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THE DE BRANGES-ROVNYAK MODEL
WITH FINITE-DIMENSIONAL COEFFICIENTS

JAMES GUYKER

ABSTRACT. A characterization in terms of the canonical model spaces of L. de
Branges and J. Rovnyak is obtained for Hilbert spaces of formal power series
with vector coefficients which satisfy a difference-quotient inequality, thereby
extending the closed ideal theorems of A. Beurling and P. D. Lax.

1. INTRODUCTION

This paper extends the well-known invariant subspace characterization of
A. Beurling [3] and P. D. Lax [11] for the shift on the Hardy space of square
summable power series with vector coefficients (cf. [10, 13-15]). The focus
is instead on certain (not necessarily orthogonal) complements of contractively
contained invariant manifolds of the shift. These are the spaces #(B) of
L. de Branges and J. Rovnyak [6-8]. In the Beurling-Lax theory, the key point
is a dimension inequality. The inequality is trivial when the coefficient space
has infinite dimension, so the essential content is in the finite-dimensional case.
Previously only special cases of the more abstract problem have been treated
[6, 9], but our methods generalize an argument from [7, Theorem 6]. The main
difficulty again comes down to a dimension inequality in the finite-dimensional
case. The purpose here is to derive new results on the structure of #(B) spaces
which reveal what is needed for the inequality to hold. As a consequence, we
obtain a complete characterization of the spaces #(B).

2. #(B) SPACES

A basic concept in the de Branges-Rovnyak theory is complementation: A
Hilbert space ¥ is contained contractively in a Hilbert space % if ¥ isa
submanifold of Z and if the inclusion map of ¥ into Z is a contraction.
If & is contained contractively in %, then the space complementary to %
in % is the Hilbert space & of elements g of Z with the property that

gl = sup{llg + fll% — If1I3: f € F}

is finite. The space % is contained contractively in .# . Moreover, & is
the unique Hilbert space such that the inequality ||k[|3 < | /|3 + |lgllZ holds
whenever k = f + g is a decomposition of k in Z into f in & and g in
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Z and such that every element k in .#Z admits a decomposition for which
equality holds.

Let € be a finite-dimensional Hilbert space, and let # be a Hilbert space
of formal power series f(z) whose coefficients are in & such that

(1) ILf(2) = £(0)/ 21 < If ()% — 1/ (0)[%-

Then # is contained contractively in & (z), the Hilbert space of square sum-
mable power series Y a,z" with a, in # and norm given by || Ea,,z"”??(z) =
S lanl .

Let B(z) be a power series whose coefficients are operators on % such that
IB(z)f(2)llgz) < I1If(2)llw(;) whenever f(z) isin #(z). Cauchy multiplica-
tion by B(z) thus defines a contraction operator on % (z) which will be denoted
by Tp. The range .#(B) of Ty becomes a Hilbert space in the unique norm
with the property that ||Tsf]l.¢) = || fllz(;) Whenever f is orthogonal to the
kernel of Tp. Furthermore, .#(B) is contained contractively in % (z), and
multiplication by z is a contraction on .#(B).

The de Branges-Rovnyak space #(B) is defined to be the complementary
space to .# (B) in &(z). The space #(B) satisfies (1) and is an underlying
space for canonical models of contractions on Hilbert space [1, 2, 12, 16, 17].

Multiplication by z is a contraction on the space .# complementary to #
in #(z). In [6] (cf. [S, Theorem 6]), de Branges extended the Beurling-Lax
theorem by showing that if multiplication by z is isometric on .# , then Z is
isometrically equal to a space - (B). It should be further noted that when %
is infinite dimensional, any space /# which satisfies (1) is isometrically equal
to a space Z(B) [4, Theorem 11].

Let #Z(B) be a given space. Then #(B) is also contained contractively in
#(zB). The space #(zB) may be obtained as those elements 4(z) of &(z)
such that [A(z)—h(0)]/z isin #(B) and ||h(z)||§,,(zB) = ||[h(z)—h(0)]/z||§,,(3)+
|h(0)|2 . The complementary space to #'(B) in #(zB) is the space B(z)%
with ||B(z)c|lgz)z = |c|lz for every ¢ orthogonal to & Nker Tp. Let us define
linear transformations J. from #(B) into %, with ranges denoted %, as
follows: J,f = f(0) and J_ is the operator whose adjoint is given by J*c =
[B(z) — B(0)]c/z. Let B(z) = Y. B,z", and let B, be the adjoint of B,
on #. Then Jic = [l — B(z)B(0)]c; and since # is finite dimensional,
% = (1 - BoFo)g and &_ = (Vn>l F,,g) - (1 —F()Bo)g .

Let R(0) denote the difference-quotient transformation on #(B), which
maps f(z) into [f(z) — f(0)]/z. Then R(0)*f(z) = zf(z) — B(z)J-f so
that [1 - R(0)R(0)*1f(z) = [B(z) — B(0)I(J-f)/z and [1 - R(0)*R(0)]f(z) =
(J+f) + B(z)J-R(0)f . Note that if [1 — R(0)*R(0)]f(z) = ¢+ B(z)c- with ¢
in & and c_ in &_, then necessarily ¢ = J, f and ¢_ = J_R(0)f. Therefore,
since dim# is finite,

rank[1 — R(0)*R(0)] = dim{(J, f, J_R(0)f): f € #(B)}
(2) > dim &, = rank(1 — ByBy)
(3) > dimZ. = rank[1 — R(0)R(0)*].

More precisely, the following will turn out to be a defining property of the spaces
Z(B).
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Theorem 1. Let R(0) be the difference-quotient transformation on a given space
# (B). Then

rank[1 — R(0)*R(0)] = dim{c € ¥: B(z)c € #(B)} + rank[l — R(0)R(0)*].
Proof. Suppose that B(z)c isin #(B). Then ¢ = (J_f) +d where f is in
#(B) and [B(z) — B(0)}d/z = 0. Moreover,

(4) [1 - R(0)*R(0){[R(0)" f1+ B(z)c} = (Bod) + B(z)J-f.
Let J_fi, ..., J_f;, be a basis for the subspace &’ = {c € €.: B(z)c €
#(B)}, and let J,g,..., J.& be a basis for &, where f; and g; are in

#(B) for all i and j. Suppose that there are constants 4;, ..., A4, such
that

0= Zlill — R(0)"R(O){[R(0)" fi] + B(z)J_ fi}

+Z/150+,[1 R(0)*R(0)]g;.

Equivalently by (4) we have

0= (Z /150+,J+g,) + B(z)J- lz Asy+jR(0)gj + ZA f;

so that ) A54+;J+g =0 and hence Agy; =0 (j=1,..., ). It follows that
> 4;J—fi =0 and thus A; =0 for all i. Therefore,
(5) rank[1 — R(0)*R(0)] > so + ¢.

Let ¢, =J_fi (i=1, , So) and expand {c;} to a basis ¢;,..., ¢ of

{c € &: B(z)c € #(B)}. For every j > So let us write ¢; = (J_fj) +d; as
above where f; is in #(B) and d; is orthogonal to &_. By (4), Bod; is in
%, ,soitisin (By%®)N(1-ByBy)% . But since % is finite dimensional, it follows
that this intersection coincides with By(1 — BoBy)% , and hence Byd; = Boe;
where e; isin (1—-BoBy)% . Thus d;—e; isin ker By, which is also contained
in (1 —BoBy)% , and consequently d; is in [(1 — BoBy)Z]1o &- .

Now {dj: j > so} is linearly independent: For suppose Y a;d; = 0. Then
Yivs @G = Ljss, @jJ-fj isin B, so there exist B; such that -, ajc; =
ZiSSo Bici. Since {c;} is linearly independent, a; = 0 for all j, and hence

t =dim %, = rank(1 — BoBy) = rank(1 — BoBy)
=dim{[(1 - BoBy)¥1© %} + dim&_
> (s — so) + rank[1 — R(0)R(0)*].
In conjunction with (5) we have
rank[1 — R(0)*R(0)] > s + rank[1 — R(0)R(0)*].

To verify the reverse inequality, it suffices to show that there exist r =
rank[1 — R(0)*R(0)] — rank[l — R(0)R(0)*] linearly independent vectors a;
in & such that B(z)a; is in #(B). By inequalities (2) and (3), it fol-
lows that r = ry + r; where ry = rank[l — R(0)*R(0)] - dim%, and r, =
dim{[ran(1 — BoBy)|0 %.}.
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Suppose that ry > 0 and recall the basis {J.g;} of & . As above, {[1 —
R(0)*R(0)]g;} is linearly independent, so if & is its span, then there are ry
vectors [1 — R(0)*R(0)1&; (i =1,...,r), with & in #(B), which form
a basis of ran[l — R(0)*R(0)] © & . Now there exist constants 4;; such that
J18 =Y  AijJsg; foreach i. Let us define a; = J_R(0)(2 — 3, A;jg;) for
i=1,...,r. Then B(z)a; =[1-R(0)*R(0)](& —3_;4ig) isin Z’( ), and
{a, ..., a,} is linearly independent: Suppose that 2 uia; =0. Then

Zﬂi[l - R(0) 0)1&: = Zﬂz[l - (lejgj)

which must be zero since it is in both & and £+ . Therefore u; =0 for every
i.

Next, suppose that r; > 0 and let cfl S ci,l be a basis of [ran(1 —ByBy)]le
&_. Then B(z)d; = Byd; and d; = (1 —BoBo)b for some b; in &. Let
f,(z) = [1-B(z)B(0)]Bob, and define a,,,; = d +J_R(O)f, for j=1, r.
Then B(z)ay.; =[1— R(0)* R(O)]f, is in #(B).

Finally, {a;:i=1,...,r = ryp+r} is linearly independent: Suppose that
there are constants v, ..., v, such that

0= wiai=) viai+y_ vpsjld; + J-R(0)f;].
1 1

It follows that Y} l/,qﬂtfj =0 since a; (1<i<r) and J_ROO)f; (1<j<
ry) arein #_, and d; is orthogonal to #_ for every j. Therefore v, ,; =0
(J=1,...,n),and consequently > " v;a; =0 so that v; =0 forall /. O

3. THE CHARACTERIZATION

Let # be a space which satisfies (1), and let ##’ be the Hilbert space of
all power series h(z) such that [A(z) — h(0)]/z is in #Z with ||h(2)|%, =
lA(z) — h(0)]/z||3 + |h(0)]2. Then #’ satisfies (1), and # is contained
contractively in #Z’. Let % be the complementary space to # in #’, and
let iy and ip denote the respective inclusion maps of # and &% into 2.
Then every h in #’ admits the unique decomposition h = (i%.h) + (i%h)
where (|13, = lli5 Al + li Al .

A fundamental result from the theory of #(B) spacesis: # is isometrically
equal to a space # (B) if and only if the dimension of # does not exceed the
dimension of € [6]. More generally, if € C # and dim% < dim& , then #
is a space # (B) where the coefficients of B(z) act on Z .

Lemma. Let F be the subspace of elements of #Z for which equality holds in
(1). Then &£ and Z# NF are contained in Z'6.F and # ©F respectively.
Moreover, dim% =dim#' % and dmZ NF =dim#Z o.F .

Proof. Asin[9], # isa (closed) subspace of # and is contained isometrically
in #'. Therefore for any f in ¥ and g in &%, we have

Hence % is a subset of #' ©.% .
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The restriction of %, to #’ ©.% is linear and continuous and has trivial
kernel: if i%,h = 0 for some h in #' ©.%, then i%h = h, so h is also in
& ,and thus A = 0. It follows that dim#'©.% =dim i, (#'65) < dim%,
and hence dim# =dim#' o ¥ .

Next, let g bein ZN%# . Then g isin Z' 6% butalsoin o since
forany f in &

(f, 8w =(ixf, 8w ={f,ix8)w =(f, &)# =0.
Therefore (Z NF)C (Z 6% ). Finally dim#Z NF =dim#Z o F as above
since i5(# ©.F) is contained in N . O
The following will distinguish the spaces #(B).

Corollary 1. Let & (B) be the subspace of elements of a given space #(B) for
which equality holds in (1). Then
dim J,% (B) = dim(% Nker Tg) + rank[1 — R(0)R(0)*].
Proof. Since B(z)% is finite dimensional, the lemma implies that #(B) ©
& (B) coincides with #(B) N B(z)% . By (1), the kernel of 1 — R(0)*R(0) is
contained in ¥ (B) and is exactly the kernel of the restriction of J, to & (B).
Thus since 1 — R(0)*R(0) has finite rank and
J+.& (B) = J,{ran[1 — R(0)"R(0)]n ¥ (B)},
it follows that
rank[1 — R(0)*R(0)] = dim{ran[1 — R(0)*R(0)]N¥ (B)}
+ dim[Z(B) © ¥ (B)]
= dim J,¥ (B) + dim[# (B) N B(z)%].
The corollary now follows from Theorem 1 since we also have
rank[1 — R(0)*R(0)] = dim(% Nker Tg) + dim[#(B) N B(z)%]
+ rank[l — R(O)R(0)*]. O
By [7, Lemma 4], equality holds in (1) for a given space #(B) if and only

if #(B) contains no nonzero element of the form B(z)c with ¢ in €. An
immediate consequence of the above results is

Corollary 2. Let #(B) be a given space. Then rank[l — R(0)*R(0)] =
rank[1 — R(0)R(0)*] if and only if equality holds in (1) for every f(z) and
there is no nonzero vector ¢ such that B(z)c=0.

We now have the proposed characterization.

Theorem 2. Let # be a Hilbert space of formal power series which satisfies (1),
and let & be the subspace of those series for which equality holds in (1). Then
& is isometrically equal to a space #(B) if and only if the dimension of the
space of constant coefficients of elements of F s at least the rank of 1 — TT*
where T is the difference-quotient transformation on # .

Proof. Any space #(B) has the stated property by Corollary 1.

Conversely, suppose that # is a space which satisfies (1) and the dimension
hypothesis. Let #', #, iy and iy be defined as above, and let f(z) and
g(z) bein # . Since
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(iZzf(2), 8(2))w =(2f(2), ix8(2)z = (f(2), T&(2))#,
it follows that 7™ f(z) = i%zf(z).
Let S denote the difference-quotient transformation on #'. Then
(1= TT)f(2) = £(z) - Tiz2f(2)
= f(2) = S[zf(2) - i%2f(2)] = Sizzf(2).
More generally, S& is contained in the range of 1 — TT*: Let g(z) bein &#
such that g(z) is orthogonal to i%zf(z) for every f(z) in # . Then

0=1(2(2), izzf(2))z =(&(2), 2f(2))w = (S8(2), f(2))#

for every f(z) in #Z . Letting f(z) = Sg(z), we conclude that g(z) is
constant. Hence S# = SV {i%,zf(z): f(z) € &}, which is contained in
(1= TT*)Z since the rank of 1 — T'T* is finite by the hypothesis.

It follows that % is finite dimensional since

dimZ%Z < dimS% + dimkerS <rank(l - TT*) + dim%.

Thus by the lemma #Z =#'6% .
Furthermore, since #’ contains % , the kernel of the restriction of S to
Z'oF is €o{f(0): f(z) e F}. Hence, we have that
dimZ =dim[% o {f(0): f(z) € F}]+dimSZ#
<dim% —dim{f(0): f(z) € ¥} +rank(l — TT")
<dim%
by the hypothesis. Therefore, /# is isometrically equal to a space #(B). O

Finally, any space which satisfies (1) is at least a reducing subspace of R(0)
on some space # (B).

Corollary 3. Let #, F and T be defined as in Theorem 2, but assume on
the other hand that

0 =rank(l — TT*) — dim{f(0): f(z) e F}

is finite and positive. If & is any Hilbert space with dimension at least &, then
X @& € (z) is isometrically equal to a space #'(B).
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