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ON ORTHOGONAL POLYNOMIALS
WITH RESPECT TO VARYING MEASURES ON THE UNIT CIRCLE

K. PAN

ABSTRACT. Let {¢n(du)} be a system of orthonormal polynomials on the unit
circle with respectto du and {¥»,m(du)} be a system of orthonormal polyno-
mials on the unit circle with respect to the varying measures du/|wn(z)|?, z =
el where {wn(z)} is a sequence of polynomials, degwn = n, whose zeros
Wy 1,...,Wn,n liein |z| < 1 The asymptotic behavior of the ratio of the
two systems on and outside the unit circle is obtained.

1. INTRODUCTION

Let du be a finite positive Borel measure with an infinite set as its sup-
port on [0, 2z]. We denote u'(0) = du/d@, the Radon-Nikodym derivative
of du with respect to d6. The Szeg6 polynomial with respect to du is de-
noted by ¢,(du), n=0,1,2,..., 1ie, ¢po(du, z) = ¢pu(2z) = Kn(du)z" +
lower degree terms, x,(du) >0, and

1 2n

2_ ¢n(d,ll, Z)¢m(d;u’ Z) dﬂ(e) = dn,m, zZ= eiﬂ’
T Jo

for m,n=0,1, 2,

Let {wn(z)}2, be a sequence of polynomials such that for each n € N,
wp(z) has degree n and all its zeros Wy, 1, ..., Wn,, liein |z| < 1. For each
n, we can define the orthonormal polynomials v, ,(z) = ap, mz™ +---, with
respect to the varying measure du/|wn(z)|?, that are uniquely determined by
the conditions

1 2n _ (9) )
— I Biad ad SV () —
T 0 ‘/’n,m(z)z I ( )|2 ]—0,...,m—1,

1 du(o | .
EA |‘//n,m( )|2| 'u((z))lz = 1’ and an,m > 0, z =elo.

If & is a nonnegative measurable function on [0, 2] such that logh € L!,
then the Szeg6 function D(k) is defined by

D(h, z) = exp (%/0 logh(t)u+z ) , u=eo.

Received by the editors December 29, 1993 and, in revised form, May 17, 1994.
1991 Mathematics Subject Classification. Primary 42CO05.
Key words and phrases. Orthogonal polynomials, asymptotic properties.

© 1994 American Mathematical Society
0002-9947/94 $1.00 + $.25 per page

331



332 K. PAN

We say that & satisfies the Szegé condition if D(k, 0) # 0. It is well known
that D(h) € H?; and for almost every ¢ € [0, 27]

: ity _ it
11/1‘1}D(h,re )= D(h, e")

exists and
ID(h, e")|> = h(2)
for almost every ¢ € [0, 2x].

Let &, be the set of all polynomials of degree at most n. For each polyno-
mial p,(z) of degree n, we define p;(z) = z"p,(1/Z). Then it is easy to see
that |p; ()| = [pa(2)] for |z] = 1.

Szeg6’s theory is concerned with the asymptotic behavior of ¢,(du, z). One
can state the main theorem as follows:

(1) lim 63(2) = 51—

uniformly for |z| < s < 1 whenever logu’ € L' (cf. [G]).

Recently, the orthonormal polynomials y, , have been studied in rational
interpolation with free poles and with prescribed poles. As in the theory of Szegd
polynomials, convergence results and asymptotic and interpolation properties
have been studied (cf. [Lol1-4] and [P2]). The relations between ¥, ,(z) and
the orthonormal rational functions with prescribed poles have been studied as
well (cf. [P1] and [LP]). A comparison with ¢,(z) needs further study.

The following result, analogous to (1.1), holds:

. V/’:"H.k(z) _ 1
(1.2 0 Twiz) - D 2)

uniformly for |z| <s < 1 whenever logu’ € L' and
n
lim > (1~ |wa,m|) = o0,
m=1

where k is a fixed integer (cf. [Lol]).
Thus if logu’ € L' and limp—oo Y, (1 = |Wn, m|) = 0o, then we have

. ga(2wa(z) _
- Y )

uniformly for |z| < s < 1 and k a fixed integer. As we can see, the right-hand
side of (1.3) is well defined even if logu’ € L! is not assumed. Hence one may
ask whether (1.3) remains true for g4’ not satisfying Szegd’s condition.

In this paper we obtain the strong and weak asymptotics of the ratio of
¢n(z)wy(z) and y,, ,..(2) on |z|] < 1 under the weaker condition u’ > 0
a.e. in [0, 27].

The main results are stated in §2. The proofs are given in §3.

2. MAIN THEOREMS

In this section, we only state our main theorems; the proofs will be given in
the next section. Our first result will be the strong asymptotic behavior for the
ratio of two polynomials.
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Theorem 2.1. If u' >0 a.e. in [0, 27], then

2.1) lim $2(2Wn(z) _

n—oo Wr;t,n+m(z) -

uniformly for |z| < s < 1, where m := m(n) € N is a function of n and
m—o00 as n— 0o.

Remark 1. If m is not a function of n, the theorem is still true—it is then a
special case of Theorem 1 in [MNT 2].

Remark 2. Relation (1.3) only serves as motivation to study (2.1); it does not
reduce to (2.1).

For the L,-norm asymptotic, we have the following result.

Theorem 2.2. Assume p’ >0 a.e. in [0, 2n]. Then

2
¢n(z)wM(Z) do = 0, 7 = eiﬂ ,
Wm,m+n(Z)

2n
lim -1
n—oo 0

uniformly in m> 1.
There are several consequences of this result.
Corollary 2.3. Assume y’' >0 a.e. in [0, 27n]. Then

2n 2

(2.2) lim En(Dwm2) "4l gg_0, s =e,

n—oo Jo Ym,m+n(Z)
and

2n

) Wp(Z) 1 i6
2.3 lim - de=0, =e'?,
@3 @] B0 z

uniformly in m > 1.
We give the following weak convergent result to end this section.

Corollary 2.4. Assume p’' >0 a.e. in [0, 2n]. Then

2n
lim [ f(6)

n—oo 0

Hu(2)0m(2)
Vm ,m+n(z)

uniformly in m > 1, for every bounded Borel measurable function f on [0, 2x].

2 2n )
do= [ f6)do, z=e",
0

3. PROOFS OF THE THEOREMS

Before we prove the results, we first establish some lemmas.
Lemma 3.1 [MNT 1]. Assume u' >0 a.e. in [0, 27], and let p >0 and S be
real numbers. If

1 2n 1/p 1 2n
<— (f(O)u’(B))de) <S-5 A f(0)du(6)

27[0

holds for every nonnegative continuous 2n-periodic function f. Then S > 1.
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Lemma 3.2. Let f be a 2n-periodic continuous function, then

[ (9 — ot
i [ lGao= [ roauo.  s=e

This lemma is a consequence of the following lemma.

Lemma 3.3 [F, p. 198]. Let n > 0 be an integer. Then

2n
b= [ oaiae

holds for every p, and q, in %,.

Remark 3. For the varying measures, we have

() Ta2) 2 du(6)
I a7 40 = [ meaE R e

for every p, and g, in &,.
Proof of Theorem 2.2. From the remark to Lemma 3.3, we have

2

Pn(2)Wm(z)

2n
/ ~1| de
0 Ym m+n(2)
2n 2n
=/ ¢n(z)wm(z) do — 2/ d’n(z)wm z) do +2n
0 V’m,m+n(z) Ym, m+n(z
2 du(0) 2| Gu(2)Wim(2)
- 2 _2/ On(2)wm(2)| 10 L H
[} 16nzrom) |wm( 2y | Vmomen(2) r
2n
=4n — 2/ deo, z=¢",
‘//m m+n(z)
Therefore, it will be sufficient to prove that
2n
(3.1) liminf [ |222¥n)| 4o 5 90
n—oo Jo Ym,m+n(2)

uniformly in m > 1. To prove this, let f be an arbitrary 2z-periodic nonneg-
ative continuous function. By Schwarz’s inequality, we obtain
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2n 4
(% [ (fw)u'w))'/“de)

_ (L[| ¢n2)wm(z)| "
_(E |

Ym,m+n(Z) 172

(' (0))"/*

Ym,m+n(2) 6or(2)
.
x f(0)!/ 4|¢ (2)'1/2 de)
= (27:/027’ %ﬁ’:’(—;) de) ( /2"#( )i'/’m min(2) )
" (% 10 g )
N (% / " 1O de)
i (51;/"2 =] d0)2<% e d"), _—

Letting n — oo, we obtain by Lemma 3.2 that

2n
(% / (f(o)u'w))‘/“de)
2n 2 2n
< (li’mg}f% I de) (% 0 f(0)du(0)),

Ym,m+n(Z)
z =e"%, forany m > 1. Since f was an arbitrary 2z-periodic nonnegative
continuous function and the limit is uniform in m > 1, this implies (3.1)
according to Lemma 3.1. The proof of the theorem is complete. O

4

Proof of Corollary 2.3. First we prove (2.2). Notice that according to Schwarz’s
inequality, we have
| gn(2)wm(2) [ ’
/ On(2)Wm(2)|” _ 11 40
0

Ym,m+n(Z)

2
_ ¢n(z)wm(z
B (/0 V’m m+n(z) ’ ‘ Vm, m+n(z) * 1‘ de)
On(Z)Wm(2) _ 2 On(2)Wm(2)
< (/0 Ym,m+n(2) ! d0) (/0 Ym,m+n(Z) 1 da) ’
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z = e'% . By Theorem 2.2, the first integral on the right tends to zero uniformly
in m>1 as n — oo. As for the second integral,

| pu(2)wm(2)| |
/0 Wm .mn(Z) 1| 46
_ m Gn(z)Wm(2) 2 Z)Wm(z)
_/o Wm, mn(2) d0+2/ '//m m+n(Z) d6 + 2
o [ |l gy (o [ O g "
~—Jo Ym,men(Z) 0 Wm, m+n(Z)

2 27 1/2
- /0 |¢n(2)|2du(0)+2(2n /O |¢n(z>|2du<e)> +2n < 8x,

z = e where the first inequality follows from Schwarz’s inequality and the
last equality follows from the remark to Lemma 3.3. Thus (2.2) holds.
Next we prove (2.3). By Schwarz’s inequality, we have

2 2
/” wm(z) | 1
( 0 '//m,m+n(Z) |¢,,(Z)| )
_ /27t (Z) l 2
0 Y, m+n( |pn(z
N wm(2)pa(2)| P ] _ o
5/0 Vmmin(2) | ! ‘w/o G 90 2=

The second integral on the right-hand side equals f02 " du(6) by Lemma 3.3,
and by Theorem 2.2 the first term tends to zero uniformlyin m > 1 as n — o©.
Thus (2.3) follows. The proof of Corollary 2.3 is complete. O

Proof of Corollary 2.4. The result is a direct consequence of (2.2). O

Proof of Theorem 2.1. For m = m(n), we first prove that

5O 0)

Wi, men(0)

(3.2) lim inf

n—o0

In fact, from Schwarz’s inequality, we have (notice that |p;(z)| = |pa(2)| for
Dn € %, when |z|=1)
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2 Vim, m+n(2) 1/2_ 1(py)1/4
/0 Gi(wnz)| | WO)Ta0
_ [F|182@wnD| | [Yoamin@) [P e 1
- Vi men(2) w(z) | WOV g 40
IO P AN
< (|| g

V’;z,m+n(z)
wp(z)

¢n(2)wy(2)
'//;1 , m+n(z)(z)

) 14 , o | 1/4
a ‘”) (/o P ‘”’)

1/2 172 - 1/4
-1\ do ( du(O))
0

([
5 ( [

ot

21 grwn() 2| || dn(z)ws(2)] 2
: (/o Vmen@ | | Vi@ | T[4
2n 1/4
x ( [ du(0)>
7 * N 1/2 - 1/4
_ ( [7||geats -1{do) ( : dﬂ(ﬁ))
0 m,m+n 0
m g wn@)]| P\ Ve o
< (271"/0‘ m —1| deo A d,u(0) s z=e".

Using Theorem 2.2, we obtain

2n v it (2) 1/2 174 i 0
. m, m+n _ / _ — ol
(3.3) nll)n;l() A mz—) ll (/l (0)) dé = 0, zZ=e".

uniformly in m > 1.
From this we claim that, for m = m(n),

v (e'9) 12

: m,m+n :

. —_— < .€. .
(3.9) h’r'nsup (e wr (e I, 6 ae. in|[0, 27]

Assume on the contrary that there exists an E C [0, 2n], |E| > 0, such that

V/* (ei()) 172
limsup | "2~ | > 14§, Qae inkE,
meo” | B3(€®)wy,(e10)

where 6 < 0. Thus we can find a subsequence n;, of N such that
lim w;:l ,m+ny (e’o)
m—oo | | @y, (€)wy, (')

1/2
—1) >d, 6fae inkE,
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for m = m(ny). From this, we have, for m = m(n;),

2n * 1/2
. '//m,m+nk(2) _ ’ 1/4
N A Py e B
* 1/2
. ‘//m,m+nk(z) ! 1/4
St A Fore ey | B L
. 1/2
.. V/m,m+nk(z) _ i 1/4
e | [, G| WO

> / S(W(0)14d6 >0,  z=e",
E
since 4’ > 0 a.e. in E. This contradicts (3.3), so we have (3.4). Inequality
(3.4) implies
Wr:l,n+n(ei0)
Since R//m man(2)/®5 (2 ) (2 ) (the zeros of ¢ (z) and w;(z) liein |z| > 1)
is analytic in |z| < 1, then

V/m m+n(0) 1 m y/;l m+n(z)

(3.5) lim sup

n—oo

<1, @6Hae. in|[0, 2x].

= —mminiT g
60w, 0~ 2n )y Fp(z)wi(2)
L[] ¥ men(2) ;
< — —— T d, z = e,
=2 Jy |(2)wp(z)
Then, from (3.5), we have
. Ym. m+n(0)
hmsu _—
pivod ,,(0>w*< )
2rn
. Wm m+n(z)
<lims / deo
‘nqo‘.fpz o (2)wi(z)
/Zn llmsup W’" Y men(2) do<1, z=¢e"
S fy P G (own(2) ‘
Thus $1(0)w2(0) 0)
w,, . Ym , mn
llmmf”— =1 11msu —e > l
e (@) /ISP 6 0) =

This completes the proof of (3.2).

Now we can turn our attention to (2.1). First let us show that, for m = m(n),
{5 (2)wn(2)/¥m men(2)}, n € N, is uniformly bounded on each compact sub-
set of |z| < 1. In fact, using Cauchy’s formula and Cauchy-Schwarz’s inequal-

ity, we obtain
r(2)wn(z)| _ 1 /2"
- 2n 0
2n 2 1/2 2n
el ) (&
2n Jo |(u—2z) 2rn Jo
1 0

Wr:l,m+n(z)
< =e'’.
Shffz—uu =1 “7°¢

UG (W)W, (1)

‘//rtt,m+n(u)(u - Z)
u

do

on(Wwy, (u)

Wr:l,m+n(u)

IA

) 1/2
do)
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Since @} (z)w;,(2)/ W min(Z) is analyticin |z| < 1, then it is an normal fam-
ily. Take, in |z| < 1, {¢n(2)w,(2)/¥pm mn(2)}, n €', T CN, a convergent
subsequence whose limit is Sp. It is sufficient to prove that any Sr = 1. To
this end, we only need to prove that

R{log Sr(2)} = log|Sr(z)| = 0.

However, for the Poisson’s kernel P(u, z), using Jensen’s inequality and
Corollary 2.4, we get

2

on(2)wp(2)

Ym, min(2)
: 1 [

=L1é111exp 37 Jy P(z, u)log

2 1
ISr(2)[* = lim

¢n (W) wy, (1)
Vi, mn(U)
2
do

2
a0)

2n
lim — P(z,u)

on(Wwy, (1)

y/,:,,,,,+,,(u)

- — _ it
=37 J, P(z,u)df =1, u=e".
Hence,
R{logSr(z)} = log|Sr(z)| < 0.

But according to (3.2), we have
R{log Sr(0)} > 0.
Therefore, using the maximum principle for harmonic functions, it follows that

R{logSr(z)} =0. O
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