Suppose for contradiction that po(Ac) = 0. If p £ WPv(T), then p £

EPr(Wk) for infinitely many k . Hence p £ pr{WkT(B2pr)} for infinitely many

k. By Proposition 2.6, p £ Ac. This shows ^Pr(T) C Ac for every T £ Y.

Since po(Ac) = 0, we have po[£?Pr(T)] = 0 for every T £ Y. Then by Theorem

4.1, r is of convergence type. This is a contradiction.

Corollary 5.2. If Y is a nonelementary group ofdiverence type. Then there exists

pr such that p0[^Pr(T)] > 0 for all T e T.

Proof. If T(BPr) n BPr = 0 then we are in the case of Theorem 4.1. There-

fore we assume that T(BPr) n BPv ^ 0. A point £ £ ^Pr(T) if and only

if £, £ EPr(Wk) for infinitely many Wk . Since T(BPr) n B^ ^ 0, we have

WkT(B2pr) C Wk(Blpv) for all Wk . Therefore cf £ ^Pr(T) if and only if £ £
pr{WkT(B2pv)} for infinitely many Wk if and only if there exists k(2pr) > 1
such that

l-\WkT(0)\ * k{1Pr)-

Next we define, for k > 1, a point d; £ Ac(k) if there exists a sequence {yn}

such that

«-°° i - |y«(0)|

Then Ac(k) is T-invariant and Ac = U^Li K(k) ■ To show this, let t; £ Ac(k).
Then there exists a sequence {y„} c Y such that

»-«i - |y«(0)|

Applying g £ Y, since g is conformal and preserves Sd , we have

■in, If >-"ffl <,,«-oo      1 - |^y„(0)|

Therefore g(Q £ Ac(k). The second part is obvious.

Now assume that Y is of divergence type. Then po(Ac) > 0 by Corollary

5.1. Using Proposition 1.5, for each k > 1, Ac(k) has either 0 or full measure.

Hence there exists «o > 1 such that po[Ac(no)] = po(Ac).
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For pT > 0 such that k(2pr) > no, we have £?Pr(T) d Ac(no). Therefore

PoWPT(T)] > 0. This completes the proof of Corollary 5.2.
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