THE DE BRANGES-ROVNYAK MODEL WITH FINITE-DIMENSIONAL COEFFICIENTS

JAMES GUYKER

ABSTRACT. A characterization in terms of the canonical model spaces of L. de Branges and J. Rovnyak is obtained for Hilbert spaces of formal power series with vector coefficients which satisfy a difference-quotient inequality, thereby extending the closed ideal theorems of A. Beurling and P. D. Lax.

1. Introduction

This paper extends the well-known invariant subspace characterization of A. Beurling [3] and P. D. Lax [11] for the shift on the Hardy space of square summable power series with vector coefficients (cf. [10, 13-15]). The focus is instead on certain (not necessarily orthogonal) complements of contractively contained invariant manifolds of the shift. These are the spaces $\mathcal{H}(B)$ of L. de Branges and J. Rovnyak [6-8]. In the Beurling-Lax theory, the key point is a dimension inequality. The inequality is trivial when the coefficient space has infinite dimension, so the essential content is in the finite-dimensional case. Previously only special cases of the more abstract problem have been treated [6, 9], but our methods generalize an argument from [7, Theorem 6]. The main difficulty again comes down to a dimension inequality in the finite-dimensional case. The purpose here is to derive new results on the structure of $\mathcal{H}(B)$ spaces which reveal what is needed for the inequality to hold. As a consequence, we obtain a complete characterization of the spaces $\mathcal{H}(B)$.

2.
$$\mathcal{H}(B)$$
 spaces

A basic concept in the de Branges-Rovnyak theory is complementation: A Hilbert space \mathscr{F} is contained contractively in a Hilbert space \mathscr{K} if \mathscr{F} is a submanifold of \mathscr{K} and if the inclusion map of \mathscr{F} into \mathscr{K} is a contraction. If \mathscr{F} is contained contractively in \mathscr{K} , then the space complementary to \mathscr{F} in \mathscr{K} is the Hilbert space \mathscr{G} of elements g of \mathscr{K} with the property that

$$||g||_{\mathscr{C}}^2 = \sup\{||g + f||_{\mathscr{C}}^2 - ||f||_{\mathscr{C}}^2 \colon f \in \mathscr{F}\}$$

is finite. The space $\mathscr G$ is contained contractively in $\mathscr K$. Moreover, $\mathscr G$ is the unique Hilbert space such that the inequality $\|k\|_{\mathscr F}^2 \leq \|f\|_{\mathscr F}^2 + \|g\|_{\mathscr F}^2$ holds whenever k = f + g is a decomposition of k in $\mathscr F$ into f in $\mathscr F$ and g in

Received by the editors May 6, 1993 and, in revised form, January 3, 1994; orginally communicated to the *Proceedings of the AMS* by Palle E. T. Jorgensen.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46E22, 47A45.

 $\mathcal G$ and such that every element k in $\mathcal K$ admits a decomposition for which equality holds.

Let $\mathscr C$ be a finite-dimensional Hilbert space, and let $\mathscr H$ be a Hilbert space of formal power series f(z) whose coefficients are in $\mathscr C$ such that

(1)
$$||[f(z) - f(0)]/z||_{\mathscr{H}}^2 \le ||f(z)||_{\mathscr{H}}^2 - |f(0)|_{\mathscr{C}}^2.$$

Then \mathscr{H} is contained contractively in $\mathscr{C}(z)$, the Hilbert space of square summable power series $\sum a_n z^n$ with a_n in \mathscr{C} and norm given by $\|\sum a_n z^n\|_{\mathscr{C}(z)}^2 = \sum |a_n|_{\mathscr{E}}^2$.

Let B(z) be a power series whose coefficients are operators on $\mathscr C$ such that $\|B(z)f(z)\|_{\mathscr C(z)} \leq \|f(z)\|_{\mathscr C(z)}$ whenever f(z) is in $\mathscr C(z)$. Cauchy multiplication by B(z) thus defines a contraction operator on $\mathscr C(z)$ which will be denoted by T_B . The range $\mathscr M(B)$ of T_B becomes a Hilbert space in the unique norm with the property that $\|T_Bf\|_{\mathscr M(B)} = \|f\|_{\mathscr C(z)}$ whenever f is orthogonal to the kernel of T_B . Furthermore, $\mathscr M(B)$ is contained contractively in $\mathscr C(z)$, and multiplication by z is a contraction on $\mathscr M(B)$.

The de Branges-Rovnyak space $\mathcal{H}(B)$ is defined to be the complementary space to $\mathcal{M}(B)$ in $\mathcal{C}(z)$. The space $\mathcal{H}(B)$ satisfies (1) and is an underlying space for canonical models of contractions on Hilbert space [1, 2, 12, 16, 17].

Multiplication by z is a contraction on the space \mathcal{M} complementary to \mathcal{H} in $\mathcal{C}(z)$. In [6] (cf. [5, Theorem 6]), de Branges extended the Beurling-Lax theorem by showing that if multiplication by z is isometric on \mathcal{M} , then \mathcal{H} is isometrically equal to a space $\mathcal{H}(B)$. It should be further noted that when \mathcal{C} is infinite dimensional, any space \mathcal{H} which satisfies (1) is isometrically equal to a space $\mathcal{H}(B)$ [4, Theorem 11].

Let $\mathscr{H}(B)$ be a given space. Then $\mathscr{H}(B)$ is also contained contractively in $\mathscr{H}(zB)$. The space $\mathscr{H}(zB)$ may be obtained as those elements h(z) of $\mathscr{C}(z)$ such that [h(z)-h(0)]/z is in $\mathscr{H}(B)$ and $||h(z)||^2_{\mathscr{H}(zB)} = ||[h(z)-h(0)]/z||^2_{\mathscr{H}(B)} + |h(0)|^2_{\mathscr{C}}$. The complementary space to $\mathscr{H}(B)$ in $\mathscr{H}(zB)$ is the space $B(z)\mathscr{C}$ with $||B(z)c||_{B(z)\mathscr{C}} = |c|_{\mathscr{C}}$ for every c orthogonal to $\mathscr{C} \cap \ker T_B$. Let us define linear transformations J_{\pm} from $\mathscr{H}(B)$ into \mathscr{C} , with ranges denoted \mathscr{C}_{\pm} , as follows: $J_+f=f(0)$ and J_- is the operator whose adjoint is given by $J_-^*c=[B(z)-B(0)]c/z$. Let $B(z)=\sum B_nz^n$, and let \overline{B}_n be the adjoint of B_n on \mathscr{C} . Then $J_+^*c=[1-B(z)\overline{B}(0)]c$; and since \mathscr{C} is finite dimensional, $\mathscr{C}_+=(1-B_0\overline{B}_0)\mathscr{C}$ and $\mathscr{C}_-=(\bigvee_{n>1}\overline{B}_n\mathscr{C})\subseteq (1-\overline{B}_0B_0)\mathscr{C}$.

Let R(0) denote the difference-quotient transformation on $\mathcal{H}(B)$, which maps f(z) into [f(z)-f(0)]/z. Then $R(0)^*f(z)=zf(z)-B(z)J_-f$ so that $[1-R(0)R(0)^*]f(z)=[B(z)-B(0)](J_-f)/z$ and $[1-R(0)^*R(0)]f(z)=(J_+f)+B(z)J_-R(0)f$. Note that if $[1-R(0)^*R(0)]f(z)=c+B(z)c_-$ with c in \mathscr{C} and c_- in \mathscr{C}_- , then necessarily $c=J_+f$ and $c_-=J_-R(0)f$. Therefore, since $\dim \mathscr{C}$ is finite,

$$rank[1 - R(0)^*R(0)] = dim\{(J_+f, J_-R(0)f): f \in \mathcal{H}(B)\}\$$

$$\geq \dim \mathscr{C}_{+} = \operatorname{rank}(1 - \overline{B}_{0}B_{0})$$

$$(3) \geq \dim \mathscr{C}_{-} = \operatorname{rank}[1 - R(0)R(0)^{*}].$$

More precisely, the following will turn out to be a defining property of the spaces $\mathcal{H}(B)$.

Theorem 1. Let R(0) be the difference-quotient transformation on a given space $\mathcal{H}(B)$. Then

rank[1 - $R(0)^*R(0)$] = dim{ $c \in \mathcal{C} : B(z)c \in \mathcal{H}(B)$ } + rank[1 - $R(0)R(0)^*$]. Proof. Suppose that B(z)c is in $\mathcal{H}(B)$. Then $c = (J_-f) + d$ where f is in $\mathcal{H}(B)$ and [B(z) - B(0)]d/z = 0. Moreover,

(4)
$$[1 - R(0)^*R(0)]\{[R(0)^*f] + B(z)c\} = (B_0d) + B(z)J_-f.$$

Let $J_-f_1, \ldots, J_-f_{s_0}$ be a basis for the subspace $\mathscr{C}'_- = \{c \in \mathscr{C}_- : B(z)c \in \mathscr{H}(B)\}$, and let J_+g_1, \ldots, J_+g_t be a basis for \mathscr{C}_+ where f_i and g_j are in $\mathscr{H}(B)$ for all i and j. Suppose that there are constants $\lambda_1, \ldots, \lambda_{s_0+t}$ such that

$$0 = \sum_{i=1}^{s_0} \lambda_i [1 - R(0)^* R(0)] \{ [R(0)^* f_i] + B(z) J_- f_i \}$$

+
$$\sum_{i=1}^{t} \lambda_{s_0+j} [1 - R(0)^* R(0)] g_j.$$

Equivalently by (4) we have

$$0 = \left(\sum_{1}^{t} \lambda_{s_0+j} J_+ g_j\right) + B(z) J_- \left[\sum_{1}^{t} \lambda_{s_0+j} R(0) g_j + \sum_{1}^{s_0} \lambda_i f_i\right]$$

so that $\sum \lambda_{s_0+j} J_+ g_j = 0$ and hence $\lambda_{s_0+j} = 0$ (j = 1, ..., t). It follows that $\sum \lambda_i J_- f_i = 0$ and thus $\lambda_i = 0$ for all i. Therefore,

(5)
$$rank[1 - R(0)^*R(0)] \ge s_0 + t.$$

Let $c_i = J_- f_i$ $(i = 1, ..., s_0)$ and expand $\{c_i\}$ to a basis $c_1, ..., c_s$ of $\{c \in \mathscr{C} : B(z)c \in \mathscr{K}(B)\}$. For every $j > s_0$ let us write $c_j = (J_- f_j) + d_j$ as above where f_j is in $\mathscr{K}(B)$ and d_j is orthogonal to \mathscr{C}_- . By (4), $B_0 d_j$ is in \mathscr{C}_+ , so it is in $(B_0\mathscr{C}) \cap (1 - B_0\overline{B_0})\mathscr{C}$. But since \mathscr{C} is finite dimensional, it follows that this intersection coincides with $B_0(1 - \overline{B_0}B_0)\mathscr{C}$, and hence $B_0 d_j = B_0 e_j$ where e_j is in $(1 - \overline{B_0}B_0)\mathscr{C}$. Thus $d_j - e_j$ is in ker B_0 , which is also contained in $(1 - \overline{B_0}B_0)\mathscr{C}$, and consequently d_j is in $[(1 - \overline{B_0}B_0)\mathscr{C}] \ominus \mathscr{C}_-$.

Now $\{d_j: j > s_0\}$ is linearly independent: For suppose $\sum \alpha_j d_j = 0$. Then $\sum_{j>s_0} \alpha_j c_j = \sum_{j>s_0} \alpha_j J_- f_j$ is in \mathscr{C}'_- , so there exist β_i such that $\sum_{j>s_0} \alpha_j c_j = \sum_{i\leq s_0} \beta_i c_i$. Since $\{c_i\}$ is linearly independent, $\alpha_j = 0$ for all j, and hence

$$t = \dim \mathcal{C}_{+} = \operatorname{rank}(1 - B_{0}\overline{B}_{0}) = \operatorname{rank}(1 - \overline{B}_{0}B_{0})$$
$$= \dim\{[(1 - \overline{B}_{0}B_{0})\mathcal{C}] \ominus \mathcal{C}_{-}\} + \dim \mathcal{C}_{-}$$
$$\geq (s - s_{0}) + \operatorname{rank}[1 - R(0)R(0)^{*}].$$

In conjunction with (5) we have

$$rank[1 - R(0)^*R(0)] \ge s + rank[1 - R(0)R(0)^*].$$

To verify the reverse inequality, it suffices to show that there exist $r = \text{rank}[1 - R(0)^*R(0)] - \text{rank}[1 - R(0)R(0)^*]$ linearly independent vectors a_i in $\mathscr E$ such that $B(z)a_i$ is in $\mathscr H(B)$. By inequalities (2) and (3), it follows that $r = r_0 + r_1$ where $r_0 = \text{rank}[1 - R(0)^*R(0)] - \dim \mathscr E_+$ and $r_1 = \dim\{[\text{ran}(1 - \overline{B_0}B_0)] \ominus \mathscr E_-\}$.

Suppose that $r_0 > 0$ and recall the basis $\{J_+g_j\}$ of \mathscr{C}_+ . As above, $\{[1-R(0)^*R(0)]g_j\}$ is linearly independent, so if \mathscr{G} is its span, then there are r_0 vectors $[1-R(0)^*R(0)]\hat{g}_i$ $(i=1,\ldots,r_0)$, with \hat{g}_i in $\mathscr{H}(B)$, which form a basis of $\text{ran}[1-R(0)^*R(0)]\ominus\mathscr{G}$. Now there exist constants λ_{ij} such that $J_+\hat{g}_i = \sum_{j=1}^t \lambda_{ij} J_+ g_j$ for each i. Let us define $a_i = J_-R(0)(\hat{g}_i - \sum_j \lambda_{ij} g_j)$ for $i=1,\ldots,r_0$. Then $B(z)a_i = [1-R(0)^*R(0)](\hat{g}_i - \sum_j \lambda_{ij} g_j)$ is in $\mathscr{H}(B)$, and $\{a_1,\ldots,a_{r_0}\}$ is linearly independent: Suppose that $\sum \mu_i a_i = 0$. Then

$$\sum \mu_i [1 - R(0)^* R(0)] \hat{g}_i = \sum_i \mu_i [1 - R(0)^* R(0)] \left(\sum_j \lambda_{ij} g_j \right)$$

which must be zero since it is in both $\mathscr G$ and $\mathscr G^{\perp}$. Therefore $\mu_i=0$ for every i.

Next, suppose that $r_1 > 0$ and let $\hat{d}_1, \ldots, \hat{d}_{r_1}$ be a basis of $[\operatorname{ran}(1 - \overline{B}_0 B_0)] \ominus \mathscr{C}_-$. Then $B(z)\hat{d}_j = B_0\hat{d}_j$ and $\hat{d}_j = (1 - \overline{B}_0 B_0)b_j$ for some b_j in \mathscr{C} . Let $\hat{f}_j(z) = [1 - B(z)\overline{B}(0)]B_0b_j$ and define $a_{r_0+j} = \hat{d}_j + J_-R(0)\hat{f}_j$ for $j = 1, \ldots, r_1$. Then $B(z)a_{r_0+j} = [1 - R(0)^*R(0)]\hat{f}_j$ is in $\mathscr{H}(B)$.

Finally, $\{a_i: i=1,\ldots,r=r_0+r_1\}$ is linearly independent: Suppose that there are constants ν_1,\ldots,ν_r such that

$$0 = \sum \nu_i a_i = \sum_{1}^{r_0} \nu_i a_i + \sum_{1}^{r_1} \nu_{r_0+j} [\hat{d}_j + J_- R(0) \hat{f}_j].$$

It follows that $\sum_{1}^{r_1} \nu_{r_0+j} \hat{d}_j = 0$ since a_i $(1 \le i \le r_0)$ and $J_-R(0)\hat{f}_j$ $(1 \le j \le r_1)$ are in \mathscr{C}_- , and \hat{d}_j is orthogonal to \mathscr{C}_- for every j. Therefore $\nu_{r_0+j} = 0$ $(j = 1, \ldots, r_1)$, and consequently $\sum_{1}^{r_0} \nu_i a_i = 0$ so that $\nu_i = 0$ for all i. \square

3. The characterization

Let \mathscr{H} be a space which satisfies (1), and let \mathscr{H}' be the Hilbert space of all power series h(z) such that [h(z)-h(0)]/z is in \mathscr{H} with $\|h(z)\|_{\mathscr{H}'}^2 = \|[h(z)-h(0)]/z\|_{\mathscr{H}}^2 + |h(0)|_{\mathscr{H}'}^2$. Then \mathscr{H}' satisfies (1), and \mathscr{H} is contained contractively in \mathscr{H}' . Let \mathscr{R} be the complementary space to \mathscr{H} in \mathscr{H}' , and let $i_{\mathscr{H}}$ and $i_{\mathscr{H}}$ denote the respective inclusion maps of \mathscr{H} and \mathscr{H} into \mathscr{H}' . Then every h in \mathscr{H}' admits the unique decomposition $h=(i_{\mathscr{H}}^*h)+(i_{\mathscr{H}}^*h)$ where $\|h\|_{\mathscr{H}'}^2 = \|i_{\mathscr{H}}^*h\|_{\mathscr{H}'}^2 + \|i_{\mathscr{H}}^*h\|_{\mathscr{H}}^2$.

A fundamental result from the theory of $\mathcal{H}(B)$ spaces is: \mathcal{H} is isometrically equal to a space $\mathcal{H}(B)$ if and only if the dimension of \mathcal{R} does not exceed the dimension of \mathcal{E} [6]. More generally, if $\mathcal{E} \subseteq \widetilde{\mathcal{E}}$ and $\dim \mathcal{R} \leq \dim \widetilde{\mathcal{E}}$, then \mathcal{H} is a space $\mathcal{H}(\widetilde{B})$ where the coefficients of $\widetilde{B}(z)$ act on $\widetilde{\mathcal{E}}$.

Lemma. Let \mathscr{F} be the subspace of elements of \mathscr{H} for which equality holds in (1). Then \mathscr{R} and $\mathscr{H} \cap \mathscr{R}$ are contained in $\mathscr{H}' \ominus \mathscr{F}$ and $\mathscr{H} \ominus \mathscr{F}$ respectively. Moreover, $\dim \mathscr{R} = \dim \mathscr{H}' \ominus \mathscr{F}$ and $\dim \mathscr{H} \cap \mathscr{R} = \dim \mathscr{H} \ominus \mathscr{F}$.

Proof. As in [9], \mathscr{F} is a (closed) subspace of \mathscr{H} and is contained isometrically in \mathscr{H}' . Therefore for any f in \mathscr{F} and g in \mathscr{R} , we have

$$\langle f, g \rangle_{\mathcal{H}'} = \langle f, i_{\mathcal{R}} g \rangle_{\mathcal{H}'} = \langle i_{\mathcal{R}}^* f, g \rangle_{\mathcal{R}} = \langle 0, g \rangle_{\mathcal{R}} = 0.$$

Hence \mathscr{R} is a subset of $\mathscr{H}' \ominus \mathscr{F}$.

The restriction of $i_{\mathscr{R}}^*$ to $\mathscr{H}' \ominus \mathscr{F}$ is linear and continuous and has trivial kernel: if $i_{\mathscr{R}}^*h = 0$ for some h in $\mathscr{H}' \ominus \mathscr{F}$, then $i_{\mathscr{R}}^*h = h$, so h is also in \mathscr{F} , and thus h = 0. It follows that $\dim \mathscr{H}' \ominus \mathscr{F} = \dim i_{\mathscr{R}}^*(\mathscr{H}' \ominus \mathscr{F}) \leq \dim \mathscr{R}$, and hence $\dim \mathscr{R} = \dim \mathscr{H}' \ominus \mathscr{F}$.

Next, let g be in $\mathcal{H}\cap\mathcal{R}$. Then g is in $\mathcal{H}'\ominus\mathcal{F}$ but also in $\mathcal{H}\ominus\mathcal{F}$ since for any f in \mathcal{F}

$$\langle f, g \rangle_{\mathscr{H}} = \langle i_{\mathscr{H}}^* f, g \rangle_{\mathscr{H}} = \langle f, i_{\mathscr{H}} g \rangle_{\mathscr{H}'} = \langle f, g \rangle_{\mathscr{H}'} = 0.$$

Therefore $(\mathcal{H} \cap \mathcal{R}) \subseteq (\mathcal{H} \ominus \mathcal{F})$. Finally $\dim \mathcal{H} \cap \mathcal{R} = \dim \mathcal{H} \ominus \mathcal{F}$ as above since $i_{\mathcal{R}}^*(\mathcal{H} \ominus \mathcal{F})$ is contained in $\mathcal{H} \cap \mathcal{R}$. \square

The following will distinguish the spaces $\mathcal{H}(B)$.

Corollary 1. Let $\mathcal{F}(B)$ be the subspace of elements of a given space $\mathcal{H}(B)$ for which equality holds in (1). Then

$$\dim J_{+}\mathcal{F}(B) = \dim(\mathcal{C} \cap \ker T_{B}) + \operatorname{rank}[1 - R(0)R(0)^{*}].$$

Proof. Since $B(z)\mathscr{C}$ is finite dimensional, the lemma implies that $\mathscr{H}(B) \ominus \mathscr{F}(B)$ coincides with $\mathscr{H}(B) \cap B(z)\mathscr{C}$. By (1), the kernel of $1 - R(0)^*R(0)$ is contained in $\mathscr{F}(B)$ and is exactly the kernel of the restriction of J_+ to $\mathscr{F}(B)$. Thus since $1 - R(0)^*R(0)$ has finite rank and

$$J_{+}\mathcal{F}(B) = J_{+}\{\operatorname{ran}[1 - R(0)^{*}R(0)] \cap \mathcal{F}(B)\},\,$$

it follows that

$$\operatorname{rank}[1 - R(0)^*R(0)] = \dim \{\operatorname{ran}[1 - R(0)^*R(0)] \cap \mathscr{F}(B)\}
+ \dim [\mathscr{H}(B) \ominus \mathscr{F}(B)]
= \dim J_+\mathscr{F}(B) + \dim [\mathscr{H}(B) \cap B(z)\mathscr{C}].$$

The corollary now follows from Theorem 1 since we also have

$$rank[1 - R(0)^*R(0)] = \dim(\mathscr{C} \cap \ker T_B) + \dim[\mathscr{H}(B) \cap B(z)\mathscr{C}] + rank[1 - R(0)R(0)^*]. \quad \Box$$

By [7, Lemma 4], equality holds in (1) for a given space $\mathcal{H}(B)$ if and only if $\mathcal{H}(B)$ contains no nonzero element of the form B(z)c with c in \mathscr{C} . An immediate consequence of the above results is

Corollary 2. Let $\mathcal{H}(B)$ be a given space. Then $\operatorname{rank}[1 - R(0)^*R(0)] = \operatorname{rank}[1 - R(0)R(0)^*]$ if and only if equality holds in (1) for every f(z) and there is no nonzero vector c such that B(z)c = 0.

We now have the proposed characterization.

Theorem 2. Let \mathcal{H} be a Hilbert space of formal power series which satisfies (1), and let \mathcal{F} be the subspace of those series for which equality holds in (1). Then \mathcal{H} is isometrically equal to a space $\mathcal{H}(B)$ if and only if the dimension of the space of constant coefficients of elements of \mathcal{F} is at least the rank of $1-TT^*$ where T is the difference-quotient transformation on \mathcal{H} .

Proof. Any space $\mathcal{H}(B)$ has the stated property by Corollary 1.

Conversely, suppose that $\mathscr H$ is a space which satisfies (1) and the dimension hypothesis. Let $\mathscr H'$, $\mathscr R$, $i_{\mathscr H}$ and $i_{\mathscr R}$ be defined as above, and let f(z) and g(z) be in $\mathscr H$. Since

$$\langle i_{\mathscr{H}}^* z f(z), g(z) \rangle_{\mathscr{H}} = \langle z f(z), i_{\mathscr{H}} g(z) \rangle_{\mathscr{H}'} = \langle f(z), T g(z) \rangle_{\mathscr{H}},$$

it follows that $T^*f(z) = i_{\mathscr{X}}^*zf(z)$.

Let S denote the difference-quotient transformation on \mathcal{H}' . Then

$$(1 - TT^*)f(z) = f(z) - Ti_{\mathscr{H}}^* z f(z) = f(z) - S[zf(z) - i_{\mathscr{H}}^* z f(z)] = Si_{\mathscr{H}}^* z f(z).$$

More generally, $S\mathscr{R}$ is contained in the range of $1-TT^*$: Let g(z) be in \mathscr{R} such that g(z) is orthogonal to $i_{\mathscr{R}}^*zf(z)$ for every f(z) in \mathscr{H} . Then

$$0 = \langle g(z), i_{\mathscr{R}}^* z f(z) \rangle_{\mathscr{R}} = \langle g(z), z f(z) \rangle_{\mathscr{R}'} = \langle Sg(z), f(z) \rangle_{\mathscr{R}}$$

for every f(z) in \mathscr{H} . Letting f(z) = Sg(z), we conclude that g(z) is constant. Hence $S\mathscr{R} = S \vee \{i^*_{\mathscr{R}} z f(z) \colon f(z) \in \mathscr{H}\}$, which is contained in $(1-TT^*)\mathscr{H}$ since the rank of $1-TT^*$ is finite by the hypothesis.

It follows that \mathcal{R} is finite dimensional since

$$\dim \mathcal{R} \leq \dim S\mathcal{R} + \dim \ker S \leq \operatorname{rank}(1 - TT^*) + \dim \mathcal{C}$$
.

Thus by the lemma $\mathcal{R} = \mathcal{H}' \ominus \mathcal{F}$.

Furthermore, since \mathscr{H}' contains \mathscr{C} , the kernel of the restriction of S to $\mathscr{H}' \ominus \mathscr{F}$ is $\mathscr{C} \ominus \{f(0): f(z) \in \mathscr{F}\}$. Hence, we have that

$$\begin{split} \dim \mathscr{R} &= \dim [\mathscr{C} \ominus \{f(0) \colon f(z) \in \mathscr{F}\}] + \dim S\mathscr{R} \\ &\leq \dim \mathscr{C} - \dim \{f(0) \colon f(z) \in \mathscr{F}\} + \operatorname{rank}(1 - TT^*) \\ &\leq \dim \mathscr{C} \end{split}$$

by the hypothesis. Therefore, \mathcal{H} is isometrically equal to a space $\mathcal{H}(B)$. \square

Finally, any space which satisfies (1) is at least a reducing subspace of R(0) on some space $\mathcal{H}(B)$.

Corollary 3. Let \mathcal{H} , \mathcal{F} and T be defined as in Theorem 2, but assume on the other hand that

$$\delta = \operatorname{rank}(1 - TT^*) - \dim\{f(0) \colon f(z) \in \mathscr{F}\}\$$

is finite and positive. If $\tilde{\mathscr{E}}$ is any Hilbert space with dimension at least δ , then $\mathscr{H} \oplus \tilde{\mathscr{E}}(z)$ is isometrically equal to a space $\mathscr{H}(B)$.

ACKNOWLEDGMENT

I am grateful to the referee for suggesting many improvements in this article.

REFERENCES

- 1. J. A. Ball and N. Cohen, *De Branges-Rovnyak operator models and systems theory: A survey*, Operator Theory: Advances and Applications, Vol. 50, Birkhäuser, Basel-Boston, 1991, pp. 93-136.
- 2. J. A. Ball and T. L. Kriete III, Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators, Integral Equations Operator Theory 10 (1987), 17-61.
- 3. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239–255.
- 4. L. de Branges, Factorization and invariant subspaces, J. Math. Anal. Appl. 29 (1970), 163-200.

- 5. _____, Krein spaces of analytic functions, J. Funct. Anal. 81 (1988), 219-259.
- 6. _____, Square summable power series, Springer-Verlag (in preparation).
- 7. L. de Branges and J. Rovnyak, Appendix on square summable power series, canonical models in quantum scattering theory, Perturbation Theory and its Applications in Quantum Mechanics, Wiley, New York, 1966, pp. 347-392.
- 8. _____, Square summable power series, Holt, Rinehart and Winston, New York, 1966.
- 9. J. Guyker, The de Branges-Rovnyak model, Proc. Amer. Math. Soc. 111 (1991), 95-99.
- 10. P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
- 11. P. D. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163-178.
- 12. N. K. Nikol'skiĭ and V. I. Vasyunin, *Notes on two function models*, The Bieberbach Conjecture: Proc. Sympos. on the Occasion of the Proof, Math. Surveys Monographs, vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 113-141.
- 13. J. Rovnyak, *Ideals of square summable power series*, Math. Mag. 33 (1960), 265-270; ibid. 34 (1961), 41-42.
- 14. _____, Ideals of square summable power series, Proc. Amer. Math. Soc. 13 (1962), 360-365.
- 15. _____, Ideals of square summable power series. II, Proc. Amer. Math. Soc. 16 (1965), 209-212.
- 16. D. Sarason, Doubly shift-invariant spaces in H², J. Operator Theory 16 (1986), 75-97.
- 17. _____, Shift-invariant spaces from the Brangesian point of view, The Bieberbach Conjecture: Proc. Sympos. on the Occasion of the Proof, Math. Surveys Monographs, vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 153-166.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY COLLEGE OF NEW YORK AT BUFFALO, BUFFALO, NEW YORK 14222-1095

E-mail address: guykerj@snybufva