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A DISCRETE TRANSFORM AND
TRIEBEL-LIZORKIN SPACES ON THE BIDISC

WEI WANG

Abstract. We use a discrete transform to study the Triebel-Lizorkin spaces on

bidisc Fpq , f^9 and establishes the boundedness of transform S$ : Fp9 —»

JJ9 and T¥ : f^9 —> Fp9 . We also define the almost diagonal operator and

prove its boundedness. With the use of discrete transform and Journe lemma,

we get the atomic decomposition of fpaq iorQ<p<\,p<q<oo. The atom

supports on an open set, not a rectangle. Duality (f^q)* = fxaq , j + 4r =

l,q>\,aeR,is established, too. The case for Fp9 is similar.

0. Introduction

In this paper, we use a discrete transform to study the Triebel-Lizorkin spaces

on the bidisc.
In § 1 we define the sequence space fi£q and the distribution space Fpq . Our

fundamental formula is / = Ylqifi, 4>q)h/q, where Q runs over all dyadic

rectangles and <j>q , y/Q are translates and dilates of ^ ^ associated with Q

respectively. Fourier transforms of <f>, tp have compact support, and

supp^, xpQ c {(«,, &); 2"'-1 < l&l < 2"'+1, 2"*"1 < |6| < 2«*+1}

for lx{Q) = 2-"', 12{Q) = 2-* . Thus (</>Q ,y/P) = 0 unless

2Sli(P)S   '

It will be simpler to study harmonic analysis on product spaces using this kind of

expansion rather than the expansion in [2], where <f> has compact support but its

Fourier transform is supported on the whole space. We prove S$ : Fp9 —► f%q

and Tv : fpaq —> Fpq are bounded. In its proof, we use the strong maximal

function Msf{x) = sup^ -^ JQ |/(v)| dy, where Q runs over all dyadic rect-

angles. Although Afs is not weak Lx bounded, it is IP bounded for p > 1

[4].
In §2 we define almost diagonal operators and prove the boundedness of

such operators on f%q by duality. We also define {3, M) rectangle molecules
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1352 WEI WANG

{mQ}Q and prove the Fpq norm of / = _lQSQmQ is less than the f£q norm

of {sQ}Q.

In §3 we define fgg and Fgg . For s = {sQ}Q,

\\s\\ts, = sur,[±- j ^{\Q\-$\sQ\xQ)qdxdy)    ,

where the sup is taken over all open sets Q, not only dyadic rectangles. This

is similar to the characterization of BMO(7?2 x 7?2) [2]. Applying the Journe

Lemma, we establish the case p = +00. Finally, we get the atomic decom-

position of fp0"1, Fpq for 0 < p < 1, p < a < +00. These atoms must be
supported on open sets. We cannot get the atomic decomposition supported on

rectangles. In fact, L. Carleson gave the counterexample for HX{R2+ x H2) [1].

Thus combining the discrete transform and Journe Lemma, we give another

method by which to obtain the atomic decomposition on product spaces.

1. Discrete transform

Let 4>o, Wo satisfy
(A) 4>0, Vo& S{R), S{R) is Schwartz space;

(B) suppfo, VoC {£ £ R, { <\£\ <2};

(C) |0o(Q|,|yo(O| > c> 0, if § < |<*| < f ;

(D) E,ez^o(2Wo(2"0=l,if £/0.
We put <j)(x, y) = Mx)<t>o{y), V(x, y) = Vo{x)Vo(y) • Then for £i£> ± 0

£ _Z k2^i,2^2)ij/(2v^x, 2«*&) = 1.
i/^zi^ez

For v = ivx, v2) £ 1?, k = (kx, k2) € Z2, we denote by Qvk the dyadic

rectangle

{(x, y)£R2\kx <2"'x<kx + 1, k2 < 2"2y < k2 + 1},

with sidelength l\(Qvk) = 2-"> , l2(Qvk) = 2~Vl and corner xQuk = 2~Vlki ,

yQ.k = 2~V2k2 . For Q = Qvk , denote

Mx > V) = \Qrh(2v'x - kx, T-y - k2),

where area \Q\ = /,(Q) • l2(Q).
Let S'iR2) be the space of tempered distribution space and <p the space of

distributions whose Fourier transform is supported on the x-axis and y-axis.

Then (/, </>q) is well defined for / 6 5'(7?2)/*p. The discrete transform S4 is

defined as

Sjfi = {0W)e}<2 > (S4>f)<2 = (/> 0Q)
where Q runs over all dyadic rectangles. Its inverse Tv maps every sequence

s - {sq}q in*0 a distribution

f=YJSQVQ£Sl/y.

Q

The basis of the discrete transform lies in the following expression (see [6,

Lemma 2.1] for the one-parameter case).
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Lemma 1.1. If <fi, y/ are defined as above and fi £ S'/ty, then

f=_Z(f'<t>Q)y/Q
Q

holds in S'/y$, so Tv o S^, is the identity on S'/ty.

Define the sequence space f£q as follows. For $ = {sq}q, where Q runs

over all dyadic rectangles, we define the norm

where %q = \Q\'^Xq.  The corresponding distribution space is Fpaq, and it

consists of / £ S'/y with

11/11^ =    (   £   (2^+^\</>Ul,v,*f(x,y)\A <co,

LP

where </>^,V2ix, y) = 2-v"-Vl^>i2~^x, 2~Vly). A useful tool to study harmonic

analysis on product spaces is the g£ function [4]

(g*xfi)2ix,y)=  f        \f*y,tlt2iu,v)\2
Jr2+xr2+

( 1 Vf 1 V  ,    ,  dtxdt2
'{l + \x-u\/txJ    \l + \y-v\/t2)    ^^    i\t\

where ^,,2(w, v) = yiu/tx,v/t2)/txt2. We define the corresponding sequence

s* = {(5q)(2}(2 for a sequence j by

( V
(s;)q= £      \sP\ril+l-xiP)\xp-xQ\r\l+l2-xiP)\yP-yQ\-")

\h(P)=h(Q) I

for some k. The main property of s* is

Theorem 1.2. Let a £ R, 0 < p < oo, 0 < a < oo, A > 1, ana" r = min(p, a).

Then

\\S\\ Ay?   ~    ||.Sr  || /Y>«.

We need the following lemma, which can be proved as in [6].

Lemma 1.3. Let 0 < a < r < oo, k > '-, lxiQ) = 2"«' , and /2«2) = 2~«2.
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Then

( V
Y i^r(i + /ri(Jp)ix/.-xGi)-^(i + /2-i(7')|y/.-yerA)

/,(/>)=2-«i

\/2(/>)=2-«2 /

(  ( W'
<C   Ms        Y     WXp (*)•        xeQ>

,        \h(P)=h(Q) I ,
\        \h(P)=h(Q) I I

where Mgif) is the strong maximal function of f.

Proof of Theorem 1.2.   ||s||y»« < |k*||y»« is obvious. To prove the converse, we

take the sum for Q with same sidelength in both sides of Lemma 1.3

(i ry
Y     (^)QXQ<C   Ms        Y     MXp

/,(G)=2-«i /,(/>)=2-«i
l2(Q)=2-"2 \        \/2(/>)=2-»2 /    /

SO

(   ( ( vvvi
K\\^<c      Y    M*      _Z    \p\-'\sP\XP

?!.?2€Z   I I    Z,(/>)=2-«l

\ \ \l2(P)=2-"2 /    )     f e
Li

We will use a vector-valued maximal inequality to control the right side.

Suppose (J2k \fk(x, y)\q)q £ LP . Then by Fubini's theorem there exists a set

E with zero measure such that for x 0 E, (J2k \fikix, v)|9)« € LP as a function

of y. Apply the Fefferman-Stein vector-valued maximal inequality [3] to this

function to get

(£i^(2)A(*>-)i*y <c (Y\fk(x,')\q\ >

for p > 1, 1 < a < oc, where Af(2) is the maximal operator for the second

variable. Apply the vector-valued maximal inequality to the first variable, and

notice Afs < M^M^ to get

fe|A/s/*l«y       <C   (YlfkA"      ■
\ k I    u \k )    u

Let r = min(p, q), e = k - 1 > 0, and a = -r^bj - Then 0<a<r, k> r-,

| > 1, \ > 1, so we can use the above inequality

H*;il£. < c (£(|/r*Mfc.)«)'     = CMI#«-
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The following result about the operators S^,  T¥ is similar to [6], so we will

not give the details.

Theorem 1.4. The operator S^ : F°q -* j?" and Tv : jjq -» F^ are bounded,

and Tv o S^, is the identity.

Notice

(f, 4>q) = \Q\2~4>vlv2*f(xQ,yQ),

where lx(Q) = 2'"1 , 12{Q) = 2~*», and ${•) = <pi~). We define

sup(/) = {sup/}e,        sup/=|Q|i   sup   \<t>VxVl*f(x,y)\,
Q Q {x,y)€Q

inf(/) = {inf(/)}Q,        r is a positive integer,

where

inf(/)= max{|<2|*    inf J^„,„2 * f{x, y)\, /,(£>) = 2~rh(Q),
Q>r Q (x,y)€Q

h(Q) = 2-'h(Q),QcQ}.

These three norms are equivalent.

Lemma 1.5. IffeS'ffl, then

WfWfa, ~ ||sup(/)||/o, ~ ||inf(/)|| ™.
p Jp r Jp

Using this lemma we can prove Theorem 1.4 very easily as in [6].

Corollary 1.7.  Fp9 is independent of the choice of </>.

2. Almost diagonal operator and smooth rectangle molecules

Similarly to [7], we define ojQPie) for two rectangles P,Q. It decays rapidly

as the distance between these two rectangles or the ratio of their sidelengths

becoming large. Suppose Q = Qx x Q2, P = Px x P2,

coqP(e) = coQlPl(e)coQ2p2(e),

™^{E)-{l(Pj)   V + max(KPi),l(Qi)))

where J = l/min(l, p, q). An operator A on fi%q is called almost diagonal
if its associate matrix {oqp}qip satisfies

\°QP\     „
sup      w\ < oo,
Q,pOJQp(e)

for some e > 0.
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Theorem 2.1. An almost diagonal operator on f£q (0 < p < oo, 0 < a < oo) is

bounded.

Proof. We only need to consider the case a = 0, because the general case can

be reduced to it as in [7]. Suppose a > 1, p > 1, s = {sq} ; and denote

A = Ax + A2 + A} + A4,

iAs)Q = iAxs)Q + iA2s)Q + (A3s)Q + iA4s)Q

( )
E  +  E  +  E  +  E   \aQPsp-

,h(Q)<h(P)    h(Q)>h(P)    h(Q)>h(P)    h(Q)<h(P)]
\h(Q)<h(P)    h(Q)<h(P)    h(Q)>h(P)    h(Q)>h(P)/

Notice the dual of ff> is jp' by (L"(/«))* = //(/«'), where x- + jr = 1,

I + jr = 1. Lpt t = {tQ}Q £ jp°,q', ||/||yo,' < 1; and notice J = 1 when p > 1,

a > 1. So

\(A4s, t)\ = Y^htQ  <C_Z     E     «>Qp(*)\sr\ M
Q Q h(P)>h{Q)

k(P)<h(Q)

< V V      V     2{-q,+p<-p2+q2)1?_^_
~qp^,M-- a + irl(P)\xp-xQ\y+<

P2>92 l2{p)=2-p2

I'd
(i + i2l(Q)\yQ-yp\)x+£'

At first we take the sum over P with P2 fixed and lx(P) = 2~Pl , so

\(A4s,t)\<cYY   E  y-i'+p'-p^1?
Q Pi<9\ h(P)=2-n

P2>12

\   P2 fixed /

Then take the sum over Q with l2(Q) = 2~<?2 and Qx fixed, so

/ \

K^,')l<c E E 2(""+Pl_P2+?2)^M(1)      E   Mxp   xQl(x)
Ql,P2P\<1> I /,(/>) = 2-"i

P2>Q2 \   p2 fixed /

/ \

■m{2)     Y   \(q\xq  xp2(y),
/2(G)=2-«2

\   Qt fixed /
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for each Qx, P2; doing the same thing but averaging over Qx x P2 shows that

i<^, t)\ < y Y E /    x-o+k-p^^mw (   y   \sp\xp)
<7l><Z2Pl<<?lQ, ,P2 JQ\*P2 \h(P)=2-^,P2 )

P2>Q2

-M(2)[       Y       \tQ\XQ)xQl,p2-2q'^dxdy

\l2(Q)=2-'*2,Ql J

t \

<C Y  [  y-^-Pi+^iM^        Y     \sp\Xp
P\<Q\    Rl l](P)=2~pi

P2<Q2 \ll{P)=2-p2 j

( \

■m(1)    Y  m*g dxdy-
/,(Q)=2-«i

\l2(Q)=2-"2 /

By Holder's inequality and summation, we get

\(A4s, t)\ <C      Y    mW       E     \sp\Xp

\P"P2 \ U(P)=2-» I   I
\ \ \l2(P)=2-"2 J )    J       ^

i   i   i \YY
■   Y M(2)    E  una

«1.«2 /i(G) = 2~"

V V \/2(G) = 2-'2 //        /\ ' LP'

By the vector-valued maximal inequality,

|(^,OI<c \Y(\sP\xP)q)'    ■  VY(\tQ\xQ)\

' LP1

< CMp.

Hence, A2 is continuous on jp . Similarly, AX,A2,A3 are also continuous.

For min(p, a) = r < 1 , take f < r sufficiently close for and defined matrix A
and sequence / by

A = (aQp)QP ,     dQP = \aQP\r I j^J j

i={iQ}Q,    ?fl = IGIi_W-
We have

\\s\\Jr = \\i\\lLlf,
jp/t
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and A is almost diagonal on ft/flr for some other e.  We can deduce the

boundness of A from the boundness of A .

Now we generalize the inequality || _^qSq\i/q\\f«<i < C\\s\\p,q to a more gen-

eral family of functions {mQ}Q . We prove it holds when {wqJq are smooth

rectangle molecules. Let J = 1/ min(p, q, 1), N = max([/ -1 - a], -1), a* =

a-[a]. For a* < S < 1, M > J, we say {mr)}Q is a family of (S, M) smooth

rectangle molecules for Fpq if for every rectangle Q = Qx x Q2, there exist

aQ\ ' ^Q2 sucn tnat {aQ}<2> {°q}q are tw0 families of smooth molecules for

Fpaq(Rx) (see [7]) and mQ(x, y) = aQl(x) • bQl(y).

Lemma 2.2 [7]. Ij {oq}q is a family of smooth molecules for Fpq(Rx), then

there exist e = e(a, p, q, S) and a constant C independent on the form ofi
molecules, such that

\aQp\ = \(aP, <Pog>I ^ CojQp(e),

where tf>0Q = 2i$0(2"x - k), Q = [2~vk, 2~v(k+ 1)].

Theorem 2.3. Ij j = _lQSQmQ and {nzg}^ is a family of (d, M) smooth

rectangle molecules, then ||/||/-°« < C||s||p>,.

Prooj. Expanding mp as

mp = Y(mP' ^Q)Wq,

Q

we get

/ = EDmf'W','2Sf = E [_Z^mp' tolsp) vq-
P     Q Q    \ P I

Let the matrix (aQP)QP be defined by

aQP = (mP, 4>Q) = (aPx, <PoQ,)(bp2, 4>oq2)-

Applying Lemma 2.2, we get |ag/>\/ojqp(e) < C2 for every two dyadic rect-

angles. Thus A is almost diagonal and Theorem 2.2 is proved by Theorem

2.1.

3. The case p = +oo and the atomic decomposition

Let F£g   (0 < a < oo) consist of distributions in S'/<$ satisfying

WfWtg = sup ( JL /   Y(2{Ul+,/in\^2*f(x,y)\)qdxdy)    <+oo,

where fl runs over all open sets. We say s = {sq}q £ f£g if and only if

p|L* = sup [ i^r / E(IGI"!lJe^e)'rfjf^l   <+<X)>

where fl also runs over all open sets. When a = 0, q = 2,

W« = SUnP(l5|gM2)   '
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This is similar to the characterization of BMO(7?2 x 7?2) in [2]. At first we

establish the boundness of S$, T¥ .

Lemma 3.1.   \\s*\\ *,« ~ \\s\\ ™«, if k > 1.

Proof. \\s\\j^ < \\Sq\\j™i is obvious. For the converse, we consider fl a rectangle

at first. Let r = {rQ} , where rg = Sq if Qx n 2yxPx = 0 for a fixed rectangle
P and otherwise, tq = 0. Then

ipr/' Y^\Q\~^OQXQ)qdxdy
\nJpQCP

QcPl(Q)=l(Q) V '

where /(G) = (h(Q), hiQ)) e R2. Let PU) = P + ifihiP), hh(P)) be the
translate of P. For /,(Q) = 2-*'/i(/>), /2«2) = 2"^/2(P),

i + /i(Gr!|jffl-*fll~2*»|;i|,    i + /2(Q)-1|yQ-v(2l~2^|72l,      |/2|>2,

when Q C T^-). So the quantity we want to estimate is

oo

<c     E     \h\-x\h\-x Y 2-^+k^\p\~x Y IGKIQr'-ikgl)^*1^
I7il>«.l/2l>2 kt,k2=0 qcP(j)

QCP\J2\<lltQ)=llQ)\ 1W> I \ 2^' I

QcPu)

• ̂ \Q\(\Q\-*-l\rrf)<

< Cyx~M \\s\\q
Joo

by

EE   E (i + ̂ (G)-1i^Q-^i)-A(i + /2(Gr1iyQ->'gi)-x
flC*|/,|<l|(fiH(gj

QcPw

< c2klX\ji\-l2k> E(! + \m\)~k ^ c2ki(-l-V\ji\-x

meZ

< c\j\\~k,      since kx > 0.

Similarly, for the sequence t defined by Iq = Sq when Q2 n 2y2f = 0 and
tq = 0 otherwise, we have

t4 / Y^Q\~^QXQ)qdxdy <Cy^x\\s\\9^.
I       I   JP QCP

Now we fix an open set fl. Let //(fl) be the set of maximal rectangles contained

in fl, and let //(1)(A), p{2\&) be the set of maximal rectangles in the x or y
direction respectively [5]. Let

ili+x = {ix,y),Msixcli)ix,y)>{},
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where x& is the characteristic function of fl' and fl° = fl. Take sequences
r = {>-q}q , by

rQ = SQ ̂  Q C A4,     and   rQ = 0 otherwise,

and t = {trfiQ with tQ = sQ- rQ. Obviously,

r4 / Y^^~i^hXQ)qdxdy = ̂ - f Y(\QrHr*q)QxQ)qdxdy

+ \ki [ Y(\Q\'^QQXQ)qdxdy.
I   I JnQcci

The estimate of first term is easy. By Ms being L2 bounded,

|fl| <|fl'|<C|fl|, z = 1,2,3,4,

for some constant C independent of fl. So

^|/nE(IGrn^)GW^a-y<^|k;||^

<^\\r\\\,<C'\\s\\^.

Every rectangle Q c fl must be contained in a maximal rectangle in fl, but

this maximal rectangle is not unique; therefore

liy/ Y^\Q\~^QQXQ)qdxdy

- £ m^i Y.m-Ht*q)QxQ)qdxdy.
ReM{a)]   xx   xJrqcr

Let R = Rx x R2 € //(fl), 7?', d Rx , be the maximal dyadic interval satisfying

7?; x 7?2 c fl', i = l,2. Suppose 7! (7?) = |7?}|/|/?,|, y7?i is the y dilation of

Rx with the same center. We can get 2yi(7?)7?i c 37?J by a simple computation,

so

2yx(R)Rx x7?2c37?j x R2 c fl2.

Doing similar work for R2 , let  y2(7?) = |7?^|/|7?2|; then  7?, x 2y2(7?)7?2 c

7?! x 37^ cfl2.

For Q = Qx x Q2 <£ fl4 with /,(£>) < /,(7?), z = 1, 2, we have either

(2i n 37? j = 0 or Qx c 37?[ by 37? j being the union of three dyadic intervals.

In the first case, we already have Q n 37? J x 7?2 = 0; in the second case,

we have either Q2 x 37?2 = 0 or Q2 c 3RX2. This is equivalent to either

Q n 37?J x 37?^ = 0 or Q c 3R\ x 3R\, but the latter case contradicts Q <£ fl4
by 37?J x 37?^ cfl4. So we always have Q n 37?J x 37?^ = 0. That is, either
Qx n 2y1(7?)7?i = 0 or Q2 n 2y2(7?)7?2 = 0 .

Fixing 7?, let a sequence ff = {?fe}<2 be defined by 7fG = sq if Qi n

2yi(7?)7?i = 0 and ?fQ = 0 otherwise; also let a sequence ?f = {(2q}q De

defined by t^Q = sQ if Q2 D 2y2(7?)7?2 = 0 and t^Q = 0 otherwise. By either

Qx n2y,(7?)7?, = 0 or Q2 n 2y2(7?)7?2 = 0, for Q £ fl4, /,(Q) < /,■(*),
1 = 1,2,

(gQ<(^)e+(^*)o-
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Thus the quantity we are considering is

-151   £   \R\(t^ [ _2(\Q\~"(OhXQ)qdxdy
1     ' Reii(Sl) V    ' jRQCR

+ ̂ JR_Z(\Q\~i&QXQ)qdxdy))

^&\  E \R\(7x-M(R) + Y2x+liR))\\t\\rj

by the estimate for the rectangle case, where \\t\\j^ can be controlled by Iklly^ ■

Now we need the famous Journe Lemma [5] to control it.

Lemma 3.2. If d > 0, yt, p''(fl), z = 1, 2, are assumed as above, then

Y \R\yx-s<Cs\Ci\,

Y \R\K*<d\n\>
RenVHQ)

where C$ only depends on 5.

Now apply the Journe Lemma to our case. Having observed that 7? ̂  7? in

//("(fl) if 7? #7? in //(fl),

E   |7?|7i-A+1(7?)<C/l_1|fl|,        1=1,2,
R€»(Cl)

so we get the desired estimate

lir / Y^Q^^hXQ^dxdyKCWsW^.

Lemma 3.1 is proved.

Theorem 3.3.  S^ : F£? -» fig?,   Tv : fig -» /£«  are bounded operators, and

Tv o ̂ 0 is identity on Fg9 . The definition of Fg? is independent on <p.

The proof is similar to the case p ^ oo .

We say sequence r = {rn}n is a pi-atom for j]/9 (0 < p < 1, p < a <

+00, p < pi < +00, a £ Rx) if there exists a bounded open set fl such that

rQ ̂  0 only if Q c fl and ||r|U„ < \£1\1/p>-1/p . We have the following

Theorem 3.4. Let a, p, a as above; then

\\s\\jn., ~inN lEl^l")   \s = Y^rk'rk isa Pratom fior j^9\.

Prooj. Let

G«qis)ix,y)= \T,{\Q\^\sq\xq)A   ,
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flfc = {ix, y) £ R2; Gaqis)ix, y) > 2k},

Rk = {rectangle/?; |7?nfli+,| < l\R\, |/?nfl^| > \\R\}.

Having observed that • • • _ £lk D Qk+X D ■ ■■ , there exists one and only one k

such that R £ Rk . Let the sequence rk = {rkn}n be defined by

rkQ = 0   if Q ?Rk,

where Qk = {(x, y); Ms(Xnk)(x, y) > j} and c will be determined later and

is independent of k, Q, fl. By definition, rk is supported on \JR€R R C flt.

Let us estimate the norm of rk . Putting Eq = Q\£lk+X, we get

XQ<2-L*Msix£Q)*.

So

l|r*||# < 2-i    E (\Q\-^\rQ\MsixAEQ)")q)"
QtRk m

{ \*   l/A

= 2-i I Ewier^i'-ei^)')

Choose A such that px/A > 1 , q/A > 1 ; then by the vector-valued maximal

inequality,

iir*ii£. < C2-* ( EdGr^Mx^n
\G€Rt /

£«||(£(,sr,-w)'| •

Now choose c = c'2~*  and by the definition of Gaq

\\rk\\j« < |flfe|1/p'-1/p.

In the above, we have written rkQ as rQ . From this, we already have an atomic

decomposition of 5,

s = Y^rk,     kk = c2k+x\hk\K
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with

El4r° = ̂ E2(*+I)Pl"*l
k

< c" Y 2{k+x)pi\nk\nk+x | + \nk+x\cik+2\ + ■■■)
k

= c"E(E2°'+1)p)iqa^+.i
k     \j<k J

<c"Y2{k+l)^k\^k+i\.
k

By the definition of G°">, this is less than c"||Ga«(5)||^,. So the right side in the

theorem is less than c"||j|| /««. For the converse, we use the following inequality
jp

whose proof is exactly similar to [7],

ll* + /|r>.<'IWr>. + ll'lr>..
Jp Jp Jp

Theorem 3.5. Let a £ R, 1 < a < +oo; then we have

(fn* ~ f+zq',    ^ + i = i-

Generally, t = {tQ}Q £ /+£?'; then lt : s -* (s, t) = _IqSqTq~ defines a contin-

uous junctional on j?9, \\lt\\if«>y ~ ||*||/•-««' and every I £ iff"1)* has the form

of lis) = (s,t) fior some t £ j^9'.

Proof. Let s£j?9, t£ ££«'. Then

|(5,7)|= E^Q7^ = E E SQtQ
Q k   QeRk

^2E / E \Q\-"-"\sQ\XEQ\Q\^^\tQ\xQdxdy,
k   J   Q€Rk

where the definitions of 7?^ , Gaqis), Qk, Eq are as above. Using Holder's

inequality

\(s,t)\<2Y[\Y(ler'-^eW) fE(igi^^qI^)  dxdy.
k   J    \QeRk J      \Q€Rk J

By i_:Q€Rki\Q\^h\sQ\XEQ)q)l< <Gaq(s)Xnk\nk+] ^ 2"+'^ and

\is,t)\<2Y2k+i\ L Y,(\Q\~i~i\tQ\XQ>9'dxdy) (f~ dxdy)"

<2\\t\\f-ai.Y2k+l\nk\*\nk\q
J + oo      *—^

k

we have estimate

E2/£|fl*|<C||5||yr,
k
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as in the proof of Theorem 3.4. Thus j+£>9 c (jxq)*. For the other inclusion,
the proof is the same as [7].

Using the techniques for sequence spaces in [7], we can also get the atomic

decomposition of Fp9 and the duality properties, but we will not write the

details.
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