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A DISCRETE TRANSFORM AND
TRIEBEL-LIZORKIN SPACES ON THE BIDISC

WEI WANG

ABSTRACT. We use a discrete transform to study the Triebel-Lizorkin spaces on
bidisc FI;"’ , f39 and establishes the boundedness of transform Sy : F,;"’ —

f29 and Ty : f39 — Fg9. We also define the almost diagonal operator and
prove its boundedness. With the use of discrete transform and Journé lemma,
we get the atomic decomposition of f;? for 0 < p <1, p < g < co. The atom

. . !
supports on an open set, not a rectangle. Duality (f/9)* = f*7 , % + q—', =
1,g>1,a€ R, is established, too. The case for Fp"‘" is similar.

0. INTRODUCTION

In this paper, we use a discrete transform to study the Triebel-Lizorkin spaces
on the bidisc. )

In §1 we define the sequence space f7¢ and the distribution space F;?. Our
fundamental formula is [ = 3 ,(f, #o)wo, where Q runs over all dyadic
rectangles and ¢g, Yo are translates and dilates of ¢, y associated with Q
respectively. Fourier transforms of ¢, y have compact support, and

supp ¢, Wo C {(&1, &); 207! < & <2071, 27! < |g) < 22}
for [;(Q)=2"", [(Q)=2"". Thus (¢g, wp) =0 unless
1 _1(Q)

=< —=<2, i=1,2.

27 L(P)~
It will be simpler to study harmonic analysis on product spaces using this kind of
expansion rather than the expansion in [2], where ¢ has compact support but its
Fourier transform is supported on the whole space. We prove Sy : F;9 — f4
and T, : f39 — F;? are bounded. In its proof, we use the strong maximal

function Msf(x) = supy ]é—| fQ |f(»)|dy, where Q runs over all dyadic rect-
angles. Although Mj is not weak L! bounded, it is L? bounded for p > 1
[4].

In §2 we define almost diagonal operators and prove the boundedness of
such operators on f;? by duality. We also define (J, M) rectangle molecules
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1352 WEI WANG

{mg}o and prove the FY norm of f=3,somyg is less than the f;¢ norm
of {SQ}Q . ) )
In §3 we define f29 and F2. For s = {sg}o,

Islze =sup | 5 [ 3 (101 Hsolzo) dxdy |
a \I1QJe 5=,
where the sup is taken over all open sets Q, not only dyadic rectangles. This
is similar to the characterization of BMO(R2 x R2) [2]. Applying the Journé
Lemma, we establish the case p = +oo. Finally, we get the atomic decom-
position of f;¢, F;4 for 0 < p <1, p < g < +o0o. These atoms must be
supported on open sets. We cannot get the atomic decomposition supported on
rectangles. In fact, L. Carleson gave the counterexample for H'(R2 x H2) [1].
Thus combining the discrete transform and Journé Lemma, we give another
method by which to obtain the atomic decomposition on product spaces.

1. DISCRETE TRANSFORM
Let ¢¢, wo satisfy
(A) oo, Wo € S(R), S(R) is Schwartz space;
(B) suppdo, Yo C{£ € R, 3 <[] <2};
(©) 160(&), 1W0(&)] = c>0,if 2 <|¢l <3,
(D) ¥,cz0(27€)0(27€) =1, if E#0.
We put ¢(x, y) = do(x)po(¥), ¥(x,y) = wo(x)¥o(y). Then for ;& #0

S 3@, 2280 (20E, 228) = 1.

VIEZ 1HEZ

For v = (v, 1n) € Z?, k = (k, k) € Z?, we denote by Q,, the dyadic
rectangle

{(x,y) e R¥ky <2"x < ki + 1, ky <22y < kp + 1},
with sidelength /;(Quk) = 27", L(Quk) = 27" and corner xg, = 27"k,
Yo, = 27"ky . For Q = Q, , denote
1
do(x,y)=10|"2¢6(2"x — ky, 22y — ky),

where area |Q| =1,(Q) - L(Q).
Let S’(R?) be the space of tempered distribution space and P the space of

distributions whose Fourier transform is supported on the x-axis and y-axis.
Then (f, ¢o) is well defined for f € S'(R?)/P. The discrete transform Sy is

defined as
Sef =1{(Ss)o}o> (Sef)o=(f’ ¢0)

where Q runs over all dyadic rectangles. Its inverse 7,, maps every sequence
s = {sp}o into a distribution

f=Y sowoeS/P.
Q

The basis of the discrete transform lies in the following expression (see [6,
Lemma 2.1] for the one-parameter case).
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Lemma 1.1. If ¢, w are defined as above and f € S' /B, then

=Y {1 d0hve
Q

holds in '/, so T, oSy is the identity on S'/B.

Define the sequence space f;"’ as follows. For s = {sg}o, where Q runs
over all dyadic rectangles, we define the norm

1
q

lIsl joo = (Z(IQI'*ISQIZQ)") ;
)

Lr

where Jo = |Q|—1 Xo - The corresponding distribution space is £, and it
consists of f € S'/P with

1

q
11 e = ( S U, x f(x, ym") <o,
vy, hEZL
L
where @, ,,(x,y) =2""""¢(27"x, 27"2y). A useful tool to study harmonic
analysis on product spaces is the g; function [4]

@GP = [ 1w, )P

+

1 A 1 A dndt,
'(1+|x—ul/t1) (1+|y—U|/t2) dudv=pi

where v, (u, v) = w(u/t;, v/t2)/t1t, . We define the corresponding sequence
s; ={(sp)o}e for a sequence s by

(s5)o = S Iseli(1+ I7Y(P)lxe — xo)) ™M1 + I (P)yp — yol ™)
L(P)=h(Q)
L(P)=h(Q)
for some A. The main property of s} is

Theorem 1.2. Let c € R, 0<p<o0, 0<g<o0, A>1,and r=min(p, q).
Then

sl oo~ W87 1] -
We need the following lemma, which can be proved as in [6].

Lemma 13. Let 0 <a<r<oo, A>%, [)(Q)=2%, and [(Q) = 27%.
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Then

S Isel(1+ 7 (P)xe — xg) A1+ 17 (P) v — yol ™)
L(P)=2"%
h(P)=2"%

S

<C|Ms| D lIselxr (x), x€Q,

L(P)=1,(Q)
L(P)=5(Q)

where Mg(f) is the strong maximal function of f.
Proof of Theorem 1.2. ||s|| o S Is51l f4 is obvious. To prove the converse, we

take the sum for Q with same sidelength in both sides of Lemma 1.3
1

a\ a
Yo (Note<C|Ms| > Iselir ;
@=2"1 [ (P)=2"%
h(Q)=2"% L(P)=2"%

SO

1
a
ay £\ ¢f|®

lIs7ll jme < € S| Ms > P Eisplze
q1,9:€2 L(P)=2"%
L(P)=27% .
La
We will use a vector-valued maximal inequality to control the right side.
Suppose (34 | fi(x, y)|‘1)5 € LP . Then by Fubini’s theorem there exists a set

E with zero measure such that for x ¢ E, (3, | fe(x, y)|‘1)5 € L* asa function
of y. Apply the Fefferman-Stein vector-valued maximal inequality [3] to this
function to get
1 1
<C

' (z MO fx w) (z hix, ->|q)
k 17 k Lp

for p>1, 1 < q < oo, where M? is the maximal operator for the second
variable. Apply the vector-valued maximal inequality to the first variable, and

notice Ms < MMWM®@ to get
:
(z w)
k L

1
q
(ZIMSM) <C
k 7

Let r =min(p,q), e=A—-1>0,and a = 1+’e/2- Then O<a<r, A> 7,
2>1, 2> 1, so we can use the above inequality

1

(Z(|P|-%|sp|;zp>q)
P

I} 1l e < € = cllisll e

Lr
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The following result about the operators Sy, 7T, is similar to [6], so we will
not give the details.

Theorem 1.4. The operator Sy : Ff4 — 9 and T, : ff? — F? are bounded,
and T, oSy is the identity.

Notice
(f, $0) =101} v, * f(xg0, Yo),
where [,(Q) =2, L(Q)=2"", and &(-) = #(--). We define
sup(f) = {supflg,  supf =101} sup |d,u, * f(x, ¥,
Q Q (x,y)€EQ

i1’1f( ) =A{ ian (N}o> r is a positive integer,

where

inf(f) = max{|Q|} inf |Gy, * f(x, )|, 1(Q) = 27L(Q),
T Q (x,y)€Q

h(Q)=27h(Q), @ c Q).
These three norms are equivalent.
Lemma 1.5. If f € S'/B, then
1/ llgge ~ 1 SupC)l o ~ 1AECA) -
Using this lemma we can prove Theorem 1.4 very easily as in [6].

Corollary 1.7. F;9 is independent of the choice of ¢.

2. ALMOST DIAGONAL OPERATOR AND SMOOTH RECTANGLE MOLECULES

Similarly to [7], we define wgp(e) for two rectangles P, Q. It decays rapidly
as the distance between these two rectangles or the ratio of their sidelengths
becoming large. Suppose Q =Q, x 0>, P=P, x P,

wop(€) = wo,p, (€)wg,p, (&),
_ (1Q)\* |xg, — xp,| e
“on (€)= (am) (’ * max(P), I(Ql)))
i [((LQOYE (1)
m‘“((!(P.)) ’(1<Q1)) ’

where J = 1/ min(l, p, q). An operator 4 on f,‘,"’ is called almost diagonal
if its associate matrix {agp}g. p satisfies

lage|
0, Wop(€)

< o0

for some ¢ > 0.
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Theorem 2.1. An almost diagonal operator on f,‘,"" 0<p<o0, 0<g< ) is
bounded.

Proof. We only need to consider the case a = 0, because the general case can
be reduced to it as in [7]. Suppose ¢ > 1, p > 1, s = {sp}; and denote

A =A1 +A2+A3+A4,
(As)g = (A15)g + (A28)o + (A35)o + (A4S)

=Z+Z+Z+Zagpsp~

(Q)<h(P)  L(Q=h(P) L(Q)>L(P) L(Q)<L(P)
L(Q)<h(P)  hL(Q)<h(P) h(Q)2hL(P) hL(Q)=hL(P)

Notice the dual of £ is f%% by (LP(1%))* = L”'(17), where 1+ L =1,
Lyl =1. Let t={tp}p € f}?, ||z||j3q/ < 1;and notice J =1 when p>1,

g>1.So

[(Aas, D] =D (Aas)oto| <C D S wgp(e)lse|ltol

Q Q L(P)2h(Q)
L(P)<h(Q)

|sp|

< 2(=qi+pi—p2+42) 1
DIPIEDD (1+171(P)|xp — xg) 1+

Q pisai(P)=2"7
P22 L(P)=2""2

. 2ol .
(1+59(Q)lyg — ypl)i*e

At first we take the sum over P with P, fixed and /;(P) =277, so

[(Ass, 1)] < CZ Z Z 2 (—ai+p1—p2+a2)

Q PZqi h(P)=2""2
P22q2

tol

M) iselae | x0,(x) - ——— A2 .
Ji z_:—p l (1+121(Q)|yP"yQ|)l+£
\(P)=2"71
Pzﬁxed »

Then take the sum over Q with [,(Q) =2"% and Q, fixed, so

[(das, )| < C Z Z 2(=qi+p1—p2ta2) 142 pr(1) Z Iselxp | X0, (%)

Q1. Phn<q L(P)=2""P1
P2 P, fixed

MO N tolxe | xm(),

h(Q)=27%
Q, fixed
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for each Q,, P,; doing the same thing but averaging over Q; x P, shows that

[(Aas, t)| < Z Z z 2(=a1+p1—p2+a2) 142 pr(1) z lsplxp

a0 0<q Q, P,  Q*P L(P)=2-71 P,
P224q>
- M ( > |tQ|XQ) Xoixp, - 2P dxdy
h(Q)=2"%,0,

<C z 2(=q1+p1—p2+a2)% pr(1) Z |sp|#p

2
p<a 'R L(P)=2"P
P2<q; L(P)=2""

MO ST tolie | dxdy.

h(Q)=2"%
L(Q)=2"%
By Holder’s inequality and summation, we get
a\ ¢
(das, DI < CI[ D (MDD Iselze
p1,P2 L(P)=2""1
L(P)=2"" L
a\ 7
2| MPL Y ltelie
a9 h(Q)=2"%
L(Q)=2"%
ul

By the vector-valued maximal inequality,

g\ 7
. (Z(IIQIJZQ))
Lr Qg

Hence, A, is continuous on f;,)" . Similarly, A4,, A, A3 are also continuous.

For min(p, g) =r < 1, take 7 < r sufficiently close for and defined matrix 4
and sequence { by

[(das, )] < C (Zusplw)%
P

< Clsll e

s . s (10117
A= (agp)opr, agp = |age| (l_Pl) ,

i={iglo, ip=10I} ¥Isol.
We have

PV
sl e = 2115 afr
5 /:)/ia/ >
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and A4 is almost diagonal on f;)/’;‘” " for some other ¢. We can deduce the
boundness of 4 from the boundness of A .

Now we generalize the inequality || 3, sowoll Eee < Clis|| jpe 10 @ more gen-
eral family of functions {mg},. We prove it holds when {mg}, are smooth
rectangle molecules. Let J = 1/min(p, g, 1), N =max([/-1-a], -1), a* =
a—[a]. For a* <0 <1, M > J,wesay {mp}o isafamily of (§, M) smooth
rectangle molecules for F;¢ if for every rectangle Q = Q) x Q,, there exist
ag, , bg, such that {ag}p, {bg}o are two families of smooth molecules for
F;9(RY) (see [7]) and mg(x, y) = ag,(x) - bo,(y) .

Lemma 2.2 7). If {ag}o is a family of smooth molecules for F;9(R"), then
there exist ¢ = €¢(a, p, q,d) and a constant C independent on the form of
molecules, such that

lage| = [{ap , pog)| < Cawgp(e),
where dog = 2560(2"x — k), Q = [2-"k, 2-*(k + 1)].

Theorem 2.3. If [ = 3 ,s0mg and {mg}o is a family of (6, M) smooth
rectangle molecules, then || f]| ee S Clisll foa

Proof. Expanding mp as

mp = Z(mP ) ¢Q>WQ:
Q

=YY (mp, do)wosr = (Z(mp . ¢Q)SP) Yo
P Q

0 \pr

we get

Let the matrix (agp)gp be defined by
agp = (mp, ¢g) = (ap, , dog, ){bp, » Pog,)-

Applying Lemma 2.2, we get |agp|/wgp(e) < C? for every two dyadic rect-
angles. Thus A is almost diagonal and Theorem 2.2 is proved by Theorem
2.1

3. THE CASE D = +00 AND THE ATOMIC DECOMPOSITION

Let £29 (0 < g < 00) consist of distributions in S’/%p satisfying
1

1 - !

1Nl e = sup | =7 Uty ,, « f(x, y))?dxdy | <+oo,

> 1|
Q QQVI(CQ

where Q runs over all open sets. We say s = {sg}o € f2¢ if and only if
1

1/ 1 !
S|l g =S — s dxd < 400,
1l o gp(lQ| QZ(IQI IsolXo) y)

ocQ
where Q also runs over all open sets. When a =0, g =2,

1
1 § 2
S| 02 = SU —_ S, .

QcQ
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This is similar to the characterization of BMO(R2 x R2) in [2]. At first we
establish the boundness of Sy, T), .

Lemma 3.1. [|s; || jos ~ [I8]l e, & A > 1.

Proof. ||s|| 22 < |Is71l e is obvious. For the converse, we consider 2 a rectangle

at first. Let r = {rg}, where rg =sp if Q1 N2y, P, = @ for a fixed rectangle
P and otherwise, rg = 0. Then

71 [, Z 10174 07)00)* dx dy

QCP
IQ— x5\~ o —yol\ ™
E’ 2{ —$-4|r e ‘o

where [(Q) = (ll(Q), h(Q)) € R*. Let Fj) = P+ (ili(P), j2l2(P)) be the
translate of P. For [;(Q) = 27%1[,(P), L(Q) =2"kL(P),
L+ 0(Q) 7 xg — xpl ~ 2901l, 1+ 0(Q) yg—vgl ~2R1hal, |2l 2 2,

when Q C Py . So the quantity we want to estimate is

oo
<C S MRt ) 2-therkipimt B |Q|(|Q|~‘£—£|r§|)q2k.+kz
|f||2}'1 ’ |.’2'22 kl ,k2=0 aCP(j)
-2 —i

x5l lyo - y;l

.—Q 0

DIDIEDY ( )1> (1+12(Q)_|
QCPlil< 1g)=1(0)
ocr;,

01101~ % =)
- 10101 irg)
< Cy7HIs||4,,
by
Z Z Z (1+4(Q) xg - x5~ (+12(Q)“|J’Q—ygjl)"’1
QCP It yg)=1(Q)
ocP;
< c2RHjy| A2k 37 (1 + [ml) T < c2k-B)y A
mezZ
<cljy|™*, since k; > 0.

Similarly, for the sequence ¢ defined by fp = sp when Q> N2y,P = & and
=0 otherwise we have

71 [, Z 10178 (510700 dxdy < CrH sl
Poce

Now we fix an open set Q. Let u(Q) be the set of maximal rectangles contained
in Q, andlet u(Q), 4@ (Q) be the set of maximal rectangles in the x or y
direction respectively [5]. Let

Q! = {(x,y), Ms(xq)(x, y) > i},
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where xq: is the characteristic function of Q/ and QO = Q. Take sequences
r={rp}g, by
ro=s0if QCcQ* and rg=0 otherwise,
and ¢ = {tg}p With tg =59 —1p. Obviously,
a1 L et s5)0r0r dxdy = g [ (1014 ot0) dxdy

ocQ Qoca

i / (10174 (1) 070)" dx dy.

oca
The estimate of first term is easy. By Mg being L? bounded,
Q| < Q| < CIQ|, i=1,2,3,4,
for some constant C independent of Q. So
1
70)? < —||r514
i L et ote) dxdy < gl
an
1 <
IQl ”r” q — C ”S”f‘ao

Every rectangle Q C Q must be contained in a maximal rectangle in Q, but
this maximal rectangle is not unique; therefore

L T 0t e)ozo) dx dy

Qoca

IR 1 /
< Q 9dxdy.
2 (Q) QR ch;e(l I7%(%)oX0)
Let R= R, x R; € u(Q), R| D R, be the maximal dyadic interval satisfying
R{ xR, cQ', i=1,2. Suppose y(R)=|R}|/|Ri|, yR; is the y dilation of
R, with the same center. We can get 2y,(R)R; C 3R} by a simple computation,
)
271(R)R; x Ry C 3R} x R, ¢ Q2.

Doing similar work for R,, let y,(R) = |R}|/|R,|; then Ry x 2y2(R)R; C
R, x 3Rl Cc Q2.

For Q = Q) x @y ¢ Q* with [;(Q) < Ii(R), i = 1,2, we have either
Qi1N3R} =@ or Q) C 3R} by 3R! being the union of three dyadic intervals.
In the first case, we already have QN 3R} x R, = @; in the second case,
we have either Q, x 3R} = @ or Q, C 3R). This is equivalent to either
QN3R} x3R, =2 or Q C 3R} x 3R}, but the latter case contradicts Q ¢ Q*
by 3R} x 3R} C Q*. So we always have Q N3R! x 3R} = . That is, either
01 N2y (R)Ry =2 or )N 7—)’2(R)R2

Fixing R, let a sequence (R = {¢R }Q be defined by t,Q =50 if Q1N
21(R)R; = @ and £, = 0 otherw1se also let a sequence 15 = {15} be
defined by 15, = sp if Q2N 272(R)R, = @ and 5, = 0 otherwise. By either
on 02)221(R)R| =@ or O)N2»(R)R;, = @, for Q ¢ Q*, 1i(Q) < li(R),
i=1,2,

(1) < ()G + (15)%.
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Thus the quantity we are considering is

sl—gl ) |R|( /E 1014 (1R Vo 70)" dx dy

Reu(Q QCR

+ o [ e tzq)QxQ)qudy))

QCR

St X IRIGTIR)+ 757 Rl

Reu(Q)
by the estimate for the rectangle case, where ||| s can be controlled by ||s|| faa -
Now we need the famous Journé Lemma [5] to control it.

Lemma 3.2. If 6 >0, y;, u/(Q), i =1, 2, are assumed as above, then
> IRy < GlQl,

Reu®(Q)
Y IRy < GslQ,

Rep(Q)

where Cs only depends on ¢ .
Now apply the Journé Lemma to our case. Having observed that R # R in
uM(Q) if R#R in u(Q),
SRR < CialQl,  i=1,2,
Reu(Q)

so we get the desired estimate

1 L Z 0 H6)ot0)" dxdy < Clily,

QCQ
Lemma 3.1 is proved.

Theorem 3.3. S, : F29 — f29, T, : fo9 — F%9 are bounded operators, and
Ty oSy is identity on F23. The definition of F29 is independent on ¢ .

The proof is similar to the case p # oo .

We say sequence r = {rp}p is a p;-atom for j;,“" O<p<l,p<gc<
+00, p < p; < +00, a € RY) if there exists a bounded open set Q such that
ro # 0 only if Q Cc Q and ||r||f-;.l., < |Q|!/P=1/P . We have the following

Theorem 3.4. Let o, p, q as above; then

||s||j;,.q ~ inf{ (Z |/1k|”) ls = Elkrk , ' is a py-atom for f""}

keZ
Proof. Let

1
q

G9(s)(x, y) = (qurﬂsglzgv) ,
Q
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Q = {(x,y) € R®; G¥(s)(x, y) 2 2},

Ry = {rectangle R; [RN Q1| < 3R], [RN Q| > 3|R|}.
Having observed that --- D> Q, D Q;,; D ---, there exists one and only one &
such that R € Ry . Let the sequence r, = {ryo}o be defined by
So .
rhvo= ——=— lf Q € Rk .
e c2k+1|Qk|5
er=0 lngRk,

where ﬁk ={(x,y); Ms(xq,)(x,y) > %} and ¢ will be determined later and

is independent of k, Q, Q. By definition, r, is supported on (Jg rRRC ﬁk .
Let us estimate the norm of r, . Putting Ep = Q\ Q4 , we get

Xo < 2T Ms(xf )4

So
Il e <274 || 3 (10172 Hirol Ms(x,) $))7
QERy P
4a1/4
q
=277 (Z(MsuQr%-%lerEQ)A)%)
Q€R, Lri/4

Choose A4 such that p;/4 > 1, qg/4 > 1; then by the vector-valued maximal
inequality,

1

Il e < €27 ( ) (|Q|-%—%|rglx50>q)

Q€ERy
L~
1

ot 3 (10174 Hiselxz,)? q
= 2k Q| Q1AEe

€R
Q€ERy o

Now choose ¢ = ¢'2~% and by the definition of G
. Q,|V/p—1/p
I7illjoo < 1€ [FP170.

In the above, we have written ryy as ro. From this, we already have an atomic
decomposition of s,

s=3 Are, A =c2 7,
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with

S IAklP =P S 2k |0y
k

< C" 3 20 (IQA\Qu | + [Riert\ Rz + )
k

' (Z 20“”) 12\ Q1]
P

i<k
<"y 200\ Qe .
k

By the definition of G?, this is less than ¢”||G*(s)||%, . So the right side in the
theorem is less than ¢”||s|| foo - For the converse, we use the following inequality

whose proof is exactly similar to [7],
s + tl%aq < N8I aq + 1211Fg-
p p 14

Theorem 3.5. Let a € R, 1 < g < +00; then we have

1

g 1
(faq) +oo > E+?=l’

Generally, t = {tg}g € f;o‘;"' s then Iy :s — (s, t) = 3, Sglg defines a contin-
uous functional on f29, Ml foay ™ IH| jrad and every [ € ( f{"")* has the form
of I(s) = (s, 1) for some t € {729

Proof. Let s € f}"’ , LE f;o‘;"'. Then

ZSQE =D > sole

k QERy
<2Z/ Y 10178 Hsglxg,|Q1E ~Higlxg dx dy,
k QER;

where the definitions of Ry, G*I(s), i, Eg are as above. Using Holder’s
inequality

: b
. 01<23 (Z(IQI *Hisglz,) ) (}:uoﬁ %lzgug)q) dxdy.

(s, 8)| =

Q€ERy Q€ER,

Y (X ger, (1013~ }IsgliE,)?)7 < G24(s g q,., <2 1G, and

5 1
e, 01 <2302 (/ " (214 Hirolzo)” dxdy) (| daxar)’

Q Q€ER,
< 2t o D0 24| |0
k

we have estimate _
gzklw < Cllslljee
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as in the proof of Theorem 3.4. Thus f72¢ C (f?)*. For the other inclusion,
the proof is the same as [7].

Using the techniques for sequence spaces in [7], we can also get the atomic
decomposition of £, and the duality properties, but we will not write the
details.
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