
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 347, Number 4, April 1995

THE EXPOSED POINTS OF THE SET OF INVARIANT MEANS

TIANXUAN MIAO

Abstract. Let G be a cr-compact infinite locally compact group, and let LIM

be the set of left invariant means on L°°(G). We prove in this paper that if

G is amenable as a discrete group, then LIM has no exposed points. We

also give another proof of the Granirer theorem that the set LIM(X, G) of

G-invariant means on L°°(X, B, p) has no exposed points, where G is an

amenable countable group acting ergodically as measure-preserving transforma-

tions on a nonatomic probability space (X, fl, p).

1. Introduction and Notations

Let G be a locally compact group with a fixed left Haar measure X. If G

is compact, we assume k(G) = 1. Let LP(G) be the associated real Lebesgue

spaces (1 < p < oo). For j e L°°(G) and x e G, the left translation of /

by x is defined by xj(y) = j(xy), y e G. A mean on L°°(G) is a positive
functional on Lco(G) with m(l) = 1. A left invariant mean is a mean with

m(xj) = m(j) for any x € G and / e L°°(G). The set of left invariant mean

on L°°(C7) is denoted by LIM.
If LIM ^ (/j, we say that G is amenable. Let Gj be the same algebraic

group as G with a discrete topological structure. Then G is amenable if Gd

is amenable. Properties of amenable groups and left invariant means can be
found in Greenleaf [9], Paterson [10] and Pier [11].

When G is amenable, LIM, as a ^'-compact convex subset of L°°(G)*,

is the w*-closed convex hull of all its extreme points. It is natural to ask
how many exposed points LIM has. Granirer [4] studied intensively the ex-

istence of exposed points of LIM for a countable amenable semigroup (also

see Chou [1]). In particular, he proved by using very general theorems that

LIM has exposed points if and only if G has finite left ideals for a countable

amenable semigroup G [4, Corollary 4.1]. Yang [15] proved that if G is a

infinite amenable discrete group, then LIM has no exposed points.

In this paper, we prove that LIM has no exposed points for any cr-compact

locally compact group which is amenable as a discrete group. The idea of the

proof is to "split" a nonnegative function in L°°(G) by a category argument,
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the technique used by Rosenblatt [12]. We also adapt this technique to prove

the Granirer theorem of [5] and [6] in a different way that the set LIM(X, G)

of G-invariant means on L°°(X, B, p) has no exposed points, where G is

an amenable countable group acting ergodically as measure-preserving transfor-

mations on a nonatomic probability space (X, ft , p). He derives it using very

general theorems. See Chou [2] and Rosenblatt [13] for details of the study of

the set LIM(X, G).
The author would like to thank Professor E.E. Granirer for pointing out that

Theorem 2 in this paper is a special case of his general theorems in [5] and [6]

and for many valuable conversations.

2. Exposed points of LIM

In this section we will be concerned with LIM for a locally compact group

and will prove our first main result. We need the following, probably known,

proposition for which we were unable to find a reference.

Proposition 1. Let G be a nondiscrete locally compact group, and let K be a

compact subset oj G. Ij j £ L°°(G) and k{t e G : j(t) ^ 0} is finite, then the

function defined by

F(xx, x2, ..., xH) = k j t e G : - Y x,f(t) > a \

is lower semicontinuous on K" , where a is a constant.

Prooj. First let us prove that JG \xj - j\ dt —► 0 as x —► e . If / = 1^ , then

fc\xf-j\dt = k(x~xE_E) —> 0 as x —► e since the map x —> k(x~lEnE) is

continuous from K to R. For any / with k{t e G : j(t) / 0} finite and an
e > 0 , choose a simple function cp = _y*p=x ap\Ep such that ||/-^||i < e . There

exists an open neighborhood U of e such that X!p=i \ap\ Ig U1e„ - 1ep\ dt < e

for any x e U . Hence, for every x € U ,

f \xf-f\dt< f \xfi-xcp\dt+ j \xcp-cp\dt+ f \<p-j\dt<3e.
JG JG jG jg

Let ua = (u\, «2, • • • , u°) be a net and u = (ux, ui, ... , u„) e Kn with

ua —► u in K". If there is an e0 > 0 such that F(un) < F(u) - e0, then we

can find a 3 > 0 such that F(un) < k{t £ G : ±Y."=i uj(t) > a + 8}-e0 for
every a. Thus

/  -Y«<j--Yu,j dt<-Y I \u"j-u,j\dt^0

when ua —* u in K" . On the other hand,

/   \__Kf-\_ZuJ dt>[    X-Yu;j-X-Yu,j dt>8k(Bn)>8eo,
Jg      i=i /=i Jb<      i=i i=i

where

Ba = j t e G : X-Y u,fit) >a + 3\~lteG:^Y ""f^ > a }
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with k(Ba) > k{t 6 G : ± £"=i u,f{t) > a + 8)-F(ua) > e0 . This is a contradic-
tion. Therefore the function F from K" to R is lower semicontinuous.   □

To prove our result, we will need the following two lemmas.

Lemma 2. Let G be a locally compact group and let j £ L°°(G) be a junc-

tion with 0 < j < 1 and k{x e G : j(x) ^ 0} < oo. Ij jk is a sequence

oj junctions in L°°(G) with 0 < jk < j (k = 0, 1, 2, ...), jk -» j0 in

|| • \\x-norm, then inf{X]tX2t„.tXn)€K*Ffk(xx, x2,..., x„) = 0 jor any k > 1 im-

plies inf(Xl _X21... tXn)eKn Ff0(xi, X2, ... , xn) = 0, where K is a compact subset oj

G and Fh(xx', x2, ... , x„) = k{t £ G : x- E"=1 Xih(t) > a} jor any h 6 L°°(G).

Proof. Let inf(x,>X2>...,x,)eK« Ffo(xx, x2, ... , xn) = e0 > 0. Then for any x =

(xi,x2, ... ,x„) £ K" , there is an ix £ N such that k{t € G : \ Y,ni=x xJo(t)

> a + tJ > *i- since the maP (vi, v2,.. •, y„) ^ A{f 6 (? : i E"=i y,fo(t) >

a + j-} from K" to R is lower semicontinuous by Proposition 1, there exists

an open neighborhood Ux of x in Kn such that k{t e G : £ £w=i >-,./o(0 >

« + £} > f for any y = CFi, y2»• • ■. yn) £ £/* . Let Uxm , Uxm ,..., UxW be

a cover of K" . Then for any y e Kn , k{t £ G : x- J$_l yif0(t) >a + j-J>c-f,

where j'o = max{/x(i(, f^, ... , ix(P)}.

By the hypothesis and the fact that Kn is compact, for each k £ N, we can

choose an xk = (xf , x£ , ... , x£) e K" such that k{t e G : ± £"=, ** A(0 >

a} = 0. Then

/   l~Y^fo(t)-]:YxJk(t) dt<\\fi0-fik\\i.
JG   H m " 1=1

On the other hand,

fG liibx'fow-^Yxffkit) dt

r 1"      1n
= /    ,_. -Exf/oW--E^A(?)dt

4A{'GG:"^/o(0>fl+i}

z0 2

This contradicts to that \\jk - Jo\\i ^ 0.   U

The following lemma is a consequence of Lemma 6A and Lemma 6C of

Talagrand [14].

Lemma 3. Let G be a o-compact nondiscrete locally compact group. Ij G is

amenable as a discrete group and j e L°°(G), then jor any e > 0 there is an

open subset Q oj G and an mo £ LIM such that k(Ci) < e , wn(lfi) = 1, and

m0(j) = Sup{m(j) : m £ LIM}.

Prooj. It follows from step 1 of the proof of Theorem 6D in [ 14] that for any

positive integer n, there exists an open set fi„ and an mn £ LIM such that
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k(Cln) < j-n , mn(lan) = 1 , and m„(f) > Sup{m(j) : m £ LIM} - x- (in fact,

the condition of that v is a topologically left invariant is not used and k(Q)

can be made as small as we want in the proof of step 1).

Let wo be a wMimit point of {m„} and Q, = \J„°=l £ln • Then k(Q) < e ,
m0 £ LIM with m0(ln) = 1, and m0(j) = Sup{m(/j : m £ LIM} .   □

Now we are ready to prove our first main result concerning the exposed points

of LIM for a locally compact group.

Theorem 1. Let G be a o-compact infinite locally compact group. Ij G is

amenable as a discrete group, then LIM has no exposed points.

Prooj. When G is discrete, it is proved by Yang [15] that LIM has no exposed

points. Assume that G is nondiscrete. Since G is <7-compact, there is a

sequence of subsets {Kn : n £ N} such that G = \J^L, K„, where K„ is

compact and Kn C Kn+X (n = 1,2,...). Assume that mo £ LIM is an

exposed point of LIM. Then there is an j0 £ L°°(G) such that

(*) mo(jo) > m(fio)   for any m e LIM and m ^ Wo.

We are going to show that we can choose fio as above such that 0 < fo<l and

fio £ LX(G). Let /, = ||/+]yfcu . Then fi also satisfies (*) since jx > 0 and
m(l) = 1 for all m £ LIM.°Thus, m0(jx) > 0 by the fact that LIM ± {m0}
(see [7]). By Lemma 3, there exists an open subset Q of G and an mx £ LIM

such that k(Q) < 1, mx(lci) = 1, and mx(fi) = Sup{m(fx) : m £ LIM}.
Hence mx(jx) = m0(jx) and mx = m0 by (*). Let g = jx1q. Then g

satisfies (*). In fact, for any m £ LIM ~ {m0}, m(g) = m(jx In) < m(jx) <

m0(ji) = m0(g) since w0(/i1g~£i) = mx(jxlG^c1) = 0. Note that g > 0 and

g £ L°°(G)C]hx(G). Let X = {j £ L°°(G) : 0 < / < g} and a = m0(g).
Then (X, \\ • \\x) is a complete metric space and a > 0.

Let n £ N and n > 0 be fixed. For any p, q £ N, put

Xp,q = < j £ X : 3xx , x2 , • • • , xp £ Kq

withklteG:^YXlj(t)>a-^\=o\.

At first, each Xp,q is closed. In fact, let jk £ Xp,q and jk -» / in (X, \\-\\x).
By Lemma 2,

inf k\t£G:-Y xj(t)>a--\ =0.
(xx,x2,...,xp)tK>    \ J>ti   ' "J

By Lemma 1, the map (xi, x2,... , xp) -> k{t e G : ^ Y%=x x,f(t) > a ~ „)

from Kpq to R is lower semicontinuous. Since Kpq is compact, there exists

(xx,x2,...,xp)£ Kp such that k{t £ G : I £i, x,j(t) > a - i} = 0. There-

fore j £ Xp,q.
Also, Xp; q is nowhere dense. In fact, for any j £ X and any e > 0, by

Lemma 3 there is an open subset Q| of G and an mx £ LIM such that

k(_\x) < e,   mx(lcil) = 1, and  mx(g) = Sup{w(^) : m £ LIM}.   Since
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g satisfies (*), mx = m0. Let /* = gl^ + J1g~ci, ■ Then j* £ X and

\\f - f\\\ = Wgl* - AaMi <2e- Since m0(j*) = mQ(glill) = m0(g) = a >
a-±, k{t£G:x-Y,U x,fi*(t) > a - x-} ± 0 for any (x,, x2, ... , xp) £ Kpq .

Hence /* £ Xp t q .
For any p,q£N, let Xcpq = {j £ X : g - j £ Xp,q} . Then Xp,q and

Xpq are isometric in (X, ||-||i). So Xcpq is also nowhere dense in (X, IHIi)-

Hence there exists an / £ X ~ |J      (Xp>q Ul^) by the completeness of X.

For any xx, x2, ... , xp £ G, there is q £ N such that xx, x2, ... , xp £ Kq .

Thus, A{? £ G : lYfi=x xJ(t) > a - ±} ^ 0 since / g A",,,. There exists

m„ e L/M such that m„(fi) > a - £ by Proposition 3 of [7]. Similarly, since

for any x., x2, ... , xp e G, k{t £ G : \- £/=i jc,U - /)(0 > a - ^} ^ 0, there

exists Mn £ LIM such that M„(g - /) > a- £. Let m and Af be ^* limit
points of m„ and Af„, respectively. Then m, M £ LIM and m(j)>a and

M(g-j) > a . Since 0 < j < g and 0 < g-/ < g, m(g) > a and Af(^) > a.
Hence m = M = m0 by (*) and since a = mo(g) = Sup{m(g) : m £ LIM}.

Therefore M(g - j) = 0. This contradicts a > 0.   □

3. Exposed points of LIM(X, G)

In this section we are going to prove an analogue of Theorem 1 for groups

acting ergodically as measure-preserving transformations on a nonatomic prob-

ability space (X, /J , p).
Let (X, /?, p) be a nonatomic probability space, G a group, and (s, x) —►

sx a measure-preserving ergodic action of G on (X, B, p). Then G also

acts on L°°(X,B,p): (sj)(x) = j(sx), j £ L°°(X, B, p), s £ G, and
x £ X . A positive linear functional of norm 1 on L°°(X, P, p) is said to be

G-invariant mean if m(sj) = m(j) fors£G and / e L°°(X, /3, p). The

set of (/-invariant means is denoted by LIM(X, G).

It is natural to ask how big the set LIM(X, G) is. When G is a countable

amenable semigroup, del Junco and Rosenblatt [3] proved LIM(X, S) contains
more than one element. Chou [2] showed that the cardinality of LIM(X, G) is

at least 2C for any countable amenable group, where c is the cardinality of the

continuum. Our Theorem 2 shows that LIM(X, G) does not have exposed

points in the case that G is an amenable countable group acting ergodically

as measure-preserving transformations on a nonatomic probability space. This

theorem was proved by Granirer in Theorem 3 in [5] and Theorem 2.6 in [6]

without the assumptions of the ergodical acting and the measure-preserving

transformations. Here we will give a different and direct proof.

Lemma 4. Let G be a group acting ergodically as measure-preserving transfor-

mations on a nonatomic probability space (X, B ,p). If m £ LIM(X, G) and

j £ L°°(X) with 0 < j < 1, then jor any xx, x2, ... , x„ £ G, e > 0, and
3 > 0 there exists a subset V oj X such that p(V) < e and

Pyz*- ^YxAflvM > m(f) - 8 U 0.

Proof. Let a = m(f). Since m(^lixj) =a, p{t £ X : x- ̂=1 x,fi(t) >
a - 3} > 0. Hence there is a subset J C {1,2, ... , n} and a, for each i £ J
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such that 1 Y,i€J a,>a-3 and p(C[ieJ {t £ X : xJ(t) > a,}) > 0. Let Ea, =

{t£X: fi(t) > «,} . Then {/el: xJ(t) > fl,} = {t £ X : xtt £ E0i} , which

is denoted by x~lEar Hence p((~)ieJx~xEai) > 0. Since X is nonatomic,

there exists A C f]JeJ x~xEa. such that 0 < p(A) < £e. Let K = \Jie.jXjA .
Then 0 < p(V) < e. If / e A , then x,/ £ V n Eai for each / e J . Hence

x,-(/1k)(0 = lv(xit)fi(xit)>ai, i.e. ^ C f|i6/ {t € AT :^(/lK)(0 > */} and

0<P(^)

<p|/eX:i^x,(/lF)(0>fl-<5|.   n

The following lemma is due to Granirer.   See [7, Proposition 3] and [8,

Proposition 5] for its proof.

Lemma 5. Let G be a group acting ergodically as measure-preserving transfor-

mations on a nonatomic probability space (X, ft, p). If m £ LIM(X, G) and

J£L°°(X), then

1   "
sup{m(j) : m £ LIM(X, G)} =        inf       esssup   ~Y xj(t)   ■

x\ ,x2,...,x„£G t        n z—f
(=1

Theorem 2 (Granirer). Ij G is a amenable countable group acting ergodically

as measure-preserving transjormations on a nonatomic probability space

(X, ft, p), then the set LIM(X, G) of G-invariant means on L°°(X, ft, p)
has no exposed points.

Proof. Let G = \Jn<Lx Kn , where each Kn is a finite subset of G and K„ C Kn+X
(n = 1, 2, ...). Let m0 e L1M(X, G) be an exposed point of LIM(X, G).

Then there is an fo £ L°°(X) such that

(*) rno(fio) > m(fio)   for any m £ LIM(X, G) and m ^ wo.

Let g = Hf+^Y^n ■ Then g also satisfies (*) since m(l) = 1 for any

m £ LIM(X, G) TlSote that g £ L°°(X) n LX(X) and g > 0. Thus m(g) > 0
for any m £ LIM(X, G). By (*) and the fact that M(X, G) contains more

than one element (see del Junco and Rosenblatt [3]), mo(g) > 0. Let a = mo(g)

and Y = {fi £ L°°(X) : 0 < fi < g}. Then (Y, \\ • ||,) is a complete metric
space and a > 0. For any n £ N and 8 > 0, set

X„ = lfeY:Bxx,x2,...,xk e K„ withpj / e X: -^YxJ(t)> a-8\=o\.

At first, each T„ is closed. In fact, let jk £ Yn and jk -» / in (Y, || • ||i). We
can assume that jk —> j a.e. [p]. So for any xx, x2, ... , xr £ Kn

1   r 1   r

i=i i=i

Also, for each ic, there are xx, x2, ... , xr £ Kn such that
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Since Kn is finite, there are xx, x2, ... , xr £ Kn such that

p[t £ X :-rYxJ(t)> a-s\=0.

Thus, f £Yn. Therefore Yn is closed.
Also, for any f £ Y and any e > 0, for any xx, x2, ... , xr £ Kn , by

Lemma 4, there is a subset V of X such that p(V) < e and

plteX:l-YXi(glv)(t)>a-3\>0.

Let f* = glv + flx~v. Then fi* £Y and \\f* - f\\x = \\glv - filvh < 2e .
Since jlx~v > 0,

0<plteX:j^(gly){t)>a-s\<plt€X:j^Xir(t)>a-s\.

Hence j* £ T„ and Yn is nowhere dense.

For any n £ N, let T„c = {/ e T : g - j £ Y„} . Then Y„ and T„c are

isometric in (T, || • ||i). So Y£ is also nowhere dense in (Y, \\ • \\x). Hence

there exists an / e Y ~ \Jn (Yn U T„c) by the completeness of Y.

For any xx, x2, ... , x„ e G, since p{? e X : ± £"=i *,/W > fl - <?} > 0, by
Lemma 5 there exist ms £ LIM(X, G), such that ms(j) > a-8. Let m be the

w* limit point of {ms}. Then m e LIM(X, G) and m(j)>a. Similarly,

since for any xx, x2, ... , xn £ G, p{t £ X : \ £"=i x,(g - f)(t) >a-8}>0,

there exists M £ LIM(X, G) such that M(g - j) > a. Since 0 < j < g,
m(g) > a and M(g) > a. By (*), m = M = mo. So M(g - j) = 0. This
contradicts a > 0.   U
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