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A CONVERGENCE THEOREM
FOR RIEMANNIAN SUBMANIFOLDS

ZHONGMIN SHEN

Abstract. In this paper we study the convergence of Riemannian submani-

folds. In particular, we prove that any sequence of closed submanifolds with

bounded normal curvature and volume in a closed Riemannian manifold sub-

converge to a closed submanifold in the C1 ,Q topology. We also obtain some

applications to irreducible homogeneous manifolds and pseudo-holomorphic

curves in symplectic manifolds.

1. Introduction

Let Jfin, K ,v, D) be the class of manifolds (Af, g) satisfying the bounds

(1) | sec( Af) \<K,     vol( Af) > v ,     diam( Af) < D.

The well-known convergence theorem says that given a sequence of manifolds

(Af,, gj) £ Jfin, K, v, D), there is a subsequence, (Af,--, gr), a C1 ,a Rie-

mannian n-manifold (Af0, go), and C2,a diffeomorphisms </>v : M0 -* Mv ,

such that 4>*,gi< converges to go in the C1,a' topology (a' < a). We refer

to, for example, [Ch, NI, N2, GI, Ps, GW, K] for details. M. Anderson has
extended this theorem to a larger class of Riemannian manifolds (see [AM]).

In this paper we are going to establish a convergence theorem for Rieman-

nian submanifolds. Fix a complete Riemannian w-manifold (Af, g). We will

denote by (Af, /) an n-dimensional submanifold in (Af, g), where Af is a

smooth n-manifold and / is an immersion from Af into Af. One has the

natural orthogonal decomposition Tf(x)M = fiiTxM) © TXM^-. The normal

curvature 77/ : TXM ® TXM -* TXM± is defined by the formula

IIfiu,v) = -iVuV)±,

where U and V are local extensions of /*(«) and f*{v) on Af and V denotes

the Levi-Civita connection of g . Throughout this paper we will always denote

by sec(/), scal(/), inj(/), and vol(/) the sectional curvature, the scalar cur-

vature, the injectivity radius, and the volume of (Af, f*g), respectively.
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Let -5^(A, V) denote the class of n-dimensional closed submanifolds (Af,

/) in Af, which satisfy the bounds

(2) |///|<A,    vol(/)<K

We have the following

Theorem 1. Given any uniformly bounded sequence (Af,-,/) G S^n(A, V),

namely, U^i /(Af,) is contained in a compact subset of M. There is a subse-

quence {M^, g^), a Cl'a Riemannian manifold {Mo, go), and C2'a diffeo-

morphisms 4>i' '■ Mo —> Af,-, such that fi' o 0,, converges to a Cx,a immersion

fo in the Cx-a' topology, for any a' <a, with f0*g = go-

lf in addition inj(/) > <0 > 0 for all i, the assertion of Theorem 1 follows

immediately, see §3 or [K]. It is well known that for a Riemannian manifold, the

sectional curvature bound does not give a lower bound on the injectivity radius.

A flat torus is a simple example. For a Riemannian submanifold (Af, /),

contrary to the sectional curvature case, the normal curvature bound \IIf\ < A

does imply inj(/) > /n for some number /n depending on A and the ambient

space. This fact is somewhat surprising. In [AL] L. Andersson has given such a

lower bound on inj(/) when the ambient space is Euclidean. Then, using results

by Cheeger [Ch] and Andersson [AL], R. Howard [H] asserts that there are only

finitely many diffeomorphism types among n-dimensional closed Riemannian

submanifolds (Af, /) in Rm with \IIf\ < A and vol(/) < V.
The main idea of Theorem 1 is to prove a priori estimates on the injectivity

radius for Riemannian submanifolds in a general Riemannian manifold. Our

treatment is quite different from Andersson's.

Theorem 1 has a number of applications. For a closed submanifold (Af, /)

in (Af, g), we denote by tr77/ the mean curvature of /, which is defined by

tr77/ = ^77/(e,, et),
i

where {ej} is an orthonormal basis on (Af, f*g). Suppose that (Af, /) sat-

isfies the bounds

(3) \trIIf\<H,    scal(f)>-k,    vol(f)<V.

Further, suppose that the sectional curvature of Af is bounded from above

by K along f(M). Then it follows from the Gauss equation that \IIf <

A(n,K,H,k).
Let %(H,k,V) be the class of all n-dimensional closed submanifolds

(Af, /) in (Af, g), which satisfy (3). We have the following

Corollary 1. Given positive numbers H, k, and V, the class 2^(77, k, V) is

precompact in the Cl,a topology (a < 1) in the sense of Theorem 1.

Remark. The lower bound on the scalar curvature in Corollary 1 is necessary

even when n = 2. See [G2] for some examples.

Let (N, co) be a closed symplectic manifold with an w-tamed almost com-

plex structure J, i.e.,

co(v , Jv) > 0,        v / 0.
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Then there is a naturally induced Hermitian metric gj defined by

gj(u, v) = j(co(u, Jv) + co(v , Ju)).

Let (X, j) be a closed Riemannian surface, where j is a complex structure j ,

and / : X —► N be a pseudo-holomorphic map, i.e., df ° j = J o df. It is well
known that / has isolated branch points (p is called a branch point of / if

dfip is not injective, otherwise p is called a regular point). It was proved in

[G2] that at regular points of /,

(4) |tr///|<Ci,

where Cx  is a constant independent of /.   Further if / represents a class

qg772(7V, Z), then

(5) vol(/) < V

where V is a constant independent of representatives / in a .

By the Gauss equation, scal(/) < C2, where C2 is also independent of /.

However, there is no lower bound on the scal(/). Gromov's compactness theo-

rem [G2] says that any sequence of (regular) pseudo-holomorphic curves (X, /)

satisfying (5), subconverges to a cusp-curve (see also [PW, Y]). In particular, the

limit may have singularities. Our next corollary asserts that there is no singular

point in the limit if in addition scal(/) > -k for all i. This property follows

from Corollary 1 and (4). More precisely, we have the following

Corollary 2. Let (X, j) and (N, co, J) be as above. Let f'■ : X —> N be a
sequence of regular J-holomorphic maps satisfying

scalC/,) >-A,    vol(/)<K

Then there exists a sequence of diffeomorphisms </V of X such that fii o r/j,-,

converges to a Cx'a regular pseudo-holomorphic map fi.

We shall apply Theorem 1 to a certain class of homogeneous Riemannian

manifolds.

Proposition 1. Given positive numbers k,v, and D, let %n(k) denote the class

of irreducible homogeneous Riemannian n-manifiolds (M, g) which satisfy the
bounds

(6) scal(Af) >-A,     diam(M)=l.

Then %?n(k) is compact in the C°° topology. In particular, <%"„{k) contains

finitely dififieomorphism types.

The proof of Proposition 1 will be given in the last section. It is not known

to the author whether there are only finitely many diffeomorphism types among

irreducible homogeneous Riemannian manifolds in each dimension.

Acknowledgments. I would like to thank R. Howard for his important com-

ments. Thanks also to Y. Ruan for many discussions on pseudo-holomorphic

curves in symplectic manifolds.

2.  ISOPERIMETRIC INEQUALITIES

Let (Af, g) be a complete Riemannian n-manifold. For any positive number

p > 0, define the /z-isoperimetric constant of (Af, g) by the formula

^(M)^nf{voU°^Q'»/"'VOl(Q)-4-
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Put /(Af) = Ip.(M)  for p = jVol(Af).   This is the so-called isoperimetric
constant of (Af, g).

It is easy to see that for a closed Riemannian n-manifold Af with /A(Af) >
0, vol(Af) > p. Furthermore one has the following

Lemma 1. Let (M, g) be a complete Riemannian n-manifold.  Suppose that

Ip.(M) > lo > 0 for some p > 0. Then for all r < r0, where r0 = nl^xpx/",

vol(B(p, r)) > n~nI^rn.

Proof. First note that 7/,(Af) > 70 is equivalent to the inequality

(7) vol(f3Q)>70vol(Q)^i

for all domains Q with vol(Q) < p .
Let B{p, r) be a metric ball in Af with radius r < ro . First we suppose that

vol(77(p, r)) > p. Then

vol(77(p, r)) > n-"70^ > n^I^r".

Suppose that vol(77(p,r)) < p. Then (7) implies the function fi{t) :=

vol(77(p, t)) satisfies

f'{t)>Iofi{t)^-x)l",        t<r.

It follows from the above inequality that /(/) > n~"I^t" , t < r. In particular,

one obtains

vol(77(p, r)) = f{r) > n~"Ilr".   _

In order to estimate the injectivity radius we need the following

Lemma 2 [CGT, Theorem 4.3]. Let (Af, g)  be a complete n-manifold with
H < sec(Af) < K. Suppose that at a point p £ M,

vol(77(p, s)) > Co

for some s < n/Ay/K. Then the injectivity radius at p satisfies

inKp^l + V»{3s)/co'S>

where VH{r) denotes the volume of r-ball in the space form of constant curvature
77.

Corollary 3. Suppose that (Af, g) is a complete Riemannian n-manifold satis-

fying the bounds
Ip{M)_h,     |sec(Af)| <K.

Then
inj(Af) > c{n, p, I0, K) > 0.

Proof. This follows from Lemmas 1 and 2.   □

Let (Af, g) be a closed Riemannian n-manifold, and let Q/(e) denote the

maximal number of disjoint metric e/2-balls in Af. Suppose that Af satisfies

the bounds

(8) Ip{M)>I0,     vol{M)<V.

Then it follows from Lemma 1 that for all e < s{n , lo, p)

(9) CM{e)<C{n,I0,V)e-".

Let W{n, p, lo, V) denote the class of all closed n-manifolds satisfying (8).

The following proposition follows from (9) and [GI].
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Proposition 2. W(n, p, lo, V) is pre-compact in the Gromov-Hausdorffitopol-

ogy.

From now on we will only consider immersions in a complete Riemannian

w-manifold (Af, g). Suppose that / is complete, i.e., the pull-back metric

f*g is complete, and it has bounded mean curvature. Then (Af, f*g) has pos-

itive ^-isoperimetric constant for some p > 0, provided that Af has bounded

geometry along the image of /. Let Uf = {y £ M, dist^, /(Af)) < 1} , and

Ill(f) = Ili{M,f*g).

Theorem 2 (Hoffman and Spruck [HS]). Suppose that

sec(Uf)<K,    iniiUj) >i0,     |trIIf\ < A.

Then there are constants c{n) > 0 and p = p{n, K, z'o, A) > 0, such that

h(f) > c(n).

Remark. This type of theorem in the case of Af = Rm was first obtained by J.

Michael and L. Simon [MS].

Proposition 3. Suppose that

| sec(rj/)| < K,    inj(L/» > i0,    \IIf\ < A.

Then there is a constant c{n, K, i0, A) > 0 such that

inj(/) >c{n,K, i0,A).

Proof. By Theorem 2 one has /^(/) > c{n) for some p = p{n, K, i0, A) >

0. Then Proposition 3 follows from the Gauss equation and Corollary 3.   □

Remark. Proposition 3 generalizes a result of L. Andersson who treated the case

when the ambient space is Euclidean. Our treatment, however, is quite different

from his.

3. Proof of Theorem 1

Before going into proof, we shall recall first some basic facts on harmonic
coordinates. We refer the reader to [JK] and [GW] for details.

A coordinate x = {xA) : U c Af —> Rm is said to be harmonic if A$xA = 0,

1 < A < m . We suppose that (Af, g) satisfies the bounds

(10) | sec(Af)| < 7?,    inj(Af) > i0.

Then there is a number S{m, K, z'o) > 0 such that given any metric ballBg{p),

5 < 5{m, K, z'o), there is a harmonic coordinate x = {xA) on Bg{p) which
has the following properties:

(i) (1 + no(m,KS))-xdAB < gAB < (I + n0(m, Kd))dAB, where gAB =

g{dA ,dB);

(ii) \\gAB\\o-'(Bttp)) < rix(m,K, i0,a); and

(iii) \\xA\\C2.a{Bs/M) < n2{m,K, z0, a)\\xA\\co{BAp)).

Remark. Using the idea of [AL] and the above properties for harmonic co-

ordinates, one can also prove a priori estimates on the injectivity radius for
Riemannian submanifolds.
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Now we start to prove Theorem 1. Given any sequence of immersions

(Af,, /) G ̂ „(K, V). By assumption we may assume that (J, fi(Mi) C F for

some compact subset 77 in Af. Let Up = {x £ M, dist(x, F) < 1} . Suppose

that
|sec(t/>)| <K,    inj(.7f) > z'o.

By Proposition 3 and the Gauss equation, one has

I sec(/)| < K + 2A2,     inj(/) > c{n, K, A, z0).

Put gi = f*g . Consider the sequence of Riemannian manifolds (Af,, gt). By

Gromov's compactness theorem (see, e.g., [K, AM]), there exist a subsequence

{Mk , gk), a closed Cx-a Riemannian n-manifold (Afo,go),and C2-° diffeo-

morphisms 4>k : Mo —* Mk such that gk := <f>*kgk converges to go in the C1,Q'

topology {a' < a). Fix a harmonic coordinate system {xA) on (Af, g) and a

harmonic coordinate system {xa) on (Afo, go) • Put fk = fik o <pk . We have

(gk)ab ■= dafikdbfikgAB -» gab ,

in the Cx-a' topology (a' < a), where gAB = g{dA, dB), gab = go{da, db).

Thus one obtains a uniform C° bound on dafk. Let IIk = IIj . By the

definition of IIk , one has

(ii) Wf + dafikAdbfikBTcAB{fik) = djkcrah - (iikfab

where Tcab are Christoffel's symbols of gk and IIk(da, db) = (Hk)^bdc ■ By

assumption,

A

where Co is a constant independent of k. Thus one obtains a uniform C°

bound on dadbfkc . Since \Jk fik(M0) is contained in a compact subset in Af,

one concludes that fk subconverges to a C'-a map /> in the C1^' topology

(a' < a). Clearly, f*g = g0, which implies fi0 : (Mo, go) -» (Af, g) is an

isometric immersion.    D

Remark. Without much difficulty, one can also show that if (Af, /) is almost

totally geodesic in a closed Riemannian w-manifold (Af, g), that is vol(/) <

V and \IIf\ < e(n , V, M), then there is a C2-a immersion / : Af —» Af such

that / is totally geodesic. One can prove this fact by a limit argument. See

[JK] for the regularity of the limit immersion.

4. Irreducible homogeneous manifolds

A connected Riemannian manifold (Af, g) is said to be (isotropy) irre-

ducible if for each point p G Af the isotropy group Ip acts irreducibly on

TPM via its isotropy representation. (Af, g) must be a homogeneous space.

Hence we call it an irreducible homogeneous Riemannian manifold. It is known

that g must be an Einstein metric. Further, by a theorem of Takahashi [T], any

compact irreducible homogeneous Riemannian manifold can be isometrically

minimally immersed into some SK(r) c R*+1 using an orthonormal basis for

an arbitrary eigenspace. See [LI, L2] for further discussion.
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Proof of Proposition 1. Let (Af, g) be a closed irreducible homogeneous Rie-

mannian n-manifold satisfying (6). Let kx denote the first nonzero eigenvalue

and Exl the corresponding eigenspace. It is a finite-dimensional Hilbert space

with L2-norm. Take any orthonormal basis cf>x , ... , (j)K+x for Ext . Then for

some constant a > 0, f = a • {<px, ... , 4>k+i) is an isometric minimal immer-

sion into SK{r) c RK+X with r2 = n/kx .

Regard (Af, /) as a submanifold in RK+X . Let /// denote the normal

curvature of /. Then trIIf := _l"=xHf{Ci, ej) = jt], where r\ denotes the

unit normal vector field on SK{r) c R*+1. By the Gauss equation,

n

scal(Af) = nA1-^|///(^,-,e,-)|2.
z=i

Thus

\IIf\ < y/nki + k.

Notice that (Af, g) is Einstein and diam = 1. It follows from [Che] that

(12) kx <cx{n)k + c2{n).

Thus

(13) \IIf\<Cx{n,k).

It follows from (12), (13), and the Gauss equation that

|sec(Af)| <C2{n,k).

It follows from Proposition 3 that

inj(Af) >C3(n, A) >0.

Therefore, ^{n, k) is precompact in the C°° topology, since all manifolds in

%?{n, k) are Einstein.   □
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