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A NORM CONVERGENCE RESULT ON RANDOM PRODUCTS OF
RELAXED PROJECTIONS IN HILBERT SPACE

H. H. BAUSCHKE

Abstract. Suppose A' is a Hilbert space and C\.Cjy are closed convex

intersecting subsets with projections P\, ... , P^ ■ Suppose further r is a map-

ping from N onto {\, ... , N) that assumes every value infinitely often.We

prove (a more general version of) the following result:

If the TV-tuple (C\, ... , C#) is "innately boundedly regular", then the se-

quence (xn), defined by

xo € X arbitrary,    xn+i := Pr(n)Xn , for all n > 0,

converges in norm to some point in |"|£i Q .

Examples without the usual assumptions on compactness are given. Methods

of this type have been used in areas like computerized tomography and signal

processing.

1. Introduction, facts, and notation

Numerous problems in mathematics [10] and physical sciences [9, 8, 26] can

be described as follows. Let X be a real Hilbert space and suppose T\, ... , TN
are pairwise distinct nonexpansive self-mappings of some closed convex non-

empty subset D of X; recall that a self-mapping T of D is called nonexpan-

sive, if ||Tx - Ty\\ < \\x - y||, for all x, y e D. Suppose further that the set

of fixed points, Fix Tt := {x e D: TjX = x} , of each mapping 7} is nonempty

and that C := p|/=i Fix Tt ^ 0 . The aim is to find such a common fixed point.
One frequently employed approach is the following:

Let r be a random mapping for {\, ... , N} , i.e., a surjective mapping from

N onto {1, ... , N} that takes each value in {\, ... , N} infinitely often. Then

generate a random sequence (xn) by

x0 e D arbitrary,    xn+i := Tr(„)X„,    for all n > 0,
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and hope that this sequence converges to some point in C. We also speak of

a random or unrestricted product (resp. iteration). (For products generated by

some form of control, there are many results: for instance, cyclic control arises

when r(n) = n + 1 mod TV; see [6].)
This is, in general, a hopeless undertaking, as the example X := R, TV := 1,

and Ti := -I shows (as usual, I denotes the identity).

So let us temporarily consider the important special case when D = X and

each mapping T, is the projection onto some closed convex nonempty subset C,

of X ; hence Fix 71, = C, .The problem of finding a common fixed point is then

the famous Convex Feasibility Problem. This situation allows us to compare

the following known results (in fact, all authors listed below have established

(much) more general but less comparable results):
Amemiya and Ando [3]: If each set C, is a closed subspace, then the random

product converges weakly to the projection onto C.
Bruck [7]: If some set C, is compact, then the random product converges in

norm to some point in C. If TV — 3 and each set C, is symmetric, then the

random product converges weakly to some point in C.

Dye [11]: If the sets C, are finite-dimensional subspaces, then the random

product converges in norm to some point in C .

Dye and Reich [14]: If the sets C, have a common "weak internal point" or

if TV = 3 , then the random product converges weakly to some point in C .

Youla [29]: If the sets C, have a common "inner point", then the random

product converges weakly to some point in C.

Aharoni and Censor [2], Flam and Zowe [16], Tseng [27], Eisner et al. [15]:

If X is finite dimensional, then the random product converges in norm to some

point in C.

The objective of this paper is to provide a new applicable condition which

guarantees norm convergent random products.
The paper is organized as follows: In Section 2, we discuss four important

concepts: (innate) bounded regularity is a crucial geometric property of tuples of

closed convex sets. Fejer monotonicity and Baillon and Bruck's quasi-projection

capture essential properties of random sequences. Relaxed projections and Ba-

nach contractions are subsumed in the class of projective mappings. The third

sections contains our main result and some examples.

Suppose C is a closed convex nonempty subset of X . The projection onto

C, denoted Pc , is the mapping which sends every point to its nearest point in

C. The associated distance function is defined by d(-, C): X -► [0, +oc[: x *-*

\\x — Pcx\\ = infceC ||jc-c|| . If a €]0, 2[, then the mapping R := (1 -a)I+aPc
is called a relaxed projection. For R , the following holds:

Facts 1.1. (i) [18] R is nonexpansive. (ii) [6, Lemma 2.4(iv)] For every x e X

and every ceC, \\x - c\\2 - \\Rx - c||2 > a(2 - a)\\x - Pcx\\2.

A nonexpansive self-mapping T of some closed convex nonempty subset

D of X is called a Banach contraction if there is some contraction constant

k 6 [0, 1[, such that \\Tx - Ty\\ < k\\x -y\\, for all x,y eD.

Fact 1.2. [30, Lemma A2]. Suppose T is a nonexpansive self-mapping of some

closed convex nonempty subset D of X.  If T has fixed points and    C is
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a closed convex nonempty subset of FixT, then \\x - Tx\\ < 2d(x, C), for

every x e D.

Finally, " —► " abbreviates norm converge and "int" stands for the interior.

2. Four handy tools

Definition 2.1 (Tool 1: (innate) bounded regularity). An TV-tuple (Ci, ... , Cn)

of closed convex intersecting sets is called boundedly regular if for every bound-

ed sequence (x„) in X,

ma\{d(xn ,d):ie{\,..., N}} -> 0 implies d(x„ , C\ n • • • f*l CN) -» 0.

We say that (C\,..., CN) is innately boundedly regular if (Cj)j&j is boundedly
regular, for every nonempty subset J of {1, ... , TV}.

Facts 2.2. Suppose C\, ... ,Cn are closed convex intersecting sets in X. Then
the TV-tuple (C\,..., Cn) is innately boundedly regular, whenever at least one

of the following conditions holds:

(i) All sets, except possibly one, are boundedly compact.
(ii)   X is finite dimensional.

(iii) Each set is a closed subspace and the sum VJ/g/ Cf l% closed, for every

nonempty subset J of {1, ... , TV}.

(iv) Each set is a closed subspace and all sets, except possibly one, are finite

dimensional.
(v) Each set is a closed subspace and all sets, except possibly one, have finite

codimension.

(vi) Each set is a polyhedron, i.e. a finite intersection of half-spaces.

(vii) Each set is a hyperplane.

(viii) Each set is a half-space.

(ix) There is some / € {1, ... , N} such that C, nf|;€{ i     N}\{t} mt Q ^ 0 •

Proof, (i), (ii),... ,(ix), follow from [6, Proposition 5.4(i), Proposition 5.4(iii),

Theorem 5.19, Corollary 5.21 (i), Corollary 5.21(H), Corollary 5.26, Corollary
5.22, Fact 5.23, Corollary 5.14], respectively.    □

Definition 2.3 (Tool 2: Fejer monotone sequences). Suppose C is a closed

convex nonempty subset of X and (x„) is a sequence in X. We say that (x„)

is Fejer monotone w.r.t. C if

\\x„+\ - c\\ < \\x„ - c\\,    for every c e C and all n.

Facts 2.4. Suppose the sequence (x„) is Fejer monotone w.r.t. some closed

convex nonempty subset C of X. Then (see [20] or [6]):

(i) The sequences (d(xn, C)), (\\x„ - c\\) are decreasing and convergent

for every c e C. In particular, (x„) is bounded.

(ii)   (xn) converges in norm to some point in C if and only if there is some

subsequence (x„k) of (x„) with d(x„k, C) —► 0.

Definition 2.5 (Tool 3: Baillon and Bruck's [4] quasi-projection). Suppose C

is a closed convex nonempty subset of X and xq is a point in X. The quasi-

projection of x0 onto C, denoted d?cx0, is defined by

@cXo :={xeC: \\x - c\\ < \\x0 - c\\, for every c e C}.
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Proposition 2.6. Suppose C is a closed convex nonempty subset of X and xq

is a point in X. Then:

(i)  ScXq is a bounded closed convex nonempty subset of C.

(ii)   Pcx0 e @cxo c {x e C: \\x - Pcx0\\ < d(x0 ,C)}.
(iii) If x0eC, then Scxq = {PcXq} = {x0} .
(iv)   (&c+zXo = z + @c(xq - z), for every z e X.

(v) If C is a closed affine subspace, then @c = Pc ■
(vi) If (x„)„>o is a Fejer monotone sequence w.r.t. C converging weakly to

some point x e C, then x e SqXq .

Proof. It is a straightforward to check (i)-(iv).

(v): In view of (iv), we need only consider the case when C is a closed

subspace. Pick c 6 $cXq , fix an arbitrary real number t, and let c := PcXq +

t(c-PcXo). Then c e C and ||c-c|| < ||jcn—c||. Squaring yields (l—t)2\\PcXo—

c\\2 < \\Pc±Xo\\2 + t2\\Pcx0 - c\\2 or UPcXo - c\\2 - 2t\\Pcx0_- c\\2 < ||Pc^oll2 •
Then letting t —► -oo , we obtain a contradiction—unless c = PcXq .

(vi) follows readily from the weak lower semicontinuity of the norm.   D

Definition 2.7 (Tool 4: projective mappings). Suppose T is a nonexpansive

self-mapping of some closed convex nonempty subset D of X. We say that T

is projective w.r.t. c if c £ Fix T and if for every bounded sequence (x„) in

D,

\\x„ - c\\ - \\Tx„ - c\\ -> 0   implies   d(x„ , Fix T) —* 0.

If T has fixed points and is projective w.r.t. every one of them, then we simply

speak of a projective mapping.

Lemma 2.8. Suppose T is projective w.r.t. c. Then:

(i) If T is projective, then T is attracting [6] (see also [25, Corollary 1.1]),

i.e., || Tx - c\\ < \\x - c\\, for every x € D\Fix T and every c € Fix T.
(ii)   T has condition (S) w.r.t.  c [12]; i.e., if (x„) is a bounded sequence in

D and \\xn - c\\ - \\Tx„ - c\\ —► 0, then xn - Txn —* 0.

(iii) For every Xo e D, the sequence of iterates (T"xo)„>o converges in norm

to some fixed point of T.

Proof, (i) follows easily from the definitions, (ii) follows from Fact 1.2(iii):

(Tnx0) is Fejer monotone w.r.t. FixT and ||r"xo-c|| - ||r"+1xo-c|| —► 0, for

every c e Fix T; thus d(T"xo, Fix T) —> 0 and the result follows from Facts

2.4.    □

Remarks 2.9. (1) Suppose T is a nonexpansive self-mapping of some closed

convex nonempty subset D of X with Fix T ^ 0. The following condition

appears in Petryshyn and Williamson's [25, Theorem 1.2] and [24, Proposition

1]: (PW) For every bounded sequence (x„) in D, xn - Txn —> 0 implies

d(x„ , Fix T) —> 0. Clearly, if T is projective w.r.t. some fixed point, then T

satisfies condition (PW). In contrast, let X — D - E and Tx = 1 - x. This
mapping satisfies condition (PW) and the sequence (T"x) does not converge,

for every x $. Fix T = { j} ; thus T is not projective w.r.t.  \ .

(2) If T: l2 -> l2: x = (xi, x2, ...) h-> (x2, x3, ...), then the sequence

(Tnx) converges in norm to the (only) fixed point 0, for every x e l2. However,

T is not projective w.r.t. 0 (consider the sequence of unit vectors); hence the

converse of (iii) does not hold in general.
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Theorem 2.10. The class of projective mappings includes (i) Banach contractions

and (ii) relaxed projections.

Proof, (i) If k < 1 is a contraction constant for a Banach contraction T

and {c} = FixT, then \\Tx - c\\ < k\\x - c\\ and hence (i) follows from

d2(x, Fix T) = \\x - c\\2 < (||x-c||2-||rx-c||2)/(l - k2) , for every xeD.
(ii) If a e]0, 2[ and T - (l-a)I+aP, where P = Pc is the projection onto

some closed convex nonempty set C in D = X, then (Facts 1.1) \\x - Px\\2 =

d2(x,FixT) < (\\x - c\\2 - \\Tx - c||2)/(a(2 - a)), for every xeX and every

ceC-.   a

Example 2.11. Genel and Lindenstrauss [17] constructed a firmly nonexpansive

(see [18] or [19, Section 11]) self-mapping T of X := l2 and some point

Xo e X such that 0 e FixT, (r"xo)„>o converges weakly to 0 but not in
norm: inf„ ||2""jco|| > 0. Therefore, by Lemma 2.8(iii), T is not projective.

Remark 2.12. Using Lemma 2.8(i) and [6, Proposition 2.10], one can show the

following: Suppose D is a closed convex nonempty subset of X and Ti, T2

are projective self-mappings of D. If the pair (Fix Ti, Fix T2) is boundedly

regular, then T2T{ is projective.

Example 2.13. On the real line, let Tx = j|x|2, if \x\ < 1 and Tx = \x\ - j
otherwise. Then T is projective but does not belong to any of the standard

classes of "nice" nonexpansive mappings (cf. [6, Example 2.3]).

3. The main result

Hypothesis. From now on, we always assume that D is a closed convex

nonempty subset of X, that TV > 1, that T\, ... , Tn : D —► D are pairwise

distinct and projective w.r.t. some common fixed point c e C := f]f=l Ci,

where each C, equals Fix T,, and that the TV-tuple (Q , ... , Cjv) is innately

boundedly regular.

Definition 3.1. A mapping T: D -> D is called a full word, denoted T e ^ :=
3~(T\, ■ ■ ■ , Tn) , if T can be written as a finite product of the mappings in

{Ti, ... , TN] , where each mapping T, occurs at least once. We say that T is

an M-word, denoted T e Wm := Wm(T\ , ... , Tn) , if T can be written as a
finite product where at most M different factors Ti{, ... , TiM occur, for some

M e {1, ... , TV} and some subset {i'i , ... , Im) of {1, ... , N} .

Note that the identity (the product with 0 factors) is always in Wm and that

& CWN.

Proposition 3.2. In addition to the hypothesis, suppose that (x„) is a bounded

sequence in D, that (Wn) is a sequence in Wn, and that \xn-c\-\Wnxn-c\ -»

0. Then (*)  xn - Wnx„ —> 0. Moreover, if each Wn e y, then d(x„, C) —► 0.

Proof. We assume without loss of generality that c = 0 (otherwise, we trans-

late). For M e {1, ... , TV} define the statement (*, M) by

For every bounded sequence (x„) in D and every sequence of words

(Wn) mWM: if ||jc„|| - \\W„xn\\ - 0, then xn - Wnxn -» 0.

Hence, the main statement, (*), holds exactly when (*, V) does.
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Step 1. (*, 1) holds. Otherwise, there is a bounded sequence (x„) in D,

a sequence of words (W„) in Wi , some / € {1, ... , N} , and a sequence

of (strictly) positive integers (/„) such that \\x„\\ - \\Wnxn\\ -» 0, inf„||x„ -

W„x„\\ > 0, and Wn = TJ", for all n . Now \\xn\\ > \\TiX„\\ > \\W„x„\\, hence
||x„|| - ||7/x„|| -» 0. Because Tj is projective w.r.t. c = 0, we conclude (Fact

1.2)

0 «- d(x„ , Cj) = d(x„ , Fix Tt) > d(x„ , Fix TJ") > \\\xn - Wnx„\\,

which contradicts inf„ ||x„ - Wnxn|| > 0. Hence Step 1 is verified.

Step 2. If Af e {2, ... , TV} and (*, M - 1) holds, then so does (*, M).
Otherwise, there is a bounded sequence (x„) in D, a sequence of words (Wn)

in Wm\Wm-\ , and some indices {i\, ... , i^] C {I, ... , N} such that Wn e

9r( Th, ... , TiM), for all n , and ||x„ || -1| Wnxn\\->0, but inf„ \\x„ -W„x„\\>0.
Fix m € {1, ... , M) and write W^ = LnTimR„ , where /?„ e Wm-i > f°r all « .

Since ||x„|| > ||f?„x„|| > \\TimRnxn\\ > \\Wnx„\\, we get (i) ||x„|| - \\Rnxn\\ -» 0

and (ii) ||f?nX„|| - ||r,mi?„x„|| -> 0. The fact that (*, M - 1) holds and (i)
imply x„ - R„x„ —► 0; thus

i imRt\Xn ~ i imXn     * U,

by nonexpansivity of r,m . Since Tim is projective w.r.t. c = 0, (ii) and Lemma

2.8(ii) yield

f^n^n ~ TimRnX„ —> 0.

Adding the three preceding sequences gives x„ - r,mx„ —> 0; hence ||x„|| -

ll^/m^ill —* 0 an^ mus ^(-^«» C/„) —> 0. Because m has been chosen arbi-

trarily, we conclude maxme^^M^ d(x„ , Cim) -» 0, and further (the Af-tuple

(Qm)me{i,...,M] is boundedly regular) d(x„, n%=lQm) -» 0. Hence, by Fact

1.2, 0^<f(x„, n^=1C,m) > rf(x„, FixIF„) > ^||x„-W/„x„|| which is the desired
contradiction. Therefore, Step 2 is also verified.

Conclusion.  (*) holds.

Step 3. The "Moreover" part. Assume to the contrary that the "Moreover" part

is wrong. Then there is some bounded sequence (x„) in D and a sequence of

full words (Wn) in y such that ||x„|| - || Wnx„|| -► 0, but inf„ d(x„, C) > 0.
Analogously to Step 2, we deduce rf(x„ , C) —» 0, which is absurd.   □

Condition (*) also appears as Dye and Reich's semigroup condition (S) in

[13]. We are now ready for the main result:

Theorem 3.3. In addition to the hypothesis, suppose r is a random mapping for

{1, ... , TV}. Then the random sequence (x„), defined by

xo € D arbitrary,    x„+i := Tr(„)X„ ,    for all n > 0,

converges in norm to some point in (2cX§ ■
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Proof. Since r is a random mapping, we can find a subsequence (nk)k of («)„

such that Wk := Tr(nM_iy ■ ■ Tr(„k) e &~, for all k. The sequence (x„J is
Fejer monotone w.r.t. C and the sequence (Hx^-cH) converges; thus, by the

last proposition, d(x„k, C) -> 0. On the other hand, (x„k) is a subsequence of

(x„); therefore, the result follows from Facts 2.4(h) and Proposition 2.6(vi).   D

The reader may deduce a variety of examples by putting together Facts 2.2,

Proposition 2.6, Theorem 2.10, and Theorem 3.3; here, we give a rather small

selection.

Example 3.4 ("Random Kaczmarz"). Suppose each set C, is a hyperplane.

Then the random product of relaxed projections onto these hyperplanes con-
verges in norm to the projection onto C.

Remark 3.5. The cyclic control version with unrelaxed projections in Euclidean

space was already known to Kaczmarz [22] in 1937.

Example 3.6 ("Random Agmon/Motzkin & Schoenberg"). If each set C, is a
half-space, then the random product of relaxed projections converges in norm
to some point in &cx§ .

Remark 3.7. The cyclic control version is due to Gubin et al. [20], whereas

the "remotest set control" version is due to Agmon [1] and to Motzkin and

Schoenberg [23]. In the field of image reconstruction, these methods are known

as "AMS relaxation methods" or "ART for inequalities" [9, 8].

Example 3.8 ("Random von Neumann/Halperin"). Suppose each set C, is a

closed subspace and 5Zjey Cf *s closed, for every nonempty subset / of

{1, ... , N}. Then the random product of relaxed projections onto the sub-

spaces d converges in norm to the projection onto C.

Remark 3.9. The cyclic control version is due to von Neumann [28] and to

Halperin [21] and does not require the assumption on the closedness of the sum
of the complements; see also Deutsch's survey [10] for applications and Baillon
et al.'s [5, Corollary 2.4] for a more general (nonlinear) result.
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