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CAUCHY-GREEN TYPE FORMULAE IN CLIFFORD ANALYSIS

JOHN RYAN

Abstract. A Cauchy integral formula is constructed for solutions to the poly-

nomial Dirac equation (Dk+Yfcrn~JQ bmDm)f = 0 , where each bm is a complex

number, D is the Dirac operator in R" , and f is defined on a domain in R"

and takes values in a complex Clifford algebra. Some basic properties for the

solutions to this equation, arising from the integral formula, are described, in-

cluding an approximation theorem. We also introduce a Bergman kernel for

square integrable solutions to (D + X)f = 0 over bounded domains with piece-

wise C1 , or Lipschitz, boundary.

Introduction

It is well understood [1, 3, 4] that solutions to the Dirac equation, Df = 0,

in R" can be described by a Cauchy integral formula. Here, D stands for the

homogeneous Dirac operator _]"=x ejd/dXj , and the e, 's are the generators

of a real Clifford algebra A„ . As D2 = -A, the negative Laplacian over 7?" ,

it may easily be shown (see [8]) that Green's formula for harmonic functions
can be modified via Clifford algebras to more closely resemble a Cauchy integral
formula.

In [12], X. Zhenyuan shows that solutions to the inhomogeneous Dirac

equation (D + k)f = 0, with k £ C, also possess a Cauchy integral formula,

with a Cauchy kernel E_x(x - y). A similar kernel for this equation is also

produced for the case n = 3 by Giirlebeck and Sprossig [4, Chapter 4] and is

used to describe boundary value problems for Helmholtz' equation An = k2h .
Using the kernel Ex , produced in [12], these results automatically generalize to

the cases n > 3. Clifford algebras have also been used by Mitrea [6] to study

boundary value problems and associated Hp spaces for the Helmholtz equation

over nonsmooth domains.

In [11], Sommen and X. Zhenyuan construct a Cauchy kernel for D - k

as a power series _^=xamGm(x), where am £ R, and Gm(x) is a funda-

mental solution to the operator Dm . In this paper, we show that this method

of construction generalizes to allow us to obtain Cauchy kernels and Cauchy-

Green type integral formulae for solutions to each polynomial equation

(Dk + _lm~=obmDm)h = 0, with bm £ C. It automatically follows that many
existing results in Clifford analysis extend to the context described here; for

instance, the approximation theorems described in [ 1, Chapter 3] automatically

Received by the editors October 14, 1993 and, in revised form, December 13, 1993; originally

communicated to the Proceedings of the AMS by Palle E. T. Jorgensen.

1991 Mathematics Subject Classification. Primary 30G35.

©1995 American Mathematical Society
0002-9947/95 $1.00+ $.25 per page

1331



1332 JOHN RYAN

generalize. We briefly illustrate some of these points. We also show that the

results given here give improved information over that given in [9] on the holo-

morphic continuation of solutions to(Dk + Y,km=obmDm)f = 0> an<* building

upon results presented in [10], we produce a Bergman kernel for square inte-

grable solutions to (D-k)f = 0 over arbitrary bounded domains with piecewise

C , or Lipschitz, boundary.

Preliminaries

We shall consider the real, 2"-dimensional Clifford algebra, A„ , generated

from 7?" equipped with the negative definite inner product. Consequently, if

{e"/}"=1 is an orthonormal basis for 7?" , then An has basis elements

[, ex, ... , en, . ■ ■ , ejt ■ ■ ■ ejr, ... , ex ■ • • en ,

where 1 is the unit of the algebra, jx < ■ ■ ■ < jr, 1 < r < n, and the elements

ex, ... , e„ satisfy the anticommutation relationship

ejek + ekej = -25jk ,        1 < j, k < n,

with dj i k the Kronecker delta.
The Euclidean Dirac operator D is the differential operator

Eo
ejdxj-

7=1 J

It may easily be observed that D2 = -An , where A„ is the Laplacian in 7?" .

We shall use the complexification An(C), of A„ .

Definition. Suppose U is a domain in R" , and /: t/ —> x4„(C) is a C1-

function satisfying Df = 0. Then / is called a left-monogenic function. If

the C-function h: U —► An(C) satisfies

7=1       '

then h is called a right-monogenic function.

An example of a function which is both left- and right-monogenic is the

function Gx(x) = (l/w„)x/\\x\\" defined on 7?"\{0}. Here, w„ denotes the
surface area of the unit sphere in 7?" . It should also be noted that we are

assuming that n > 1 .

The function theory associated to monogenic functions and the applications

of this function theory have been pursued by many authors (see, for instance,

[1-6, 8-12]). For n > 2 , the function Gx(x) is a generalization of the Cauchy

kernel from one-variable complex analysis. In particular, from Stokes' theorem,

the homogeneity of Gx(x), and the fact that x2 = -||x||2 for each x g R" , we

have

Theorem 1 (Cauchy's integral formula). Suppose that f:U—*- A„(C) is left-

monogenic, and M is a closed, bounded region in U with piecewise Cx (or

Lipschitz continuous) boundary. Suppose also that xo G M°, where M° denotes

the interior of M. Then

fi(x0)= [    Gx(x-x0)n(x)fi(x)ddM,
JdM
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where n(x) is the unit vector outward normal to M at x, and ddM denotes

the usual Lebesgue measure on dM.

This classical result was established for the case n = 3 by Dixon [3] in 1904

and has been reintroduced and proved many times since.

Besides the Cauchy kernel Gx(x), we also have the kernels Gk(x), where

x
G21+X(X) = A2!+x ii    i|n_2/ ' / = 0,1,...,

G2l(x) = A2,^n_2l ,        1=1,...,

when n is odd, and

G2/+1 (x) = A'2l+l        _2l ,        1 = 0, 1, ... , j - 1 >

,1 n-2
G_(x) = A'y v , 1=1,...,-j-,

Gkix) = Bkxk~n + Ckxk-Hln\\x\\,     for k > n,

when n is even. Moreover, the real coefficients Ak, A'k, Bk, and Ck are

chosen so that DGk = Gk_x . It follows that GkD = Gk_x , and DkGk = 0.
Using the functions Gk , we have from Stokes' theorem, Theorem 1 and simple

homogeneity arguments.

Theorem 2 [9]. Suppose that g: U -» An(C) satisfies the equation Dkg = 0.

Suppose also that M C U is as in Theorem I, and Xq £ M°. Then

r    k
S{xo)= /    Ti-iy-'Gjix - x0)nix)DJ-xgix)ddM.

JdM  ._j

In [11] it is shown that for each k £ C, the series Xx/=i kl~xGiix - x0) is

well defined on 7?"\{x0}, and (7) - k)E_x(x - x0) = E_x(x - x0)(D - k) = 0,
where

oo

E-xix-xo) = Y^^!~lGiix-x0).

i=i

The convergence of the series Ylh=x kl~xGtix - xo) follows easily in the case n

odd by simply checking convergence for the series Y^=„+x A/_1G/(x - Xo). It

is then a reasonably straightforward exercise to check for convergence for the

cases n even.

Proposition 1. Suppose that Aix) is a C1 -function defined on U, and fi, g:

U -=> A„iQ . Furthermore, Df{x) + A(x)f(x) = 0Mile g(x)D - g(x)A(x) =
0. Then we have

f    g(x)n(x)f(x)ddM = 0,
JdM

for each closed, bounded region M C U, with piecewise C , or Lipschitz, bound-

ary.

As E_x(x-Xo) = Gx(x-Xo)Qx(x-Xo), where Qx(x) is a bounded function,

and Qx(0) = 1, it follows from Proposition 1 that one may deduce
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Theorem 3 [12]. Suppose that g: U -» An(C) satisfies (D + k)g = 0, and
M C U is as in Theorem 1. Then we have

g(x0)=        E_x(x-x0)n(x)g(x)ddM,
JdM

for each Xo £ M°.

A similar result holds for solutions to the equation

h(x)D + kh(x) = 0.

From Theorem 3 it follows that many existing results which hold for solutions

to Df = 0 carry over to solutions to Dg + kg = 0. For instance, via Stokes'

theorem we have the following Pompeiu representation for C1-functions.

Theorem 4. Suppose that h: U —► A„(C) is a Cx -function, and M is abounded,

closed region in U, with piecewise Cx, or Lipschitz, boundary. Then we have

that

h(x0)= I   E_x(x - x0)n(x)h(x)ddM - [ E_x(x - x0)(D + k)h(x)dxn ,
JdM JM

for each Xo G M°.

We also have

Proposition 2. Suppose that U is a bounded domain, and h: U -* An is a

bounded, Cx-function. Then the integral

(1) f E_x(x-xo)h(x)dx"
Jv

is well defined on U and gives a Cx-function.

Outline Proof. As T-L^x-xo) = Gx(x-xo)Qx(x-xq) , where Qx(x) is a locally

bounded, real analytic function on 7?" , it follows that the integral (1) is well

defined.

Suppose now that u £ S"~x , the unit sphere in Rn , and jL denotes the

partial differentiation in the direction of u . Suppose also that 7?u(xo) is a box

lying in U with its center at Xo and with a face normal to u. Then

lim - ( / (E_x(x - x0) - E_x(x - x0 - Su))h(x) dx" J

= / ^(x-x0)h(x)dx"+ f      E_x(x-x0&x)dx"
Ju\Bu(x0)     dU Jbu(x0) OU

+ E_x(x-Xo)h(x)dBx(xo)- /       E_k(x - x0)hin)dB2ix0),
JBdxo) Jb2(xo)

where Tii(xo) is the face of 7J„(xo) with u as an outward-pointing normal

vector, while 732(x0) is the face of 73„(xo) with -u as an outward-pointing

normal vector.

As a consequence of Proposition 2, we have
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Theorem 5. Suppose that U is a bounded domain and h: U -» A„(C) is a

bounded Cx-function. Then

(D-k) I E_x(x - xo)h(x) dx" = -h(x0).
Ju

Using the fact that Ts.^x-xn) = Qxix-x0)Gxix-x0), with Qxix) a locally

bounded function, and QxiO) = 1, it is straightforward to show that

ll/(xb)ll<C(^0,r"?))/ \\f(x)\\dx",
rR lirx -r2)     7^0,n,r2)

where ||/|| = (Uo|2+-"+L/i..B|2)I/2 for each / = J0+- ■ -+jx...„ex •••<?„ G A„(C),

where jo, jx-n € C while rx, r2 £ R+ with r2 < rx, and

A(x0, rx, r2) = {x£R":r2< ||x-x0|| < r.}.

Moreover, the ball 7?(xo, rx) lies in U, and C(x4(xo, rx, r2)) £ R+ . From

Holder's inequality, it now follows that the right ^„ (C)-module of LP -integrable

functions, 1 < p < oo, on U, and satisfying Df+kf = 0, is complete. This is

a complete analogy to the case k = 0 described in [4]. This result is described

for the case n = 3 in [4, Chapter 4]. The special case p = 2 is also described

in [2].

Polynomial Dirac equations

In this section, we study some properties of solutions to the polynomial Dirac

equation (Z/k + Ylkn~J0bmDm)g = 0, where each bm £ C. In the case where

k = 2 and fti = 0, this equation becomes Helmholtz' equation. We shall begin

by constructing a solution to the general equation iDk + _]km~2obmF>m)g = 0

from the function Gkix). If at least one of the coefficients ftm is nonzero,

then the function Gk{x) is not annihilated by the polynomial Dirac operator

Dk + _]kn~J0°mDm . In this case, we may apply the operator Em=o*"i£>m t0

Gkix) to obtain zZkmJobmGk-m(x) = -Dk Y,kmJobmG2k_mix). Upon applying

the operator Yl^obmD"1 to the function _lkm~JobmG2k^mix), we would obtain
the first few terms in the formal series

oo (k-\ \P

(2) 5>1)> [YJbmDm\   Gk{X+p)ix).
p=0 \m=0 )

For any domain on which this series converges, we have a solution to the equa-

tion iDk + Zkm~Jo°mDm)g = 0.

The method of constructing the formal series (2) is a direct analogue of a

standard recursive method for constructing solutions to ordinary differential

equations. We first establish convergence of the formal series (2) for the cases

n odd. The case of n even is complicated slightly by the presence of the log

function in Gq{x) for a > n . A simple inspection of the series

oo fc-1 k-\

(3) EM)' £ ••• E bmp---bmiGk{p+x)_mp...mt(x)
p=0 mp=0       mi=0

reveals that for some integer mik) the functions Gk(j)+X)_mii_m,(x)  each

have a positive degree of homogeneity for p + 1 > m(/c).  It follows that in
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order to test the convergence of (3), it is sufficient to test convergence of the

series

oo k-\ k-l

(4) _2(~iy £   " £ bmp---bmiGk{p+m{k))_mp_..._miix).
p=0 mp=0       mi=Q

As TxllxH2"-1 = (2a - l)x||x||2"-3, TxxUxH2"-1 = (-2a - n + l^xp-1, and
2a + n - 1 > 2a, we have that ||Gx+„(x)|| < c(n)7jy||x||z-, for some constant

c(n) £ R+ . Convergence for series (4) on 7?" for the special case bk-i = ■■■ =

bx = 0 and fto = k £ C now follows quite easily upon comparing (4) with the

exponential series X^t0 Jt|A|p||x||p ■ Also, the convergence of (4) on 7?" for the

special case fto = 0, bx = 1, ft; = 0, j = 2, ... ,k-l, follows by comparison

with the exponential series. Convergence on 7?" for other special cases of the

series (4) follows similarly. To establish convergence, on 7?" , of the series (4)

in the general case, we may first place

ft = SUp{l, |ft0|, ... , {ftfc-l}}-

It may now be observed that |ftm, ■ • • bmp \ < bL , where L = kip + m(k)) - mx -

-mp . It follows that

oo k-l k-l

£(-l)p £ ••• £ bmp ■ ■ ■ bmiGk{p+m{k))_mp-mi{x)

/n p=0 mp=0       mi=0

<c(n)_Z^rrbL\\x\\L,
L=0    *"

where A{L) denotes the number of occurrences of the term Gl(x) in (4).
We now need to obtain appropriate estimates for the coefficient A(L).  It

may be observed that A(L) < B{L), where B{L) is the order of the set

R{L) = {(a,, ... ,ap): p£N,aj = l, ... ,k

with 1 < j < p, and ax -\-h ap = L}.

To estimate 5(L), we first obtain an estimate for the order of the set

Q(L) = {(ax, ... , ap): p £ N, aj £ {1, ... , k},

with 1 < j < n, ax H-Vap = L, and ax < a2 < ■■■ < ap}.

There is precisely one element in Q(L) whose entries are all 1 . There are at

most [-] elements in Q(L) whose entries are either 1 or 2. Moreover, there

are at most [j] elements whose entries are either 1 or k .

Consequently, there are most  1 + [y] H-+ [j] elements in Q(L) whose

entries are either 1  or / with j = 2, ... , k.  Now,   1 + [§] + • • • + [£] <

I +L(l + j-\-h£). Similarly, one can show that the number of elements in

Q(L), whose entries contain only 1,7, and k , with j ^ k , and with at least

one j and at least one k , is bounded by L2(l + \-\-h £)2. Continuing in
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this way, we see that the order of the set Q(L) is bounded above by

l+L[l + ... + l)+... + Lk{l + ... + l)k

<{l+l- + ... + l)\l+L + ... + Lk)

In order to obtain an upper bound for the order of the set R(L) we can multiply

the estimate 2(1-1-\-\)kLk by the maximum number, D(L), of permutations

possible for any entry ax, ... , ap , where (ax, ... , ap) £ Q(L).

To obtain an estimate for D(L), we first take an element

(1.1,2.2,3.k.*)6fi(L),

where 1 appears qx times, 2 appears q2 times, ... , and k appears qk times.

So, qx + 2q2 -\-h kqk = L. The number of possible permutations of these

entries without repetition is

(L-q2-2q3-(k - l)qk)\ = (qx+q2 + --- + qk)\

qx\---qk\ Qxy--Qk\

Also, qx-\-vqk <L. As qx H-h qk < L, we have that D(L) < g|!L'^, < jp

for j = 1, ... ,k. As ai + 2q2 + ■■■ + kqk = L, we have that at least one
Qj > [pi for L> k2 ■ Consequently, D(L) < ^jpy . It follows that A(L) <

2(1 + • ■ • + Ti)kLkijM?y for L large enough. So, the series on the right-hand

side of (5) is dominated by the first k2 - 1 terms and the series

°°      / \\k   Tk

«»>EH1+-+*) ipw'

By placing L = mk2 + L mod k2 in the previous series and applying the ra-

tio test to the resulting k2 - 1 series in m, it follows that each series con-
verges on R" . Consequently, the series (2) gives a solution to the equation

(Dk + £*I0ftm7xm)n = 0 on 7?"\{0} whenever n is odd.

We now turn to the case n even. This case follows similar lines to the

odd-dimensional case. Again, we have that after finitely many terms, series (2)

contains only Gj_(x) 's, which do not have negative degrees of homogeneity.

For such a Gl(x) , we have that

||GL(x)||<c'(n)^(||x||L + ||x||Lln||x||),

for some c'(n) £ R+ . Consequently, convergence of series (2) on 7?"\{0} when

n is even follows by similar arguments to those given for the case n odd.

It follows that we have deduced

Theorem 6. Series (2) converges on 7?"\{0}, for each n , and gives a solution to

the equation (Dk + X^~'0 bmDm)h = 0 on this domain.

We shall now denote the function given in expression (2) by Ebo bk_Sx) ■

From this function we can construct other solutions to the equation

(Dk + UnTJobmD^h = 0 as follows:
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Proposition 3. Suppose that  p   is an  A„(C)-valued measure on  R",  with

compact support [p].    Then  J.,Ebot   tbki(x - y)dp(y)  gives a solution to

(Dk + Em='o bmDm)h = 0 on R"\[p].

It may also be observed from the construction of Ebot_tbkl(x)  that this

function also satisfies the equation hDk + _lm~JobmhDm = 0. Consequently,

for each ,4„(C)-valued measure p with compact support [p] on R" , we have

that fMdp(y)Eht.„tbk_x(x-y) gives a solution to hDk+ zZkm~JobmhDm = 0 on

7?"\[/i]. We now show that the kernel Eb(j bkl (x-y) acts as a Cauchy-Green

kernel for solutions to the equation (Dk + _lkm"Jo(-l)k~mbmDm)h = 0.

Theorem 7. Suppose that f: U —> An(C) satisfies the equation

[Dk + Y^(-l)k-mbmDm\fi=0,
\ m=0 J

and M is a closed bounded region in  U, with piecewise Cx   (or Lipschitz)

boundary. Then fior each xo £ M°, we have

(6)

/(*o)=  /    \YJi-l)JiEbo,...M_xix - xo)Dk-x-J)nix)W fix)]
JdM  \J=Q J

k-l        m-l

+ J2b'"Y,(-iy(Ebo,---,i>k-i(x-xo)D'"-x-J)nix)DJfix)ddM.
m=\        7=0

Outline Proof. The proof follows from Stokes' theorem, and upon noting that

^.bk.]ix-x0)Dk-x = Gix - x0)Kbr..bkiix - x0), where Kb^_bk ,(0) = 1,

and Kbo...bkl  is continuous on 7?".

Having obtained the Cauchy-Green integral formula (6), it follows that many

existing results obtained for solutions to the Dirac equation, or Laplace equa-

tion, carry through to the context described here. For instance, by similar argu-

ments to those given in [7, Chapter 13], or [1, Chapter 3], we have the following

approximation theorem:

Theorem 8. Suppose that J is a compact set in R" , and R"\J is connected.

Suppose also that Q is a domain in R" containing J. Then, for each function

h: £1 —> A„iC) satisfying

(Dk + £(-l)*-mftm7xm j h = 0,

\ m=0 /

and for each ball 77(0, R) with Q C 77(0, 7?), there is for each e > 0 a function
f: 77(0, R) - A„(C) satisfying

(Dk + Yji-l)k-mbmDm\fi = 0,
\ m=0 /

and
sup||/(x)-n(x)||<e.
xeJ
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Following the sequential argument given in [1, Theorem 18.4], we may, in

the previous theorem, replace 77(0, R) by R" , and assume that / is defined
on all Rn . Following [7, Chapter 13], and [1, Chapter 3], we may also drop the

assumption, in Theorem 8, that the set R"\J is connected. We also have the
following Pompeiu representation formula:

Theorem 9. Suppose that g: U -* An(C) is a Ck-function, and M is a closed

bounded region in U with Lipschitz boundary. Then for each xq £ M°, we have

g(*o)=  I    llti-iy^bo.bk_l{x-xo)^k-l~j)n(x)DJfix))
JdM \j=o J

k-\        m-l

(?) +_2b»> ^-iy^,-,bk-M-Xo)Dm-x-')nix)Dijix)ddM
m=\       7=0

+ jMEba,.„,bk_lix-Xo)\Dk + ^i-l)k-mbmDm\gix)dxn.

If we assume that the function g(x) appearing in Theorem 9 has compact

support, then expression (7) becomes

(8) gix0) = j^ £*»,... a_,(* - xo) (Dk + £(-l)*"m W j g{x) dx" .

We also have that whenever U is a bounded domain and g: U -» A„{C) is a

Ck -function, then

(d* + £ftm7xmj juEbo_bk_l(x-x0)g(x)dxn = gix0)

for each Xq £ U . When g has compact support, this identity can be replaced
by

(9) ^ + £ftm7x-j J^Ebo.bk_lix-x0)gix)dx" = gix0).

Expressions (8) and (9) show us that the convolution operator is*,,,...,&t_,*/?»

is a left inverse for the differential operator Dk + _lkn~Joi-l)k~mbmDm , while

the differential operator Dk + Y!m~=o bmF>m is a left inverse for the convolution

operator Eba,...,bk-{kR* ■ Upon placing ft0 = • •• = bk_x = 0, it may be observed

that the convolution operator Gk •/?» - , when acting upon ,4„ (C)-valued C°°-

functions with compact support, is a left inverse for the operator Dk . Suppose

now that xp: R" —» An(C) is a C°°-function with compact support. Upon
taking the Fourier transform of

(Dk + Y^i-l)k-mbmDm\ip,

V m=0 /
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we obtain

kin) f «•'<*•« [Dk + Yji-l)k-mbmDm ) y/(x)axn

^ V m=0 /

= m(-l)k(mk + Y,bm(iS)m\ ( e*x'®yt(x)dxn,
\ m=o / Jr"

where k(n) is a normalizing constant.

It may be observed that in a deleted neighborhood of the origin, the inverse

of the polynomial {{i£)k + £m='o bm(i£)m) is given by the series

(10)
fc-l k-l k-l

(^)-'-£ftm,(/omi""+---+(-i)p £ ■■■Y,br»r--bmPazr+-+m>-pk+---.
m=0 m,=0       mp=0

Upon replacing {i£)~L in (10) by Gx(x), we reobtain the series (2), which

gives us back EbQi... ,/,,_, (x).

We may also observe that convergence of series (2) does not depend on the

vector x belonging to 7?" . Instead, we may assume that x G C" . It follows that

the function Ebo,..., ̂  , holomorphically extends to a Riemann surface covering

C"\N(0), where 7Y(0) = {zxex + ■■■ + znen £ C: z\ + ■ ■ ■ + z2 = 0} . It follows

that any solution to (Dkc + £m~o bmDk.)f(z) = 0, where Dc = Y.%0 eJWT, . and

z G C", in a neighborhood of one of the special manifolds described in [9],

automatically has a holomorphic continuation to a covering space of the cells

of harmonicity described in [9]. For the particular operator 7)£ + Em~0 bmD^ ,

this improves upon the holomorphic continuation result given in [9].

We shall now rewrite the operator Dk + _]m~Jo bmDm as (D - kx) ■■ ■ (D -kk),

where kx, ... , kk are the roots of the polynomial zk + J2m~J0bmzm , where

z G C. We shall also rewrite Ebot_tbk_l as Eixx,...,kk_x) ■

Proposition 4.  (D-kx)E{xltx2,...,».k)(x) = E(kl,...,xk)(x).

The result follows by simply inspecting the series (2).

Similarly, we have that E^,,...,i.k)(x)iD - k) = E(x2,...,xk)(x). In particular,

we have that (D - k)E(X^x)(x) = Ew(x) = E{x,->.)(x)(D - k).
Let us now assume that k is real and introduce the function

gxix, y) = E{X,-x)(y -x) + h(x, y),

where x, y £ Ux U\{(x, x): x £ U} , and U is a bounded domain with piece-

wise C1 , or Lipschitz, boundary. Moreover, the real-valued function n(x, y)

satisfies Helmholtz' equation (7J>2 - k2)f = 0 in both the variables x and y .

Using methods described in [4, Chapter 4], and elsewhere, we may arrange it

so that gxix, y) = 0 on U x d cl U, where cl U denotes the closure of U.

Let us now introduce the function

Bxix, y) = iDx + k)gxix, y)iDy + k)

where Dx = £"=1 <?,0/0x, and Dy = Yl)=xe}d/dyj. It may be observed

that the function 77^(x, y) is a continuous function on U x U. By similar

arguments to those used in [10], it may be observed that the function Bxix, y)
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is the Bergman kernel for L2-integrable solution to the equation (D - k)fi =

0 on U, where for each a = ax + ■■■ + ax...nex ■ ■ -en £ A„(C), a denotes

aoH-h (-l)xajl...jrejr •••£,, H-\- (-l)nax...„en ■■■ex . So, we have that

j B(x,y)f(y)dyn = f(x)
Jv

for each x £ U, whenever (D - k)f = 0 and / is square integrable over U.

An explicit formula for Bx(x, y) is given in [2] for the case where U is the

unit ball in 7?" .
In [10], it is shown that the Bergman kernel for the Dirac operator D is a

projection operator from the ^„-module of x4„-valued square integrable func-

tions on U to the Bergman ^„-module of square integrable functions which are

solutions to the equation Df = 0. Similar arguments show that the operator

Bx(x, y) is also a projection operator.
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