A DISCRETE TRANSFORM AND TRIEBEL-LIZORKIN SPACES ON THE BIDISC

WEI WANG

Abstract

We use a discrete transform to study the Triebel-Lizorkin spaces on bidisc $\dot{F}_{p}^{\alpha q}, \dot{f}_{p}^{\alpha q}$ and establishes the boundedness of transform $S_{\phi}: \dot{F}_{p}^{\alpha q} \rightarrow$ $\dot{f}_{p}^{\alpha q}$ and $T_{\psi}: f_{p}^{\alpha q} \rightarrow \dot{F}_{p}^{\alpha q}$. We also define the almost diagonal operator and prove its boundedness. With the use of discrete transform and Journé lemma, we get the atomic decomposition of $f_{p}^{\alpha q}$ for $0<p \leq 1, p \leq q<\infty$. The atom supports on an open set, not a rectangle. Duality $\left(j_{1}^{\alpha q}\right)^{*}=\dot{f}_{\infty}^{-\alpha q^{\prime}}, \frac{1}{q}+\frac{1}{q^{r}}=$ $1, q>1, \alpha \in R$, is established, too. The case for $\dot{F}_{p}^{\alpha q}$ is similar.

0 . Introduction

In this paper, we use a discrete transform to study the Triebel-Lizorkin spaces on the bidisc.

In $\S 1$ we define the sequence space $\dot{f}_{p}^{\alpha q}$ and the distribution space $\dot{F}_{p}^{\alpha q}$. Our fundamental formula is $f=\sum_{Q}\left\langle f, \phi_{Q}\right\rangle \psi_{Q}$, where Q runs over all dyadic rectangles and ϕ_{Q}, ψ_{Q} are translates and dilates of ϕ, ψ associated with Q respectively. Fourier transforms of ϕ, ψ have compact support, and

$$
\operatorname{supp} \hat{\phi}_{Q}, \hat{\psi}_{Q} \subset\left\{\left(\xi_{1}, \xi_{2}\right) ; 2^{\nu_{1}-1}<\left|\xi_{1}\right| \leq 2^{\nu_{1}+1}, 2^{\nu_{2}-1}<\left|\xi_{2}\right| \leq 2^{\nu_{2}+1}\right\}
$$

for $l_{1}(Q)=2^{-\nu_{1}}, l_{2}(Q)=2^{-\nu_{2}}$. Thus $\left\langle\phi_{Q}, \psi_{P}\right\rangle=0$ unless

$$
\frac{1}{2} \leq \frac{l_{i}(Q)}{l_{i}(P)} \leq 2, \quad i=1,2
$$

It will be simpler to study harmonic analysis on product spaces using this kind of expansion rather than the expansion in [2], where ϕ has compact support but its Fourier transform is supported on the whole space. We prove $S_{\phi}: \dot{F}_{p}^{\alpha q} \rightarrow \dot{f}_{p}^{\alpha q}$ and $T_{\psi}:{\dot{f_{p}}}^{\alpha q} \rightarrow \dot{F}_{p}^{\alpha q}$ are bounded. In its proof, we use the strong maximal function $M_{S} f(x)=\sup _{Q} \frac{1}{Q \mid} \int_{Q}|f(y)| d y$, where Q runs over all dyadic rectangles. Although M_{S} is not weak L^{1} bounded, it is L^{p} bounded for $p>1$ [4].

In $\S 2$ we define almost diagonal operators and prove the boundedness of such operators on $\dot{f}_{p}^{\alpha q}$ by duality. We also define (δ, M) rectangle molecules

[^0]$\left\{m_{Q}\right\}_{Q}$ and prove the $\dot{F}_{p}^{\alpha q}$ norm of $f=\sum_{Q} s_{Q} m_{Q}$ is less than the $\dot{f}_{p}^{\alpha q}$ norm of $\left\{s_{Q}\right\}_{Q}$.

In $\S 3$ we define $\dot{f_{\infty}^{\alpha q}}$ and $\dot{F}_{\infty}^{\alpha q}$. For $s=\left\{s_{Q}\right\}_{Q}$,

$$
\|s\|_{f_{\infty}^{n q}}=\sup _{\Omega}\left(\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{\alpha}{2}}\left|s_{Q}\right| \tilde{\chi}_{Q}\right)^{q} d x d y\right)^{\frac{1}{q}}
$$

where the sup is taken over all open sets Ω, not only dyadic rectangles. This is similar to the characterization of $\mathrm{BMO}\left(R_{+}^{2} \times R_{+}^{2}\right)$ [2]. Applying the Journé Lemma, we establish the case $p=+\infty$. Finally, we get the atomic decomposition of $\dot{f}_{p}^{\alpha q}, \dot{F}_{p}^{\alpha q}$ for $0<p \leq 1, p \leq q<+\infty$. These atoms must be supported on open sets. We cannot get the atomic decomposition supported on rectangles. In fact, L. Carleson gave the counterexample for $H^{1}\left(R_{+}^{2} \times H_{+}^{2}\right)$ [1]. Thus combining the discrete transform and Journé Lemma, we give another method by which to obtain the atomic decomposition on product spaces.

1. Discrete transform

Let ϕ_{0}, ψ_{0} satisfy
(A) $\phi_{0}, \psi_{0} \in S(R), S(R)$ is Schwartz space;
(B) $\operatorname{supp} \hat{\phi}_{0}, \hat{\psi}_{0} \subset\left\{\xi \in R, \frac{1}{2} \leq|\xi| \leq 2\right\}$;
(C) $\left|\hat{\phi}_{0}(\xi)\right|,\left|\hat{\psi}_{0}(\xi)\right| \geq c>0$, if $\frac{3}{5} \leq|\xi| \leq \frac{5}{3}$;
(D) $\sum_{\nu \in \mathbb{Z}} \overline{\hat{\phi}_{0}\left(2^{\nu} \xi\right)} \hat{\psi}_{0}\left(2^{\nu} \xi\right)=1$, if $\xi \neq 0$.

We put $\phi(x, y)=\phi_{0}(x) \phi_{0}(y), \psi(x, y)=\psi_{0}(x) \psi_{0}(y)$. Then for $\xi_{1} \xi_{2} \neq 0$

$$
\sum_{\nu_{1} \in \mathbb{Z}} \sum_{\nu_{2} \in \mathbb{Z}} \overline{\hat{\phi}\left(2^{\nu_{1}} \xi_{1}, 2^{\nu_{2}} \xi_{2}\right)} \hat{\psi}\left(2^{\nu_{1}} \xi_{1}, 2^{\nu_{2}} \xi_{2}\right)=1
$$

For $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{Z}^{2}, k=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2}$, we denote by $Q_{\nu k}$ the dyadic rectangle

$$
\left\{(x, y) \in R^{2} \mid k_{1} \leq 2^{\nu_{1}} x \leq k_{1}+1, k_{2} \leq 2^{\nu_{2}} y \leq k_{2}+1\right\}
$$

with sidelength $l_{1}\left(Q_{\nu k}\right)=2^{-\nu_{1}}, l_{2}\left(Q_{\nu k}\right)=2^{-\nu_{2}}$ and corner $x_{Q_{\nu k}}=2^{-\nu_{1}} k_{1}$, $y_{Q_{\nu k}}=2^{-\nu_{2}} k_{2}$. For $Q=Q_{\nu k}$, denote

$$
\phi_{Q}(x, y)=|Q|^{-\frac{1}{2}} \phi\left(2^{\nu_{1}} x-k_{1}, 2^{\nu_{2}} y-k_{2}\right)
$$

where area $|Q|=l_{1}(Q) \cdot l_{2}(Q)$.
Let $S^{\prime}\left(R^{2}\right)$ be the space of tempered distribution space and \mathfrak{P} the space of distributions whose Fourier transform is supported on the x-axis and y-axis. Then $\left\langle f, \phi_{Q}\right\rangle$ is well defined for $f \in S^{\prime}\left(R^{2}\right) / \mathfrak{P}$. The discrete transform S_{ϕ} is defined as

$$
S_{\phi} f=\left\{\left(S_{\phi} f\right)_{Q}\right\}_{Q}, \quad\left(S_{\phi} f\right)_{Q}=\left\langle f, \phi_{Q}\right\rangle
$$

where Q runs over all dyadic rectangles. Its inverse T_{ψ} maps every sequence $s=\left\{s_{Q}\right\}_{Q}$ into a distribution

$$
f=\sum_{Q} s_{Q} \psi_{Q} \in S^{\prime} / \mathfrak{P}
$$

The basis of the discrete transform lies in the following expression (see [6, Lemma 2.1] for the one-parameter case).

Lemma 1.1. If ϕ, ψ are defined as above and $f \in S^{\prime} / \mathfrak{P}$, then

$$
f=\sum_{Q}\left\langle f, \phi_{Q}\right\rangle \psi_{Q}
$$

holds in $S^{\prime} / \mathfrak{P}$, so $T_{\psi} \circ S_{\phi}$ is the identity on $S^{\prime} / \mathfrak{P}$.
Define the sequence space $\dot{f}_{p}^{\alpha q}$ as follows. For $s=\left\{s_{Q}\right\}_{Q}$, where Q runs over all dyadic rectangles, we define the norm

$$
\|s\|_{j_{p}^{a q}}=\left\|\left(\sum_{Q}\left(|Q|^{-\frac{\alpha}{2}}\left|s_{Q}\right| \tilde{\chi}_{Q}\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}}
$$

where $\tilde{\chi}_{Q}=|Q|^{-\frac{1}{2}} \chi_{Q}$. The corresponding distribution space is $\dot{F}_{p}^{\alpha q}$, and it consists of $f \in S^{\prime} / \mathfrak{P}$ with

$$
\|f\|_{F_{p}^{\alpha q}}=\left\|\left(\sum_{\nu_{1}, \nu_{2} \in \mathbb{Z}}\left(2^{\left(\nu_{1}+\nu_{2}\right) \frac{\alpha}{2}}\left|\phi_{\nu_{1}, \nu_{2}} * f(x, y)\right|\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}}<\infty
$$

where $\phi_{\nu_{1}, \nu_{2}}(x, y)=2^{-\nu_{1}-\nu_{2}} \phi\left(2^{-\nu_{1}} x, 2^{-\nu_{2}} y\right)$. A useful tool to study harmonic analysis on product spaces is the g_{λ}^{*} function [4]

$$
\begin{aligned}
\left(g_{\lambda}^{*} f\right)^{2}(x, y)= & \int_{R_{+}^{2} \times R_{+}^{2}}\left|f * \psi_{t_{1} t_{2}}(u, v)\right|^{2} \\
& \cdot\left(\frac{1}{1+|x-u| / t_{1}}\right)^{\lambda}\left(\frac{1}{1+|y-v| / t_{2}}\right)^{\lambda} d u d v \frac{d t_{1} d t_{2}}{t_{1}^{2} t_{2}^{2}}
\end{aligned}
$$

where $\psi_{t_{1} t_{2}}(u, v)=\psi\left(u / t_{1}, v / t_{2}\right) / t_{1} t_{2}$. We define the corresponding sequence $s_{r}^{*}=\left\{\left(s_{Q}^{*}\right)_{Q}\right\}_{Q}$ for a sequence s by

$$
\left(s_{r}^{*}\right)_{Q}=\left(\sum_{\substack{l_{1}(P)=l_{1}(Q) \\ l_{2}(P)=l_{2}(Q)}}\left|s_{P}\right|^{r}\left(1+l_{1}^{-1}(P)\left|x_{P}-x_{Q}\right|\right)^{-\lambda}\left(1+l_{2}^{-1}(P)\left|y_{P}-y_{Q}\right|^{-\lambda}\right)\right)^{\frac{1}{r}}
$$

for some λ. The main property of s_{r}^{*} is
Theorem 1.2. Let $\alpha \in R, 0<p<\infty, 0<q \leq \infty, \lambda>1$, and $r=\min (p, q)$. Then

$$
\|s\|_{j_{p}^{a q}} \sim\left\|s_{r}^{*}\right\|_{f_{p}^{a q}}
$$

We need the following lemma, which can be proved as in [6].
Lemma 1.3. Let $0<a \leq r<\infty, \lambda>\frac{r}{a}, l_{1}(Q)=2^{-q_{1}}$, and $l_{2}(Q)=2^{-q_{2}}$.

Then

$$
\begin{aligned}
& \left(\sum_{\substack{l_{1}(P)=2^{-q_{1}} \\
l_{2}(P)=2^{-q_{2}}}}\left|s_{P}\right|^{r}\left(1+l_{1}^{-1}(P)\left|x_{P}-x_{Q}\right|\right)^{-\lambda}\left(1+l_{2}^{-1}(P)\left|y_{P}-y_{Q}\right|^{-\lambda}\right)\right)^{\frac{1}{r}} \\
& \quad \leq C\left(M_{S}\left(\sum_{\substack{l_{1}(P)=l_{1}(Q) \\
l_{2}(P)=l_{2}(Q)}}\left|s_{P}\right|^{a} \chi_{P}\right)\right)^{\frac{1}{a}}(x), \quad x \in Q \\
& \quad
\end{aligned}
$$

where $M_{S}(f)$ is the strong maximal function of f.
Proof of Theorem 1.2. $\|s\|_{f_{p}^{\text {aq }}} \leq\left\|s_{r}^{*}\right\|_{f_{p}^{\text {aq }}}$ is obvious. To prove the converse, we take the sum for Q with same sidelength in both sides of Lemma 1.3

$$
\sum_{\substack{l_{1}(Q)=2^{-q_{1}} \\ l_{2}(Q)=2^{-q_{2}}}}\left(s_{r}^{*}\right)_{Q} \tilde{\chi}_{Q} \leq C\left(M_{\mathrm{S}}\left(\sum_{\substack{l_{1}(P)=2^{-q_{1}} \\ l_{2}(P)=2^{-q_{2}}}}\left|s_{P}\right| \tilde{\chi}_{P}\right)^{a}\right)^{\frac{1}{a}}
$$

so

$$
\left\|s_{r}^{*}\right\|_{f_{p}^{a_{q}}} \leq C\left\|\left(\sum_{q_{1}, q_{2} \in \mathbb{Z}}\left(M_{\mathrm{S}}\left(\sum_{\substack{l_{1}(P)==^{-q_{1}} \\ l_{2}(P)=2^{-q_{2}}}}|P|^{-\frac{a}{2}}\left|s_{P}\right| \tilde{\chi}_{P}\right)^{a}\right)^{\frac{q}{a}}\right)^{\frac{a}{q}}\right\|_{L^{\frac{p}{a}}}^{\frac{1}{a}} .
$$

We will use a vector-valued maximal inequality to control the right side. Suppose $\left(\sum_{k}\left|f_{k}(x, y)\right|^{q}\right)^{\frac{1}{q}} \in L^{p}$. Then by Fubini's theorem there exists a set E with zero measure such that for $x \notin E,\left(\sum_{k}\left|f_{k}(x, y)\right|^{q}\right)^{\frac{1}{q}} \in L^{p}$ as a function of y. Apply the Fefferman-Stein vector-valued maximal inequality [3] to this function to get

$$
\left\|\left(\sum_{k}\left|M^{(2)} f_{k}(x, \cdot)\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}} \leq C\left\|\left(\sum_{k}\left|f_{k}(x, \cdot)\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}}
$$

for $p>1,1<q<\infty$, where $M^{(2)}$ is the maximal operator for the second variable. Apply the vector-valued maximal inequality to the first variable, and notice $M_{\mathrm{S}} \leq M^{(1)} M^{(2)}$ to get

$$
\left\|\left(\sum_{k}\left|M_{\mathbf{S}} f_{k}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}} \leq C\left\|\left(\sum_{k}\left|f_{k}\right|^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}}
$$

Let $r=\min (p, q), \varepsilon=\lambda-1>0$, and $a=\frac{r}{1+\varepsilon / 2}$. Then $0<a<r, \lambda>\frac{r}{a}$, ${ }_{a}^{p}>1,{ }_{a}^{q}>1$, so we can use the above inequality

$$
\left\|s_{r}^{*}\right\|_{f_{p}^{\text {nq }}} \leq C\left\|\left(\sum_{P}\left(|P|^{-\frac{q}{2}}\left|s_{P}\right| \tilde{\chi}_{P}\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}}=c\|s\|_{f_{p}^{n q}}
$$

The following result about the operators S_{ϕ}, T_{ψ} is similar to [6], so we will not give the details.

Theorem 1.4. The operator $S_{\phi}: \dot{F}_{p}^{\alpha q} \rightarrow \dot{f_{p}^{\alpha q}}$ and $T_{\psi}: \dot{f}_{p}^{\alpha q} \rightarrow \dot{F}_{p}^{\alpha q}$ are bounded, and $T_{\psi} \circ S_{\phi}$ is the identity.

Notice

$$
\left\langle f, \phi_{Q}\right\rangle=|Q|^{\frac{1}{2}} \tilde{\phi}_{\nu_{1} \nu_{2}} * f\left(x_{Q}, y_{Q}\right),
$$

where $l_{1}(Q)=2^{-\nu_{1}}, l_{2}(Q)=2^{-\nu_{2}}$, and $\tilde{\phi}(\cdot)=\overline{\phi(-\cdot)}$. We define

$$
\begin{gathered}
\sup (f)=\left\{\sup _{Q} f\right\}_{Q}, \quad \sup _{Q} f=|Q|^{\frac{1}{\frac{1}{2}}} \sup _{(x, y) \in Q}\left|\tilde{\phi}_{\nu_{1} \nu_{2}} * f(x, y)\right|, \\
\inf _{r}(f)=\left\{\inf _{Q, r}(f)\right\}_{Q}, \quad r \text { is a positive integer, }
\end{gathered}
$$

where

$$
\begin{aligned}
\inf _{Q, r}(f)=\max _{\widetilde{Q}}\left\{|Q|^{\frac{1}{2}} \inf _{(x, y) \in \dot{Q}}\left|\tilde{\phi}_{\nu_{1} \nu_{2}} * f(x, y)\right|, l_{1}(\tilde{Q})\right. & =2^{-r} l_{1}(Q), \\
l_{2}(\tilde{Q}) & \left.=2^{-r} l_{2}(Q), \tilde{Q} \subset Q\right\} .
\end{aligned}
$$

These three norms are equivalent.
Lemma 1.5. If $f \in S^{\prime} / \mathfrak{P}$, then

$$
\|f\|_{\tilde{F}_{p}^{\text {aq }}} \sim\|\sup (f)\|_{f_{p}^{\text {aq }}} \sim\left\|\inf _{r}(f)\right\|_{j_{p}^{\text {aq }}} .
$$

Using this lemma we can prove Theorem 1.4 very easily as in [6].
Corollary 1.7. $\dot{F}_{p}^{\alpha q}$ is independent of the choice of ϕ.

2. Almost diagonal operator and smooth rectangle molecules

Similarly to [7], we define $\omega_{Q P}(\varepsilon)$ for two rectangles P, Q. It decays rapidly as the distance between these two rectangles or the ratio of their sidelengths becoming large. Suppose $Q=Q_{1} \times Q_{2}, P=P_{1} \times P_{2}$,

$$
\begin{gathered}
\omega_{Q P}(\varepsilon)=\omega_{Q_{1} P_{1}}(\varepsilon) \omega_{Q_{2} P_{2}}(\varepsilon), \\
\omega_{Q_{1} P_{1}(\varepsilon)}=\left(\frac{l\left(Q_{1}\right)}{l\left(P_{1}\right)}\right)^{\alpha}\left(1+\frac{\left|x_{Q_{1}}-x_{P_{1}}\right|}{\max \left(l\left(P_{1}\right), l\left(Q_{1}\right)\right)}\right)^{-J-\varepsilon} \\
\cdot \min \left(\left(\frac{l\left(Q_{1}\right)}{l\left(P_{1}\right)}\right)^{\frac{1+\varepsilon}{2}},\left(\frac{l\left(P_{1}\right)}{l\left(Q_{1}\right)}\right)^{\frac{1+\varepsilon}{2}+J-1}\right),
\end{gathered}
$$

where $J=1 / \min (1, p, q)$. An operator A on $\dot{f}_{p}^{\alpha q}$ is called almost diagonal if its associate matrix $\left\{a_{Q P}\right\}_{Q, P}$ satisfies

$$
\sup _{Q, P} \frac{\left|a_{Q P}\right|}{\omega_{Q P}(\varepsilon)}<\infty,
$$

for some $\varepsilon>0$.

Theorem 2.1. An almost diagonal operator on $\dot{f}_{p}^{\alpha q}(0<p<\infty, 0<q \leq \infty)$ is bounded.

Proof. We only need to consider the case $\alpha=0$, because the general case can be reduced to it as in [7]. Suppose $q \geq 1, p \geq 1, s=\left\{s_{Q}\right\}$; and denote

$$
\begin{aligned}
& A=A_{1}+A_{2}+A_{3}+A_{4} \\
&(A s)_{Q}=\left(A_{1} s\right)_{Q}+\left(A_{2} s\right)_{Q}+\left(A_{3} s\right)_{Q}+\left(A_{4} s\right)_{Q} \\
&=\left(\sum_{\substack{l_{1}(Q)<l_{1}(P) \\
l_{2}(Q)<l_{2}(P)}}+\sum_{\substack{l_{1}(Q) \geq l_{1}(P) \\
l_{2}(Q)<l_{2}(P)}}+\sum_{\substack{l_{1}(Q)>l_{1}(P) \\
l_{2}(Q) \geq l_{2}(P)}}+\sum_{\substack{l_{1}(Q) \leq l_{1}(P) \\
l_{2}(Q) \geq l_{2}(P)}}\right) a_{Q P} s_{P} .
\end{aligned}
$$

Notice the dual of $\dot{f}_{p}^{0 q}$ is $\dot{f}_{p^{\prime}}^{0 q^{\prime}}$ by $\left(L^{p}\left(l^{q}\right)\right)^{*}=L^{p^{\prime}}\left(l^{q^{\prime}}\right)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Let $t=\left\{t_{Q}\right\}_{Q} \in \dot{f}_{p^{\prime}}^{0 q^{\prime}},\|t\|_{j_{p^{\prime}}^{0 q^{\prime}}} \leq 1$; and notice $J=1$ when $p \geq 1$, $q \geq 1$. So

$$
\begin{aligned}
\left|\left\langle A_{4} s, t\right\rangle\right|= & \left|\sum_{Q}\left(A_{4} s\right)_{Q} t_{Q}\right| \leq C \sum_{Q} \sum_{\substack{l_{1}(P) \geq l_{1}(Q) \\
l_{2}(P) \leq l_{2}(Q)}} \omega_{Q P}(\varepsilon)\left|s_{P}\right|\left|t_{Q}\right| \\
\leq & \sum_{\substack{Q \\
p_{1} \leq q_{1} \\
p_{2} \geq q_{1} \\
l_{1}(P)=2^{-p_{1}} \\
l_{2}(P)=2^{-p_{2}}}} 2^{\left(-q_{1}+p_{1}-p_{2}+q_{2}\right) \frac{1+\varepsilon}{2}} \frac{\left|s_{P}\right|}{\left(1+l_{1}^{-1}(P)\left|x_{P}-x_{Q}\right|\right)^{1+\varepsilon}} \\
& \cdot \frac{\left|t_{Q}\right|}{\left(1+l_{2}^{-1}(Q)\left|y_{Q}-y_{P}\right|\right)^{1+\varepsilon}} .
\end{aligned}
$$

At first we take the sum over P with P_{2} fixed and $l_{1}(P)=2^{-p_{1}}$, so

$$
\begin{aligned}
\left|\left\langle A_{4} s, t\right\rangle\right| \leq & C \sum_{Q} \sum_{\substack{p_{1} \leq q_{1} l_{2}(P)=2^{-p_{2}} \\
p_{2} \geq q_{2}}} 2^{\left(-q_{1}+p_{1}-p_{2}+q_{2}\right) \frac{1+\varepsilon}{2}} \\
& \cdot M^{(1)}\left(\sum_{\substack{l_{1}(P)=2^{-p_{1}} \\
P_{2} \text { fixed }}}\left|s_{P}\right| \chi_{P}\right) \chi_{Q_{1}}(x) \cdot \frac{\left|t_{Q}\right|}{\left(1+l_{2}^{-1}(Q)\left|y_{P}-y_{Q}\right|\right)^{1+\varepsilon}} .
\end{aligned}
$$

Then take the sum over Q with $l_{2}(Q)=2^{-q_{2}}$ and Q_{1} fixed, so

$$
\begin{aligned}
\left|\left\langle A_{4} s, t\right\rangle\right| \leq & C \sum_{Q_{1}, P_{2}} \sum_{p_{1} \leq q_{1}} 2^{\left(-q_{1}+p_{1}-p_{2}+q_{2}\right) \frac{1+\varepsilon}{2}} M^{(1)}\left(\sum_{\substack{p_{1}(P)=2^{-p_{1}} \\
P_{2} \text { fixed }}}\left|s_{P}\right| \chi_{P}\right) \chi_{Q_{1}}(x) \\
& \cdot M^{(2)}\left(\sum_{\substack{t_{2}(Q)=2^{-q_{2}} \\
Q_{1} \text { fixed }}}\left|t_{Q}\right| \chi_{Q}\right) \chi_{P_{2}}(y),
\end{aligned}
$$

for each Q_{1}, P_{2}; doing the same thing but averaging over $Q_{1} \times P_{2}$ shows that

$$
\begin{aligned}
\left|\left\langle A_{4} s, t\right\rangle\right| \leq & \sum_{q_{1}, q_{2}} \sum_{p_{1} \leq q_{1}} \sum_{p_{2}, P_{2}} \int_{Q_{1} \times P_{2}} 2^{\left(-q_{1}+p_{1}-p_{2}+q_{2}\right) \frac{1+\varepsilon}{2}} M^{(1)}\left(\sum_{l_{1}(P)=2^{-p_{1}, P_{2}}}\left|s_{P}\right| \chi_{P}\right) \\
& \cdot M^{(2)}\left(\sum_{l_{2}(Q)=2^{-q_{2}}, Q_{1}}\left|t_{Q}\right| \chi_{Q}\right) \chi_{Q_{1} \times P_{2}} \cdot 2^{q_{1}+p_{2}} d x d y \\
\leq & C \sum_{\substack{p_{1} \leq q_{1} \\
p_{2} \leq q_{2}}} \int_{R^{2}} 2^{\left(-q_{1}+p_{1}-p_{2}+q_{2}\right) \frac{\varepsilon}{2}} M^{(1)}\left(\sum_{\substack{q_{1}(P)=2^{-p_{1}} \\
l_{2}(P)=2^{-p_{2}}}}\left|s_{P}\right| \tilde{\chi}_{P}\right) \\
& \cdot M^{(2)}\left(\sum_{\substack{l_{1}(Q)=2^{-q_{1}} \\
l_{2}(Q)=2^{-q_{2}}}}\left|t_{Q}\right| \tilde{\chi}_{Q}\right) d x d y .
\end{aligned}
$$

By Hölder's inequality and summation, we get

$$
\begin{aligned}
\left|\left\langle A_{4} S, t\right\rangle\right| \leq C & \left\|\left(\sum_{p_{1}, p_{2}}\left(M^{(1)}\left(\sum_{\substack{l_{1}(P)=2^{-p_{1}} \\
l_{2}(P)=2^{-p_{2}}}}\left|s_{P}\right| \tilde{\chi}_{P}\right)\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}} \\
& \cdot\left\|\left(\sum_{q_{1}, q_{2}}\left(M^{(2)}\left(\sum_{\substack{l_{1}(Q)=2^{-q_{1}} \\
l_{2}(Q)=2^{-q_{2}}}}\left|t_{Q}\right| \tilde{\chi}_{Q}\right)\right)^{q^{\prime}}\right)^{\frac{1}{q^{\prime}}}\right\|_{L^{p^{\prime}}}
\end{aligned}
$$

By the vector-valued maximal inequality,

$$
\begin{aligned}
\left|\left\langle A_{4} s, t\right\rangle\right| & \left.\leq C\left\|\left(\sum_{P}\left(\left|s_{P}\right| \tilde{\chi}_{P}\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p}} \cdot \|\left(\sum_{Q}\left(\left|t_{Q}\right| \tilde{x}_{Q}\right)\right)^{q^{\prime}}\right)^{\frac{1}{q}} \|_{L^{p^{\prime}}} \\
& \leq C\|s\|_{f_{p}^{\text {quq }}} .
\end{aligned}
$$

Hence, A_{2} is continuous on $\dot{f}_{p}^{0 q}$. Similarly, A_{1}, A_{2}, A_{3} are also continuous. For $\min (p, q)=r<1$, take $\tilde{r}<r$ sufficiently close for and defined matrix \tilde{A} and sequence \tilde{t} by

$$
\begin{aligned}
\tilde{A} & =\left(\tilde{a}_{Q P}\right)_{Q P}, \quad \tilde{a}_{Q P}=\left|a_{Q P}\right|^{\dot{r}}\left(\frac{|Q|}{|P|}\right)^{\frac{1}{2}-\frac{i}{2}}, \\
\tilde{t} & =\left\{\tilde{t}_{Q}\right\}_{Q}, \quad \tilde{t}_{Q}=|Q|^{\frac{1}{2}-\frac{i}{2}}\left|s_{Q}\right|^{\tilde{r}} .
\end{aligned}
$$

We have

$$
\|s\|_{f_{p}^{n q q}}=\|\tilde{t}\|_{j_{p / r}^{j, q / r}}^{1 / \tilde{r}}
$$

and \tilde{A} is almost diagonal on $\dot{f}_{p / \tilde{r}}^{0, q / \tilde{r}}$ for some other ε. We can deduce the boundness of A from the boundness of \tilde{A}.

Now we generalize the inequality $\left\|\sum_{Q} s_{Q} \psi_{Q}\right\|_{\dot{F}_{p}^{\alpha q}} \leq C\|s\|_{j_{p}^{\text {aq }}}$ to a more general family of functions $\left\{m_{Q}\right\}_{Q}$. We prove it holds when $\left\{m_{Q}\right\}_{Q}$ are smooth rectangle molecules. Let $J=1 / \min (p, q, 1), N=\max ([J-1-\alpha],-1), \alpha^{*}=$ $\alpha-[\alpha]$. For $\alpha^{*}<\delta \leq 1, M>J$, we say $\left\{m_{Q}\right\}_{Q}$ is a family of (δ, M) smooth rectangle molecules for $\dot{F}_{p}^{\alpha q}$ if for every rectangle $Q=Q_{1} \times Q_{2}$, there exist $a_{Q_{1}}, b_{Q_{2}}$ such that $\left\{a_{Q}\right\}_{Q},\left\{b_{Q}\right\}_{Q}$ are two families of smooth molecules for $\dot{F}_{p}^{\alpha q}\left(R^{1}\right)$ (see [7]) and $m_{Q}(x, y)=a_{Q_{1}}(x) \cdot b_{Q_{2}}(y)$.
Lemma 2.2 [7]. If $\left\{a_{Q}\right\}_{Q}$ is a family of smooth molecules for $\dot{F}_{p}^{\alpha q}\left(R^{1}\right)$, then there exist $\varepsilon=\varepsilon(\alpha, p, q, \delta)$ and a constant C independent on the form of molecules, such that

$$
\left|a_{Q P}\right|=\left|\left\langle a_{P}, \phi_{0 Q}\right\rangle\right| \leq C \omega_{Q P}(\varepsilon),
$$

where $\phi_{0 Q}=2^{\frac{\nu}{2}} \phi_{0}\left(2^{\nu} x-k\right), Q=\left[2^{-\nu} k, 2^{-\nu}(k+1)\right]$.
Theorem 2.3. If $f=\sum_{Q} s_{Q} m_{Q}$ and $\left\{m_{Q}\right\}_{Q}$ is a family of (δ, M) smooth rectangle molecules, then $\|f\|_{\dot{F}_{p}^{a q}} \leq C\|s\|_{f_{p}^{\text {aq }}}$.
Proof. Expanding m_{P} as

$$
m_{P}=\sum_{Q}\left\langle m_{P}, \phi_{Q}\right\rangle \psi_{Q}
$$

we get

$$
f=\sum_{P} \sum_{Q}\left\langle m_{P}, \phi_{Q}\right\rangle \psi_{Q} s_{P}=\sum_{Q}\left(\sum_{P}\left\langle m_{P}, \phi_{Q}\right\rangle s_{P}\right) \psi_{Q}
$$

Let the matrix $\left(a_{Q P}\right)_{Q P}$ be defined by

$$
a_{Q P}=\left\langle m_{P}, \phi_{Q}\right\rangle=\left\langle a_{P_{1}}, \phi_{0 Q_{1}}\right\rangle\left\langle b_{P_{2}}, \phi_{0 Q_{2}}\right\rangle .
$$

Applying Lemma 2.2 , we get $\left|a_{Q P}\right| / \omega_{Q P}(\varepsilon) \leq C^{2}$ for every two dyadic rectangles. Thus A is almost diagonal and Theorem 2.2 is proved by Theorem 2.1.

3. The case $p=+\infty$ and the atomic decomposition

Let $\dot{F}_{\infty}^{\alpha q}(0<q<\infty)$ consist of distributions in $S^{\prime} / \mathfrak{P}$ satisfying

$$
\|f\|_{\dot{F}_{\infty}^{\alpha q}}=\sup _{\Omega}\left(\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q_{\nu k} \subset \Omega}\left(2^{\left(\nu_{1}+\nu_{2}\right) \frac{\alpha}{2}}\left|\tilde{\phi}_{\nu_{1} \nu_{2}} * f(x, y)\right|\right)^{q} d x d y\right)^{\frac{1}{q}}<+\infty
$$

where Ω runs over all open sets. We say $s=\left\{s_{Q}\right\}_{Q} \in \dot{f}_{\infty}^{\alpha q}$ if and only if

$$
\|s\|_{f_{\infty}^{\alpha q}}=\sup _{Q}\left(\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{q}{2}}\left|s_{Q}\right| \tilde{\chi}_{Q}\right)^{q} d x d y\right)^{\frac{1}{q}}<+\infty
$$

where Ω also runs over all open sets. When $\alpha=0, q=2$,

$$
\|s\|_{f_{\infty}^{02}}=\sup _{\Omega}\left(\frac{1}{|\Omega|} \sum_{Q \subset \Omega}\left|s_{Q}\right|^{2}\right)^{\frac{1}{2}}
$$

This is similar to the characterization of $\mathrm{BMO}\left(R_{+}^{2} \times R_{+}^{2}\right)$ in [2]. At first we establish the boundness of S_{ϕ}, T_{ψ}.
Lemma 3.1. $\left\|s_{q}^{*}\right\|_{j_{\infty}^{\text {aq }}} \sim\|s\|_{j_{\infty}^{\text {aq }}}$, if $\lambda>1$.
Proof. $\|s\|_{j_{\infty}^{a g}} \leq\left\|s_{q}^{*}\right\|_{j_{\infty}^{a q}}$ is obvious. For the converse, we consider Ω a rectangle at first. Let $r=\left\{r_{Q}\right\}$, where $r_{Q}=s_{Q}$ if $Q_{1} \cap 2 \gamma_{1} P_{1}=\varnothing$ for a fixed rectangle P and otherwise, $r_{Q}=0$. Then

$$
\begin{aligned}
& \frac{1}{|P|} \int_{P} \sum_{Q \subset P}\left(|Q|^{-\frac{\alpha}{2}}\left(r_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y \\
& \quad=\frac{1}{|P|} \sum_{Q \subset P} \sum_{l(\tilde{Q})=l(Q)}|Q|\left(|Q|^{-\frac{\alpha}{2}-\frac{1}{2}}\left|r_{\tilde{Q}}\right|\right)^{q}\left(1+\frac{\left|x_{Q}-x_{\tilde{Q}}\right|}{l_{1}(Q)}\right)^{-\lambda}\left(1+\frac{\left|y_{Q}-y_{\tilde{Q}}\right|}{l_{2}(Q)}\right)^{-\lambda}
\end{aligned}
$$

where $l(Q)=\left(l_{1}(Q), l_{2}(Q)\right) \in R^{2}$. Let $P_{(j)}=P+\left(j_{1} l_{1}(P), j_{2} l_{2}(P)\right)$ be the translate of P. For $l_{1}(Q)=2^{-k_{1}} l_{1}(P), l_{2}(Q)=2^{-k_{2}} l_{2}(P)$,

$$
1+l_{1}(Q)^{-1}\left|x_{Q}-x_{\tilde{Q}}\right| \sim 2^{k_{1}}\left|j_{1}\right|, \quad 1+l_{2}(Q)^{-1}\left|y_{Q}-y_{\tilde{Q}}\right| \sim 2^{k_{2}}\left|j_{2}\right|, \quad\left|j_{2}\right| \geq 2
$$

when $\widetilde{Q} \subset P_{(j)}$. So the quantity we want to estimate is

$$
\begin{aligned}
& \leq C \sum_{\left|j_{1}\right| \geq y_{1},\left|j_{2}\right| \geq 2}\left|j_{1}\right|^{-\lambda}\left|j_{2}\right|^{-\lambda} \sum_{k_{1}, k_{2}=0}^{\infty} 2^{-\left(k_{1}+k_{2}\right) \lambda}|P|^{-1} \sum_{\tilde{Q} \subset P_{(j)}}|\widetilde{Q}|\left(|\widetilde{Q}|^{-\frac{\alpha}{2}-\frac{1}{2}}\left|r_{\tilde{Q}}\right|\right)^{q} 2^{k_{1}+k_{2}} \\
& +\sum_{Q \subset P} \sum_{\left|j_{2}\right| \leq 1} \sum_{\substack{l\left(\underset{\begin{subarray}{c}{Q} l(\widetilde{Q}) }}{\tilde{Q} \subset P_{(j)}}\right.}\end{subarray}}\left(1+\frac{\left|x_{Q}-x_{\tilde{Q}}\right|}{l_{1}(Q)^{-1}}\right)^{-\lambda}\left(1+\frac{\left|y_{Q}-y_{\widetilde{Q}}\right|}{l_{2}(Q)^{-1}}\right)^{-\lambda} \\
& \cdot \frac{1}{|P|}|\widetilde{Q}|\left(|\widetilde{Q}|^{-\frac{\alpha}{2}-\frac{1}{2}}\left|r_{\tilde{Q}}\right|\right)^{q} \\
& \leq C \gamma_{1}^{-\lambda+1}\|s\|_{j_{\infty}^{\text {aq }}}^{q}
\end{aligned}
$$

by

$$
\begin{aligned}
& \sum_{Q \subset P} \sum_{\left|j_{2}\right| \leq 1} \sum_{\substack{l(Q)=l(\widetilde{Q}) \\
\widetilde{Q} \subset P_{(j)}}}\left(1+l_{1}(Q)^{-1}\left|x_{Q}-x_{\widetilde{Q}}\right|\right)^{-\lambda}\left(1+l_{2}(Q)^{-1}\left|y_{Q}-y_{\widetilde{Q}}\right|\right)^{-\lambda} \\
& \quad \leq c 2^{k_{1} \lambda}\left|j_{1}\right|^{-\lambda} 2^{k_{1}} \sum_{m \in \mathbb{Z}}(1+|m|)^{-\lambda} \leq c 2^{k_{1}(1-\lambda)}\left|j_{1}\right|^{-\lambda} \\
& \quad \leq c\left|j_{1}\right|^{-\lambda}, \quad \text { since } k_{1} \geq 0 .
\end{aligned}
$$

Similarly, for the sequence t defined by $t_{Q}=s_{Q}$ when $Q_{2} \cap 2 \gamma_{2} P=\varnothing$ and $t_{Q}=0$ otherwise, we have

$$
\frac{1}{|P|} \int_{P} \sum_{Q \subset P}\left(|Q|^{-\frac{\alpha}{2}}\left(t_{q}^{*}\right) \tilde{\chi}_{Q}\right)^{q} d x d y \leq C \gamma_{2}^{-\lambda+1}\|s\|_{f_{\infty}^{\alpha q}}^{q}
$$

Now we fix an open set Ω. Let $\mu(\Omega)$ be the set of maximal rectangles contained in Ω, and let $\mu^{(1)}(\Omega), \mu^{(2)}(\Omega)$ be the set of maximal rectangles in the x or y direction respectively [5]. Let

$$
\Omega^{i+1}=\left\{(x, y), M_{S}\left(\chi_{\Omega^{i}}\right)(x, y)>\frac{1}{2}\right\}
$$

where $\chi_{\Omega^{i}}$ is the characteristic function of Ω^{i} and $\Omega^{0}=\Omega$. Take sequences $r=\left\{r_{Q}\right\}_{Q}$, by

$$
r_{Q}=s_{Q} \text { if } Q \subset \Omega^{4}, \quad \text { and } \quad r_{Q}=0 \text { otherwise }
$$

and $t=\left\{t_{Q}\right\}_{Q}$ with $t_{Q}=s_{Q}-r_{Q}$. Obviously,

$$
\begin{gathered}
\left.\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}(|Q|)^{-\frac{\alpha}{2}}\left(s_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y=\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{\alpha}{2}}\left(r_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y \\
+\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{\alpha}{2}}\left(t_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y
\end{gathered}
$$

The estimate of first term is easy. By M_{S} being L^{2} bounded,

$$
|\Omega| \leq\left|\Omega^{i}\right| \leq C|\Omega|, \quad i=1,2,3,4
$$

for some constant C independent of Ω. So

$$
\begin{aligned}
& \frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{\alpha}{2}}\left(r_{q}^{*}\right)_{Q} \tilde{\chi} Q\right)^{q} d x d y \leq \frac{1}{|\Omega|}\left\|r_{q}^{*}\right\|_{f_{q}^{a q}}^{q} \\
& \quad \leq \frac{c}{|\Omega|}\|r\|_{f_{q}^{a q}}^{q} \leq C^{\prime}\|s\|_{f_{\infty}^{n q}}
\end{aligned}
$$

Every rectangle $Q \subset \Omega$ must be contained in a maximal rectangle in Ω, but this maximal rectangle is not unique; therefore

$$
\begin{aligned}
& \frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{\alpha}{2}}\left(t_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y \\
& \quad \leq \sum_{R \in \mu(\Omega)} \frac{|R|}{|\Omega|} \frac{1}{|R|} \int_{R} \sum_{Q \subset R}\left(|Q|^{-\frac{\alpha}{2}}\left(t_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y
\end{aligned}
$$

Let $R=R_{1} \times R_{2} \in \mu(\Omega), R_{1}^{i} \supset R_{1}$, be the maximal dyadic interval satisfying $R_{1}^{i} \times R_{2} \subset \Omega^{i}, i=1,2$. Suppose $\gamma_{1}(R)=\left|R_{1}^{1}\right| /\left|R_{1}\right|, \gamma R_{1}$ is the γ dilation of R_{1} with the same center. We can get $2 \gamma_{1}(R) R_{1} \subset 3 R_{1}^{1}$ by a simple computation, so

$$
2 \gamma_{1}(R) R_{1} \times R_{2} \subset 3 R_{1}^{1} \times R_{2} \subset \Omega^{2}
$$

Doing similar work for R_{2}, let $\gamma_{2}(R)=\left|R_{2}^{1}\right| /\left|R_{2}\right|$; then $R_{1} \times 2 \gamma_{2}(R) R_{2} \subset$ $R_{1} \times 3 R_{2}^{1} \subset \Omega^{2}$.

For $Q=Q_{1} \times Q_{2} \not \subset \Omega^{4}$ with $l_{i}(Q) \leq l_{i}(R), i=1,2$, we have either $Q_{1} \cap 3 R_{1}^{1}=\varnothing$ or $Q_{1} \subset 3 R_{1}^{1}$ by $3 R_{1}^{1}$ being the union of three dyadic intervals. In the first case, we already have $Q \cap 3 R_{1}^{1} \times R_{2}=\varnothing$; in the second case, we have either $Q_{2} \times 3 R_{2}^{1}=\varnothing$ or $Q_{2} \subset 3 R_{2}^{1}$. This is equivalent to either $Q \cap 3 R_{1}^{1} \times 3 R_{2}^{1}=\varnothing$ or $Q \subset 3 R_{1}^{1} \times 3 R_{2}^{1}$, but the latter case contradicts $Q \not \subset \Omega^{4}$ by $3 R_{1}^{1} \times 3 R_{2}^{1} \subset \Omega^{4}$. So we always have $Q \cap 3 R_{1}^{1} \times 3 R_{2}^{1}=\varnothing$. That is, either $Q_{1} \cap 2 \gamma_{1}(R) R_{1}=\varnothing$ or $Q_{2} \cap 2 \gamma_{2}(R) R_{2}=\varnothing$.

Fixing R, let a sequence $t_{1}^{R}=\left\{t_{1 Q}^{R}\right\}_{Q}$ be defined by $t_{1 Q}^{R}=s_{Q}$ if $Q_{1} \cap$ $2 \gamma_{1}(R) R_{1}=\varnothing$ and $t_{1 Q}^{R}=0$ otherwise; also let a sequence $t_{2}^{R}=\left\{t_{2 Q}^{R}\right\}_{Q}$ be defined by $t_{2 Q}^{R}=s_{Q}$ if $Q_{2} \cap 2 \gamma_{2}(R) R_{2}=\varnothing$ and $t_{2 Q}^{R}=0$ otherwise. By either $Q_{1} \cap 2 \gamma_{1}(R) R_{1}=\varnothing$ or $Q_{2} \cap 2 \gamma_{2}(R) R_{2}=\varnothing$, for $Q \not \subset \Omega^{4}, l_{i}(Q) \leq l_{i}(R)$, $i=1,2$,

$$
\left(t_{q}^{*}\right)_{Q}^{q} \leq\left(t_{1 q}^{R \cdot}\right)_{Q}^{q}+\left(t_{2 q}^{R *}\right)_{Q}^{q}
$$

Thus the quantity we are considering is

$$
\begin{aligned}
& \leq \frac{1}{|\Omega|} \sum_{R \in \mu(\Omega)}|R|\left(\frac{1}{|R|} \int_{R} \sum_{Q \subset R}\left(|Q|^{-\frac{\alpha}{2}}\left(t_{1 q}^{R}\right)_{Q}^{*} \tilde{\chi}_{Q}\right)^{q} d x d y\right. \\
& \left.\left.\quad+\frac{1}{|R|} \int_{R} \sum_{Q \subset R}\left(|Q|^{-\frac{\alpha}{2}}\left(t_{2 q}^{R}\right)_{Q}^{*} \tilde{\chi}_{Q}\right)^{q} d x d y\right)\right) \\
& \leq \frac{C}{|\Omega|} \sum_{R \in \mu(\Omega)}|R|\left(\gamma_{1}^{-\lambda+1}(R)+\gamma_{2}^{-\lambda+1}(R)\right)\|t\|_{f_{\infty}^{a q}}
\end{aligned}
$$

by the estimate for the rectangle case, where $\|t\|_{j_{\infty}^{\text {aq }}}$ can be controlled by $\|s\|_{j_{\infty}^{\text {aq }}}$. Now we need the famous Journé Lemma [5] to control it.
Lemma 3.2. If $\delta>0, \gamma_{i}, \mu^{i}(\Omega), i=1,2$, are assumed as above, then

$$
\begin{aligned}
& \sum_{R \in \mu^{(2)}(\Omega)}|R| \gamma_{1}^{-\delta} \leq C_{\delta}|\Omega| \\
& \sum_{R \in \mu^{(1)}(\Omega)}|R| \gamma_{2}^{-\delta} \leq C_{\delta}|\Omega|
\end{aligned}
$$

where C_{δ} only depends on δ.
Now apply the Journé Lemma to our case. Having observed that $R \neq \widetilde{R}$ in $\mu^{(1)}(\Omega)$ if $R \neq \widetilde{R}$ in $\mu(\Omega)$,

$$
\sum_{R \in \mu(\Omega)}|R| \gamma_{i}^{-\lambda+1}(R) \leq C_{\lambda-1}|\Omega|, \quad i=1,2
$$

so we get the desired estimate

$$
\frac{1}{|\Omega|} \int_{\Omega} \sum_{Q \subset \Omega}\left(|Q|^{-\frac{q}{2}}\left(t_{q}^{*}\right)_{Q} \tilde{\chi}_{Q}\right)^{q} d x d y \leq C\|s\|_{j_{\infty}^{m q}}^{q}
$$

Lemma 3.1 is proved.
Theorem 3.3. $S_{\phi}: \dot{F}_{\infty}^{\alpha q} \rightarrow \dot{f}_{\infty}^{\alpha q}, T_{\psi}: \dot{f}_{\infty}^{\alpha q} \rightarrow \dot{F}_{\infty}^{\alpha q}$ are bounded operators, and $T_{\psi} \circ S_{\phi}$ is identity on $\dot{F}_{\infty}^{\alpha q}$. The definition of $\dot{F}_{\infty}^{\alpha q}$ is independent on ϕ.

The proof is similar to the case $p \neq \infty$.
We say sequence $r=\left\{r_{Q}\right\}_{Q}$ is a p_{1}-atom for $\dot{f}_{p}^{\alpha q} \quad(0<p \leq 1, p \leq q \leq$ $+\infty, p \leq p_{1}<+\infty, \alpha \in R^{1}$) if there exists a bounded open set Ω such that $r_{Q} \neq 0$ only if $Q \subset \Omega$ and $\|r\|_{j_{p_{1}}^{\text {nq }}} \leq|\Omega|^{1 / p_{1}-1 / p}$. We have the following
Theorem 3.4. Let α, p, q as above; then

$$
\|s\|_{f_{p}^{n, q}} \sim \inf \left\{\left.\left(\sum_{k \in \mathbb{Z}}\left|\lambda_{k}\right|^{p}\right)^{\frac{1}{p}} \right\rvert\, s=\sum \lambda_{k} r_{k}, r_{k} \text { is a } p_{1} \text {-atom for } \dot{f_{p}^{\alpha q}}\right\}
$$

Proof. Let

$$
G^{\alpha q}(s)(x, y)=\left(\sum_{Q}\left(|Q|^{-\frac{q}{2}}\left|s_{Q}\right| \tilde{\chi}_{Q}\right)^{q}\right)^{\frac{1}{q}}
$$

$$
\Omega_{k}=\left\{(x, y) \in R^{2} ; G^{\alpha q}(s)(x, y) \geq 2^{k}\right\},
$$

$$
R_{k}=\left\{\text { rectangle } R ;\left|R \cap \Omega_{k+1}\right| \leq \frac{1}{2}|R|,\left|R \cap \Omega_{k}\right|>\frac{1}{2}|R|\right\} .
$$

Having observed that $\cdots \supset \Omega_{k} \supset \Omega_{k+1} \supset \cdots$, there exists one and only one k such that $R \in R_{k}$. Let the sequence $r_{k}=\left\{r_{k Q}\right\}_{Q}$ be defined by

$$
\begin{aligned}
& r_{k Q}=\frac{s_{Q}}{c 2^{k+1}\left|\tilde{\Omega}_{k}\right|^{\frac{1}{p}}} \text { if } Q \in R_{k}, \\
& r_{k Q}=0 \quad \text { if } Q \notin R_{k},
\end{aligned}
$$

where $\tilde{\Omega}_{k}=\left\{(x, y) ; M_{S}\left(\chi_{\Omega_{k}}\right)(x, y)>\frac{1}{2}\right\}$ and c will be determined later and is independent of k, Q, Ω. By definition, r_{k} is supported on $\bigcup_{R \in R_{k}} R \subset \widetilde{\Omega}_{k}$. Let us estimate the norm of r_{k}. Putting $E_{Q}=Q \backslash \Omega_{k+1}$, we get

$$
\chi_{Q} \leq 2^{-\frac{1}{A}} M_{S}\left(\chi_{E_{Q}}^{A}\right)^{\frac{1}{4}} .
$$

So

$$
\begin{aligned}
& \left.\left\|r_{k}\right\|_{f_{p_{1}}^{\text {aq }}} \leq 2^{-\frac{1}{A}} \| \sum_{Q \in R_{k}}\left(|Q|^{-\frac{\alpha}{2}-\frac{1}{2}}\left|r_{Q}\right| M_{S}\left(\chi_{E_{Q}}^{A}\right)^{\frac{1}{4}}\right)^{q}\right)^{\frac{1}{q}} \|_{L^{p_{1}}} \\
& \quad=2^{-\frac{1}{A}}\left\|\left(\sum_{Q \in R_{k}}\left(M_{S}\left(|Q|^{-\frac{Q}{2}-\frac{1}{2}}\left|r_{Q}\right| \chi_{E_{Q}}\right)^{A}\right)^{\frac{q}{A}}\right)^{\frac{A}{q}}\right\|_{L^{p_{1} / A}}^{1 / A}
\end{aligned}
$$

Choose A such that $p_{1} / A>1, q / A>1$; then by the vector-valued maximal inequality,

$$
\begin{aligned}
\left\|r_{k}\right\|_{f_{p_{1} q_{1}}} & \leq C^{\prime} 2^{-\frac{1}{\lambda}}\left\|\left(\sum_{Q \in R_{k}}\left(|Q|^{-\frac{q}{2}-\frac{1}{2}}\left|r_{Q}\right| \chi_{E_{Q}}\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p_{1}}} \\
& \leq \frac{c^{\prime} 2^{-\frac{1}{\lambda}}}{c 2^{k+1}\left|\tilde{\Omega}_{k}\right|^{\frac{1}{p}}}\left\|\left(\sum_{Q \in R_{k}}\left(|Q|^{-\frac{q}{2}-\frac{1}{2}}\left|s_{Q}\right| \chi_{E_{Q}}\right)^{q}\right)^{\frac{1}{q}}\right\|_{L^{p_{1}}} .
\end{aligned}
$$

Now choose $c=c^{\prime} 2^{-\frac{1}{A}}$ and by the definition of $G^{\alpha q}$

$$
\left\|r_{k}\right\|_{p_{1}^{\text {pa }}} \leq\left|\widetilde{\Omega}_{k}\right|^{1 / p_{1}-1 / p} .
$$

In the above, we have written $r_{k Q}$ as r_{Q}. From this, we already have an atomic decomposition of s,

$$
s=\sum \lambda_{k} r_{k}, \quad \lambda_{k}=c 2^{k+1}\left|\tilde{\Omega}_{k}\right|^{\frac{1}{2}},
$$

with

$$
\begin{aligned}
\sum\left|\lambda_{k}\right|^{p} & =c^{p} \sum_{k} 2^{(k+1) p}\left|\tilde{\Omega}_{k}\right| \\
& \leq C^{\prime \prime} \sum_{k} 2^{(k+1) p}\left(\left|\Omega_{k} \backslash \Omega_{k+1}\right|+\left|\Omega_{k+1} \backslash \Omega_{k+2}\right|+\cdots\right) \\
& =c^{\prime \prime} \sum_{k}\left(\sum_{j \leq k} 2^{(j+1) p}\right)\left|\Omega_{k} \backslash \Omega_{k+1}\right| \\
& \leq c^{\prime \prime} \sum_{k} 2^{(k+1)}\left|\Omega_{k} \backslash \Omega_{k+1}\right|
\end{aligned}
$$

By the definition of $G^{\alpha q}$, this is less than $c^{\prime \prime}\left\|G^{\alpha q}(s)\right\|_{L^{p}}^{p}$. So the right side in the theorem is less than $c^{\prime \prime}\|s\|_{j_{p}^{\alpha q}}$. For the converse, we use the following inequality whose proof is exactly similar to [7],

$$
\|s+t\|_{f_{p}^{\alpha q}}^{p} \leq\|s\|_{f_{p}^{\alpha q}}^{p}+\|t\|_{f_{p}^{a q}}^{p}
$$

Theorem 3.5. Let $\alpha \in R, 1<q<+\infty$; then we have

$$
\left(\dot{f}_{1}^{\alpha q}\right)^{*} \sim \dot{f}_{+\infty}^{-\alpha q^{\prime}}, \quad \frac{1}{q}+\frac{1}{q^{\prime}}=1
$$

Generally, $t=\left\{t_{Q}\right\}_{Q} \in \dot{f}_{+\infty}^{-\alpha q^{\prime}} ;$ then $l_{t}: s \rightarrow\langle s, t\rangle=\sum_{Q} s_{Q} \overline{\bar{Q}_{Q}}$ defines a continuous functional on $\dot{f}_{1}^{\alpha q},\left\|l_{t}\right\|_{\left(f_{1}^{\alpha q}\right)^{*}} \sim\|t\|_{\dot{f}_{+\infty}^{-\alpha q^{\prime}}}$ and every $l \in\left(\dot{f}_{1}^{\alpha q}\right)^{*}$ has the form of $l(s)=\langle s, t\rangle$ for some $t \in \dot{f}_{+\infty}^{-\alpha q^{\prime}}$.
Proof. Let $s \in \dot{f}_{1}^{\alpha q}, t \in \dot{f}_{+\infty}^{-\alpha q^{\prime}}$. Then

$$
\begin{aligned}
|\langle s, t\rangle| & =\left|\sum_{Q} s_{Q} \overline{t_{Q}}\right|=\left|\sum_{k} \sum_{Q \in R_{k}} s_{Q} \overline{t_{Q}}\right| \\
& \leq 2 \sum_{k} \int \sum_{Q \in R_{k}}|Q|^{-\frac{\alpha}{2}-\frac{1}{2}}\left|s_{Q}\right| \chi_{E_{Q}}|Q|^{\frac{\alpha}{2}-\frac{1}{2}}\left|t_{Q}\right| \chi_{Q} d x d y
\end{aligned}
$$

where the definitions of $R_{k}, G^{\alpha q}(s), \Omega_{k}, E_{Q}$ are as above. Using Hölder's inequality
$|\langle s, t\rangle| \leq 2 \sum_{k} \int\left(\sum_{Q \in R_{k}}\left(|Q|^{-\frac{q}{2}-\frac{1}{2}}\left|s_{Q}\right| \chi_{E_{Q}}\right)^{q}\right)^{\frac{1}{q}}\left(\sum_{Q \in R_{k}}\left(|Q|^{\frac{q}{2}-\frac{1}{2}}\left|t_{Q}\right| \chi_{Q}\right)^{q^{q^{\prime}}}\right)^{\frac{1}{q}} d x d y$.
By $\left(\sum_{Q \in R_{k}}\left(|Q|^{\frac{q}{2}-\frac{1}{2}}\left|s_{Q}\right| \chi_{E_{Q}}\right)^{q}\right)^{\frac{1}{q}} \leq G^{\alpha q}(s) \chi_{\widetilde{\Omega}_{k} \backslash \Omega_{k+1}} \leq 2^{k+1} \chi_{\widetilde{\Omega}_{k}}$ and

$$
\begin{aligned}
|\langle s, t\rangle| & \leq 2 \sum_{k} 2^{k+1}\left(\int_{\tilde{\Omega}_{k}} \sum_{Q \in R_{k}}\left(|Q|^{-\frac{\alpha}{2}-\frac{1}{2}}\left|t_{Q}\right| \chi_{Q}\right)^{q^{\prime}} d x d y\right)^{\frac{1}{q^{\prime}}}\left(\int_{\tilde{\Omega}_{k}} d x d y\right)^{\frac{1}{q}} \\
& \leq 2\|t\|_{\dot{f}_{+\infty}^{-a q^{\prime}}} \sum_{k} 2^{k+1}\left|\widetilde{\Omega}_{k}\right|^{\frac{1}{q^{\prime}}}\left|\widetilde{\Omega}_{k}\right|^{\frac{1}{q}}
\end{aligned}
$$

we have estimate

$$
\sum_{k} 2^{k}\left|\widetilde{\Omega}_{k}\right| \leq C\|s\|_{f_{1}^{a q}}
$$

as in the proof of Theorem 3.4. Thus $\dot{f}_{+\infty}^{-\alpha q} \subset\left(\dot{f}_{1}^{\alpha q}\right)^{*}$. For the other inclusion, the proof is the same as [7].

Using the techniques for sequence spaces in [7], we can also get the atomic decomposition of $\dot{F}_{p}^{\alpha q}$ and the duality properties, but we will not write the details.

References

1. L. Carleson, A counterexample for measure bounded on H^{p} for the bidisc, Mittag-Leffler Reports No. 7, 1974.
2. S. Y. Chang and R. Fefferman, A continuous version of duality of H^{1} and $B M O$ on the bidisc, Ann. of Math. (2) 112 (1980), 179-201.
3. C. Fefferman and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
4. R. Fefferman, Some recent development in Fourier analysis and H^{p}-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 1-43.
5. _, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), 109-130.
6. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
7. \qquad A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
8. J. L. Journé, A covering lemma for product spaces, Selected Papers on Harmonic Analysis, Guanghua, 1985.

Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

Current address: Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang 310028, People's Republic of China

[^0]: Received by the editors July 8, 1993 and, in revised form, December 28, 1993; originally communicated to the Proceedings of the AMS by Andrew Bruckner.

 1991 Mathematics Subject Classification. Primary 42B20.
 Supported by NNSF, ZPNSF, and the Doctoral foundation in China.

