ASYMPTOTIC STABILITY IN FUNCTIONAL DIFFERENTIAL EQUATIONS BY LIAPUNOV FUNCTIONALS

BO ZHANG

Abstract

We consider the asymptotic stability in a system of functional differential equations $x^{\prime}(t)=F\left(t, x_{t}\right)$ by Liapunov functionals V. The work generalizes some well-known results in the literature in that we only require the derivative of V to be negative definite on a sequence of intervals $I_{n}=\left[s_{n}, t_{n}\right]$. We also show that it is not necessary to require a uniform upper bound on V for nonuniform asymptotic stability.

1. Introduction

We consider a system of functional differential equations with finite delay

$$
\begin{equation*}
x^{\prime}(t)=F\left(t, x_{t}\right), \quad x \in R^{n}, \tag{1.1}
\end{equation*}
$$

and obtain conditions on a Liapunov functional V to ensure that the zero solution of (1.1) is asymptotically stable or uniformly asymptotically stable. Our results generalize some well-known theorems in the literature in that we only require the following properties of V.

The derivative of V along a solution of (1.1) is negative definite on a sequence of intervals $I_{n}=\left[s_{n}, t_{n}\right]$.
$\left(\mathrm{P}_{2}\right) \quad V$ has a uniform upper bound on $J_{n}=\left[t_{n}-\sigma, t_{n}\right]$ with $\sigma>0$.
For reference, the discussion here follows closely those of Burton [1] and Burton and Hatvani [3, 4]. Our work also has roots in the recent work of Burton and Makay [5] in which the asymptotic stability of (1.1) was obtained by a Liapunov functional V having property $\left(\mathrm{P}_{1}\right)$ and a uniform upper bound on a sequence $\left\{t_{n}\right\}$. A growth condition on $F(t, \varphi)$ is required in [5].

For $x \in R^{n},|\cdot|$ denotes the Euclidean norm of x. The length of an interval $I_{n}=[a, b]$ is defined by $l\left(I_{n}\right)$. For an $n \times n$ matrix A, define the norm $|A|$ of A by $|A|=\sup \{|A x|:|x| \leq 1\}$. For a given $h>0, C$ will be the space of continuous functions $\varphi:[-h, 0] \rightarrow R^{n}$ with the supremum norm $\|\varphi\|=\sup \{|\varphi(s)|:-h \leq s \leq 0\} . C_{H}$ denotes the set of $\varphi \in C$ with $\|\varphi\|<H$. If x is a continuous function of u defined on $-h \leq u<A, A>0$, and if t

[^0]is a fixed number satisfying $0 \leq t<A$, then x_{t} denotes the restriction of x to the interval $[t-h, t]$ so that x_{t} is an element of C defined by $x_{t}(s)=x(t+s)$ for $-h \leq s \leq 0$. For any $\varphi \in C$ we define
$$
|\varphi|_{2}=\left[\int_{-h}^{0}|\varphi(s)|^{2} d s\right]^{1 / 2}
$$

In (1.1), $x^{\prime}(t)$ denotes the right-hand derivative of x at t. It is assumed that $F: R^{+} \times C_{H} \rightarrow R^{n}, R^{+}=[0,+\infty)$, is continuous so that a solution will exist for each $\left(t_{0}, \varphi\right) \in R^{+} \times C_{H}$. We denote by $x\left(t_{0}, \varphi\right)$ a solution of (1.1) with initial function $\varphi \in C_{H}$ where $x_{t_{0}}\left(t_{0}, \varphi\right)=\varphi$. The value of $x\left(t_{0}, \varphi\right)$ at t will be $x(t)=x\left(t, t_{0}, \varphi\right)$. For the continuation of solutions, we suppose that F takes bounded sets of $R^{+} \times C_{H}$ into bounded sets of R^{n}. We also assume that $F(t, 0)=0$ so that $x=0$ is a solution of (1.1). Let $V: R^{+} \times C_{H} \rightarrow R^{+}$be a continuous functional and define the upper right-hand derivative of V along a solution of (1.1) by

$$
V_{(1.1)}^{\prime}(t, \varphi)=\limsup _{\delta \rightarrow 0^{+}}\left\{V\left(t+\delta, x_{t+\delta}(t, \varphi)\right)-V(t, \varphi)\right\} / \delta
$$

For reference on Liapunov's direct method and fundamental theorems of (1.1), we refer to the work of Burton [2], Hale [6], Kato [7], and Yoshizawa [8].

Definition 1.1. The zero solution of (1.1) is said to be stable if, for each $\varepsilon>0$ and $t_{0} \geq 0$, there exists $\delta=\delta\left(\varepsilon, t_{0}\right)>0$ such that $\left[\varphi \in C_{H},\|\varphi\|<\delta, t \geq t_{0}\right.$] imply that $\left|x\left(t, t_{0}, \varphi\right)\right|<\varepsilon$. If δ is independent of t_{0}, then the zero solution is uniformly stable.

Definition 1.2. The zero solution of (1.1) is asymptotically stable (AS) if it is stable and if, for each $t_{0} \in R^{+}$, there exists $\delta=\delta\left(t_{0}\right)>0$ such that $\|\varphi\|<$ δ implies that $x\left(t, t_{0}, \varphi\right) \rightarrow 0$ as $t \rightarrow+\infty$. The zero solution of (1.1) is uniformly asymptotically stable (UAS) if it is uniformly stable and if there is a $\sigma>0$ and if for each $\varepsilon>0$ there exists $T=T(\varepsilon)>0$ such that $\left[t_{0} \in R^{+},\|\varphi\|<\sigma, t \geq t_{0}+T\right]$ imply that $\left|x\left(t, t_{0}, \varphi\right)\right|<\varepsilon$.

Definition 1.3. $W: R^{+} \rightarrow R^{+}$is called a wedge if W is continuous and strictly increasing with $W(0)=0$. Throughout this paper $W, W_{j}(j=0,1,2, \ldots)$ will denote the wedges.

Definition 1.4. A continuous function $G: R^{+} \rightarrow R^{+}$is convex downward if $G([t+s] / 2) \leq[G(t)+G(s)] / 2$ for all $t, s \in R^{+}$.

Jensen's inequality. Let W be convex downward and let $f, p:[a, b] \rightarrow R^{+}$ be continuous with $\int_{a}^{b} p(s) d s>0$. Then

$$
\int_{a}^{b} p(s) d s W\left[\int_{a}^{b} p(s) f(s) d s / \int_{a}^{b} p(s) d s\right] \leq \int_{a}^{b} p(s) W(f(s)) d s
$$

2. Main theorems

The following lemmas will be used in the proof of our results.

Lemma 2.1. If W_{1} is a wedge, then for any $L>0$ there is a convex downward wedge W_{0} such that $W_{0}(r) \leq W_{1}(r)$ for all $r \in[0, L]$. In fact, $W_{0}(r)=$ $\int_{0}^{r} W_{1}(s) d s / L$ will suffice.
Lemma 2.2 [4, p. 286]. Let $x:\left[t_{0}-h,+\infty\right) \rightarrow R^{n}$ be a bounded continuous function and $\left\{t_{n}\right\}$ be an increasing sequence of real numbers with $t_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$ (short notation $\left\{t_{n}\right\} \uparrow \infty$) such that $\left|x_{t_{n}}\right|_{2} \rightarrow 0$ as $n \rightarrow+\infty$. Then there exist a subsequence $\left\{t_{n_{k}}\right\}$ of $\left\{t_{n}\right\}$ and a sequence $\left\{s_{k}\right\}$ with $s_{k} \in$ $\left[t_{n_{k}}-h, t_{n_{k}}\right]$ and $\left|t_{n_{k}}-s_{k}\right|<\frac{1}{k}$ such that $\left|x\left(s_{k}\right)\right|+\left|x_{s_{k}}\right|_{2} \rightarrow 0$ as $k \rightarrow+\infty$.
Theorem 2.1. Suppose that there exist a continuous functional $V: R^{+} \times C_{H} \rightarrow$ R^{+}, wedges $W, W_{i}(i=1,2,3)$, a constant $\sigma>0$ and a sequence $\left\{t_{n}\right\} \uparrow \infty$ such that
(i) $W_{1}(|\varphi(0)|) \leq V(t, \varphi), V(t, 0)=0$ for all $t \in R^{+}$and $V(t, \varphi) \leq$ $W_{2}(|\varphi(0)|)+W_{3}\left(|\varphi|_{2}\right)$ for $t \in\left[t_{n}-\sigma, t_{n}\right]$,
(ii) $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq 0$ for all $t \geq t_{0}$ and $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq-W(|x(t)|)$ for $t \in$ $\left[t_{n}-h, t_{n}\right]$, where $x(t)=x\left(t, t_{0}, \varphi\right)$ is any solution of (1.1) with $x_{t} \in$ C_{H} and $t_{n}-h \geq t_{0}$.
Then the zero solution of (1.1) is $A S$.
Proof. Let $t_{0} \in R^{+}$and $\varepsilon>0$. Then there exists $\delta>0(\delta<H)$ such that $V\left(t_{0}, \varphi\right)<W_{1}(\varepsilon)$ whenever $\|\varphi\|<\delta$. Let $x(t)=x\left(t, t_{0}, \varphi\right)$ be a solution of (1.1) with $\|\varphi\|<\delta$. It then follows that $W_{1}(|x(t)|) \leq V\left(t, x_{t}\right) \leq V\left(t_{0}, \varphi\right)<$ $W_{1}(\varepsilon)$ and, therefore, $|x(t)|<\varepsilon$ for $t \geq t_{0}$. Thus the zero solution of (1.1) is stable.

Next let $t_{0} \geq 0$ and find $\delta>0$ of stability for $\varepsilon_{0}=\min \{H, 1\}$. If $\|\varphi\|<\delta$, then $\left|x\left(t, t_{0}, \varphi\right)\right|<\varepsilon_{0}$ for $t \geq t_{0}$. We will show that $x\left(t, t_{0}, \varphi\right) \rightarrow 0$ as $t \rightarrow+\infty$. Without loss of generality, we may assume that $t_{n-1}+h \leq t_{n}$ for $n=1,2, \ldots$. By Lemma 2.1 there exists a convex downward wedge W_{4} such that $W_{4}\left(r^{2}\right) \leq W(r)$ for $0 \leq r \leq 1$. For $t \geq t_{n}$, we have

$$
\begin{aligned}
V\left(t, x_{t}\right) & \leq V\left(t_{0}, \varphi\right)-\sum_{j=1}^{n} \int_{t_{j}-h}^{t_{j}} W(|x(s)|) d s \\
& \leq V\left(t_{0}, \varphi\right)-\sum_{j=1}^{n} \int_{t_{j}-h}^{t_{j}} W_{4}\left(|x(s)|^{2}\right) d s
\end{aligned}
$$

Apply Jensen's inequality to obtain

$$
\begin{equation*}
V\left(t, x_{t}\right) \leq V\left(t_{0}, \varphi\right)-\sum_{j=1}^{n} h W_{4}\left(\frac{1}{h}\left|x_{t_{j}}\right|_{2}^{2}\right) \tag{2.1}
\end{equation*}
$$

This implies that

$$
\sum_{j=1}^{+\infty} W_{4}\left(\frac{1}{h}\left|x_{t_{j}}\right|_{2}^{2}\right)<+\infty \quad \text { and } \quad\left|x_{t_{n}}\right|_{2} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

By Lemma 2.2, it follows that there exist a subsequence $\left\{t_{n_{k}}\right\}$ of $\left\{t_{n}\right\}$ and a sequence $\left\{s_{k}\right\}$ with $s_{k} \in\left[t_{n_{k}}-h, t_{n_{k}}\right]$ and $t_{n_{k}}-s_{k}<\frac{1}{k}$ such that

$$
\begin{equation*}
\left|x\left(s_{k}\right)\right|+\left|x_{s_{k}}\right| 2 \rightarrow 0 \quad \text { as } \quad k \rightarrow+\infty \tag{2.2}
\end{equation*}
$$

Without loss of generality, we may assume that $s_{k} \in\left[t_{n_{k}}-\sigma, t_{n_{k}}\right]$ for $k=$ $1,2, \ldots$. For the given $\varepsilon>0$ there exists $K>0$ such that $W_{2}\left(\left|x\left(s_{K}\right)\right|\right)+$ $W_{3}\left(\left|x_{s_{K}}\right|_{2}\right)<W_{1}(\varepsilon)$. We then have

$$
W_{1}(|x(t)|) \leq V\left(t, x_{t}\right) \leq V\left(s_{K}, x_{s_{K}}\right)<W_{1}(\varepsilon) \text { and }|x(t)|<\varepsilon
$$

for $t \geq t_{n_{K}} \geq s_{K}$. Thus the proof is complete.
Theorem 2.2. Suppose that there exist a continuous functional $V: R^{+} \times C_{H} \rightarrow$ R^{+}, wedges $W, W_{i}(i=1,2,3)$, a constant $\sigma>0$ and a sequence $\left\{t_{n}\right\} \uparrow \infty$ such that
(i) $W_{1}(|\varphi(0)|) \leq V(t, \varphi), V(t, 0)=0$ for all $t \in R^{+}$and $V(t, \varphi) \leq$ $W_{2}(|\varphi(0)|)+W_{3}\left(|\varphi|_{2}\right)$ for $t \in\left[t_{n}-\sigma, t_{n}\right]$,
(ii) $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq 0$ for all $t \geq t_{0}$ and $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq-W\left(\left|x_{t}\right|_{2}\right)$ for $t \in$ I_{n} and $x_{t} \in C_{H}$, where $x(t)=x\left(t, t_{0}, \varphi\right)$ is any solution of (1.1) with $t_{n}-h \geq t_{0}$ and I_{n} is a sequence of intervals $I_{n}=\left[s_{n}, t_{n}\right]$ with $\sum_{n=1}^{\infty} l\left(I_{n}\right)=+\infty$.
Then the zero solution of (1.1) is $A S$.
Proof. The fact that the zero solution of (1.1) is stable follows from the proof of Theorem 2.1. We now show that the zero solution of (1.1) is AS. Let $t_{0} \geq 0$ and find $\delta>0$ of stability for $\varepsilon_{0}=\min \{H, 1\}$. Thus if $\|\varphi\|<\delta$, then $\left|x\left(t, t_{0}, \varphi\right)\right|<\varepsilon_{0}$ for $t \geq t_{0}$. We claim that

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty}\left|x_{t_{n}}\right|_{2}=0 \tag{2.3}
\end{equation*}
$$

Suppose that there exists $K>0$ and a constant $\alpha>0$ such that $\left|x_{t_{n}}\right|_{2} \geq \alpha$ for all $n \geq K$. Define $P(t)=\int_{t-h}^{t}|x(s)|^{2} d s$. Then $P^{\prime}(t)=|x(t)|^{2}-|x(t-h)|^{2}$ and there exists a constant $L>0$ such that $\left|P^{\prime}(t)\right| \leq L$ for all $t \geq t_{0}$. For $\left|t_{n}-t\right| \leq \alpha^{2} / 2 L$ we have $\left|P\left(t_{n}\right)-P(t)\right| \leq L\left|t_{n}-t\right| \leq \alpha^{2} / 2$ and $P(t) \geq P\left(t_{n}\right)-$ $\alpha^{2} / 2 \geq \alpha^{2} / 2$. This implies that $\left|x_{t}\right|_{2} \geq \alpha / 2$ for $t \in J_{n}=\left[t_{n}-\alpha^{2} / 2 L, t_{n}\right]$. We consider the following cases.

Case 1. There exist a constant $\gamma>0$ and a subsequence $\left\{t_{n_{k}}\right\}$ of $\left\{t_{n}\right\}$ such that $l\left(I_{n_{k}}\right) \geq \gamma$ with $n_{1} \geq K$. We then choose $L>0$ sufficiently large such that $J_{n_{k}} \subset I_{n_{k}}$. Let $t \geq t_{n_{m}}$ and integrate (ii) from t_{0} to t to obtain

$$
\begin{align*}
V\left(t, x_{t}\right) & \leq V\left(t_{0}, \varphi\right)-\sum_{k=1}^{m} \int_{J_{n_{k}}} W\left(\left|x_{s}\right|_{2}\right) d s \tag{2.4}\\
& \leq V\left(t_{0}, \varphi\right)-m W(\alpha / 2) \alpha^{2} / 2 L \rightarrow-\infty \quad \text { as } m \rightarrow+\infty
\end{align*}
$$

a contradiction.
Case 2. Suppose that $l\left(I_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. We may assume that $I_{n} \subset J_{n}$ for all $n \geq K$. Thus for $t \geq t_{n}$ we have

$$
\begin{aligned}
V\left(t, x_{t}\right) & \leq V\left(t_{0}, \varphi\right)-\sum_{j=K}^{n} \int_{I_{j}} W\left(\left|x_{s}\right|_{2}\right) d s \\
& \leq V\left(t_{0}, \varphi\right)-W(\alpha / 2) \sum_{j=K}^{n} l\left(I_{j}\right) \rightarrow-\infty \quad \text { as } n \rightarrow+\infty
\end{aligned}
$$

a contradiction. This proves (2.3). By Lemma 2.2, we again conclude that (2.2) holds for a sequence $\left\{s_{k}\right\}$ with $s_{k} \in\left[t_{n_{k}}-\sigma, t_{n_{k}}\right]$, where $\left\{t_{n_{k}}\right\}$ is a subsequence
of $\left\{t_{n}\right\}$. Therefore, the zero solution of (1.1) is asymptotically stable by the proof following (2.2) in Theorem 2.1.

We now discuss the uniform asymptotic stability. Our result generalizes a well-known theorem of Burton [1].
Theorem 2.3. Suppose that there exist a continuous functional $V: R^{+} \times C_{H} \rightarrow$ R^{+}, wedges $W, W_{i}(i=1,2,3)$, a positive constant J and a sequence $\left\{t_{n}\right\} \uparrow$ ∞ with $t_{n}-t_{n-1} \leq J$ such that
(i) $W_{1}(|\varphi(0)|) \leq V(t, \varphi) \leq W_{2}(|\varphi(0)|)+W_{3}\left(|\varphi|_{2}\right)$ for all $(t, \varphi) \in R^{+} \times C_{H}$,
(ii) $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq 0$ for all $t \geq t_{0}$ and $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq-W(|x(t)|)$ for $t \in$ $\left[t_{n}-h, t_{n}\right]$, where $x(t)=x\left(t, t_{0}, \varphi\right)$ is any solution of (1.1) with $x_{t} \in$ C_{H} and $t_{n}-h \geq t_{0}$.
Then the solution of (1.1) is UAS.
Proof. There exists a wedge W^{*} such that $W_{2}(r)+W_{3}(r \sqrt{h}) \leq W^{*}(r)$ for all $0 \leq r \leq 1$. The uniform stability is clear from (i). Next choose $\delta>0$ of uniform stability for $\varepsilon_{0}=\min \{H, 1\}$. Thus, if $x(t)=x\left(t, t_{0}, \varphi\right)$ is a solution of (1.1), then $\left|x\left(t, t_{0}, \varphi\right)\right|<\varepsilon_{0}$ whenever $\|\varphi\|<\delta$ and $t \geq t_{0}$. Moreover, $V\left(t, x_{t}\right) \leq W^{*}(\delta)$ for all $t \geq t_{0}$. We will follow the proof of Theorem 2.1. For any $\varepsilon>0$ find $\eta>0$ such that $W_{2}(\eta)+W_{3}(\eta)<W_{1}(\varepsilon)$. From (2.1) we have

$$
\begin{equation*}
V\left(t, x_{t}\right) \leq W^{*}(\delta)-\sum_{j=1}^{n} h W_{4}\left(\frac{1}{h}\left|x_{t_{j}}\right|_{2}^{2}\right) \tag{2.5}
\end{equation*}
$$

This implies that there exists a positive integer $K=K(\delta)$ such that $\left|x_{t_{k}}\right|_{2}<$ $\eta / 2$ for some k with $1 \leq k \leq K$. Consequently, there exists a subsequence $\left\{t_{n_{k}}\right\}$ of $\left\{t_{n}\right\}$ such that $\left|x_{t_{n_{k}}}\right|_{2}<\eta / 2$ and $t_{n_{k}}-t_{n_{k-1}} \leq K J$ with $t_{n_{0}}=t_{0}$ for $k=1,2, \ldots$. For brevity, we rename $\left\{t_{n_{k}}\right\}$ by $\tau_{k}=t_{n_{k}}$. Since $P(t)=$ $\int_{t-h}^{t}|x(s)|^{2} d s$ is uniformly continuous on R^{+}, there exists $\gamma>0 \quad(\gamma<h)$ such that $\left|x_{t}\right|_{2}<\eta$ on $\left[\tau_{k}-\gamma, \tau_{k}\right.$] for $k=1,2, \ldots$. Let M be a positive integer such that $W^{*}(\delta)-M W(\eta) \gamma<0$. We claim that there exists an integer m with $1 \leq m \leq M$ and a $s_{m} \in\left[\tau_{m}-\gamma, \tau_{m}\right]$ with $\left|x\left(s_{m}\right)\right|<\eta$. In fact, if $|x(s)| \geq \eta$ on $\left[\tau_{k}-\gamma, \tau_{k}\right.$] for $k=1,2, \ldots, M$, then

$$
\begin{aligned}
V\left(\tau_{M}, x_{\tau_{M}}\right) & \leq W^{*}(\delta)-\sum_{k=1}^{M} \int_{\tau_{k}-\gamma}^{\tau_{k}} W(|x(s)|) d s \\
& \leq W^{*}(\delta)-W(\eta) M \gamma<0
\end{aligned}
$$

a contradiction. Thus, such s_{m} exists and

$$
\begin{aligned}
V\left(t, x_{t}\right) & \leq V\left(s_{m}, x_{s_{m}}\right) \leq W_{2}\left(\left|x\left(s_{m}\right)\right|\right)+W_{3}\left(\left|x_{s_{m}}\right|_{2}\right) \\
& \leq W_{2}(\eta)+W_{3}(\eta)<W_{1}(\varepsilon)
\end{aligned}
$$

for $t \geq \tau_{M} \geq s_{m}$. This implies that $|x(t)|<\varepsilon$ for $t \geq t_{0}+T \geq \tau_{M}, T=K J M$, and the zero solution of (1.1) is UAS.

Our next theorem is a refinement of a simple version of Theorem 3 in [3] on uniform asymptotic stability.
Theorem 2.4. Suppose that there exist a continuous functional $V: R^{+} \times C_{H} \rightarrow$ R^{+}, wedges $W, W_{i}(i=1,2,3)$, positive constants σ, J and a sequence $\left\{t_{n}\right\} \uparrow \infty$ with $t_{n}-t_{n-1} \leq J$ such that

$$
\begin{equation*}
W_{1}(|\varphi(0)|) \leq V(t, \varphi) \leq W_{2}(|\varphi(0)|)+W_{3}\left(|\varphi|_{2}\right) \text { for all }(t, \varphi) \in R^{+} \times C_{H} \tag{i}
\end{equation*}
$$

(ii) $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq 0$ for all $t \geq t_{0}$ and $V_{(1.1)}^{\prime}\left(t, x_{t}\right) \leq-W\left(\left|x_{t}\right|_{2}\right)$ for $t \in$ $\left[t_{n}-\sigma, t_{n}\right]$, where $x(t)=x\left(t, t_{0}, \varphi\right)$ is any solution of (1.1) with $x_{t} \in$ C_{H} and $t_{n}-\sigma \geq t_{0}$.
Then the zero solution of (1.1) is UAS.
Proof. There exists a wedge W^{*} such that $W_{2}(r)+W_{3}(r \sqrt{h}) \leq W^{*}(r)$ for all $0 \leq r \leq 1$. The zero solution of (1.1) is uniformly stable by (i). Next choose $\delta>0$ of uniform stability for $\varepsilon_{0}=\min \{H, 1\}$. Thus if $x(t)=x\left(t, t_{0}, \varphi\right)$ is a solution of (1.1), then $\left|x\left(t, t_{0}, \varphi\right)\right|<\varepsilon_{0}$ whenever $\|\varphi\|<\delta$ and $t \geq t_{0}$. Moreover, $V\left(t, x_{t}\right) \leq W^{*}(\delta)$ for all $t \geq t_{0}$. We will follow the proof of Theorem 2.2. For any $\varepsilon>0$, choose $\eta>0$ such that $W_{2}(\eta)+W_{3}(\eta)<W_{1}(\varepsilon)$. We first claim that there exist a constant $K=K(\delta)$ and a subsequence $\left\{t_{n_{k}}\right\}$ of $\left\{t_{n}\right\}$ with $t_{n_{k}}-t_{n_{k-1}} \leq K J$ and

$$
\begin{equation*}
\left|x_{t_{n_{k}}}\right|_{2}<\eta / 2 . \tag{2.6}
\end{equation*}
$$

Since $P(t)=\int_{t-h}^{t}|x(s)|^{2} d s$ is uniformly continuous on R^{+}, there exists $\gamma>0$ $(\gamma<\min \{\sigma, h\})$ such that

$$
\begin{equation*}
|P(t)-P(s)|<\eta^{2} / 8 \tag{2.7}
\end{equation*}
$$

whenever $|t-s|<\gamma$. Let K be the first positive integer such that $W^{*}(\delta)-$ $\gamma K W(\eta / 4)<0$. We will show that there exists an integer $n_{1}, 1 \leq n_{1} \leq K$, with $\left|x_{t_{n_{1}}}\right|_{2}<\eta / 2$. Suppose that $\left|x_{t_{n}}\right| \geq \eta / 2$ for $n=1,2, \ldots, K$. By (2.7) with $t=t_{n}$, we have $\left|x_{s}\right|_{2} \geq \eta / 4$ for all $s \in\left[t_{n}-\gamma, t_{n}\right]$. Integrate (ii) from t_{0} to t_{K} to obtain

$$
\begin{aligned}
V\left(t_{K}, x_{t_{K}}\right) & \leq W^{*}(\delta)-\sum_{j=1}^{K} \int_{t_{j}-\gamma}^{t_{j}} W\left(\left|x_{s}\right|_{2}\right) d s \\
& \leq W^{*}(\delta)-\gamma K W(\eta / 4)<0
\end{aligned}
$$

a contradiction. Using the same argument, we obtain a subsequence $\left\{x_{t_{n_{k}}}\right\}$ satisfying (2.6). Moreover, $\left|x_{s}\right|_{2}<\eta$ for $s \in\left[t_{n_{k}}-\gamma, t_{n_{k}}\right]$ by (2.7). We again rename $\left\{t_{n_{k}}\right\}$ by $\tau_{k}=t_{n_{k}}$. Next find a positive integer M such that $W^{*}(\delta)-M W(\eta \sqrt{\gamma / 2}) \gamma / 2<0$. We show that there exists $m, 1 \leq m \leq M$, with $s_{m} \in\left[\tau_{m}-\gamma, \tau_{m}\right]$ and $\left|x\left(s_{m}\right)\right|<\eta$. In fact, if $|x(s)| \geq \eta$ on $\left[\tau_{k}-\gamma, \tau_{k}\right]$ for $k=1,2, \ldots, M$, then for $t \in\left[\tau_{k}-\gamma / 2, \tau_{k}\right]$ we have

$$
\begin{aligned}
\int_{t-h}^{t}|x(s)|^{2} d s & \geq \int_{\tau_{k}-\gamma}^{t}|x(s)|^{2} d s \\
& \geq \int_{\tau_{k}-\gamma}^{\tau_{k}-\gamma / 2}|x(s)|^{2} d s \geq \gamma \eta^{2} / 2
\end{aligned}
$$

and $\left|x_{t}\right|_{2} \geq \eta \sqrt{\gamma / 2}$. This then yields

$$
\begin{aligned}
V\left(\tau_{M}, x_{\tau_{M}}\right) & \leq W^{*}(\delta)-\sum_{k=1}^{M} \int_{\tau_{k}-\gamma / 2}^{\tau_{k}} W\left(\left|x_{s}\right|_{2}\right) d s \\
& \leq W^{*}(\delta)-M W(\eta \sqrt{\gamma / 2}) \gamma / 2<0,
\end{aligned}
$$

a contradiction. Thus, such s_{m} exists and

$$
\begin{aligned}
V\left(t, x_{t}\right) & \leq V\left(s_{m}, x_{s_{m}}\right) \leq W_{2}\left(\left|x\left(s_{m}\right)\right|\right)+W_{3}\left(\left|x_{s_{m}}\right|_{2}\right) \\
& \leq W_{2}(\eta)+W_{3}(\eta)<W_{1}(\varepsilon)
\end{aligned}
$$

for $t \geq \tau_{M} \geq s_{m}$. We then have $|x(t)|<\varepsilon$ for $t \geq t_{0}+T \geq \tau_{M}, T=K J M$, and the zero solution of (1.1) is UAS.

3. Example

Consider the scalar equation

$$
\begin{equation*}
x^{\prime}(t)=-a(t) x(t)+b(t) x(t-1) \tag{3.1}
\end{equation*}
$$

where $a(t)=3(|\sin (\pi t / 2)|-\sin (\pi t / 2))^{2} g^{2}(t)$,

$$
b(t)=2(|\sin (\pi t / 2)|-\sin (\pi t / 2))(|\cos (\pi t / 2)|+\cos (\pi t / 2)) g(t) g(t-1)
$$

and $g: R \rightarrow R^{+}$is any continuous function with $1 \leq g(t)$ for all $t \in[4 k-$ $\frac{3}{2}, 4 k-\frac{1}{2}$] and $g(t) \leq B$ on [$4 k-\frac{3}{2}-\sigma, 4 k-\frac{1}{2}$] for some positive numbers σ and B, where $k=1,2, \ldots$. Then the zero solution of (3.1) is AS.

Proof. Define

$$
V(t, \varphi)=\frac{1}{2}|\varphi(0)|^{2}+\frac{1}{3} \int_{-1}^{0} a(t+s) \varphi^{2}(s) d s
$$

for $(t, \varphi) \in R^{+} \times C$ and $W_{1}(r)=r^{2} / 2$. It follows that

$$
\begin{equation*}
W_{1}(|\varphi(0)|) \leq V(t, \varphi) \tag{3.2}
\end{equation*}
$$

If $x(t)=x\left(t, t_{0}, \varphi\right)$ is a solution of (3.1), then

$$
V\left(t, x_{t}\right)=\frac{1}{2}|x(t)|^{2}+\frac{1}{3} \int_{t-1}^{t} a(s)|x(s)|^{2} d s
$$

and

$$
\begin{aligned}
V_{(3.1)}^{\prime}\left(t, x_{t}\right)= & x(t)[-a(t) x(t)+b(t) x(t-1)] \\
& +\frac{1}{3} a(t) x^{2}(t)-\frac{1}{3} a(t-1) x^{2}(t-1) \\
= & -\frac{2}{3} a(t) x^{2}(t)+b(t) x(t) x(t-1) \\
& -\frac{1}{3} a(t-1) x^{2}(t-1)
\end{aligned}
$$

Notice that $a(t-1)=3(|\cos (\pi t / 2)|+\cos (\pi t / 2))^{2} g^{2}(t-1)$ and $b(t) x(t) x(t-1) \leq$ $\frac{1}{3} a(t) x^{2}(t)+\frac{1}{3} a(t-1) x^{2}(t-1)$. Thus,

$$
\begin{equation*}
V_{(3.1)}^{\prime}\left(t, x_{t}\right) \leq-\frac{1}{3} a(t) x^{2}(t) \tag{3.3}
\end{equation*}
$$

for $t \geq t_{0}$ and

$$
\begin{equation*}
V_{(3.1)}^{\prime}\left(t, x_{t}\right) \leq-2 x^{2}(t) \text { on }\left[t_{k}-1, t_{k}\right] \tag{3.4}
\end{equation*}
$$

where $t_{k}=4 k-\frac{1}{2}$. Define $W_{2}(r)=r^{2} / 2$ and $W_{3}(r)=4 B^{2} r^{2}$. Since $g(t) \leq B$ on $\left[t_{k}-1-\sigma, t_{k}\right]$, it follows that

$$
\begin{equation*}
V(t, \varphi) \leq W_{2}(|\varphi(0)|)+W_{3}\left(|\varphi|_{2}\right) \quad \text { for } t \in\left[t_{k}-\sigma, t_{k}\right] \tag{3.5}
\end{equation*}
$$

By (3.2) through (3.5), all conditions of Theorem 2.1 are satisfied. Therefore, the zero solution of (3.1) is AS.

Remark 3.1. For $V(t, \varphi)$ defined above, it is clear that $V_{(3.1)}^{\prime}\left(t, x_{t}\right) \equiv 0$ on [$4(k-1), 4 k-2]$. If we choose $g\left(4 k-\frac{1}{4}\right)=k$, then $V(t, \varphi)$ is not bounded for fixed φ.

Remark 3.2. If g is bounded in the above example, then the zero solution of (3.1) is UAS.

Remark 3.3. The asymptotic stability for (3.1) discussed above will not follow from Hale [6, p. 108] because he requires that $a(t) \geq \delta>0$ and $(2 a(t)-\delta) \delta-$ $b^{2}(t) \geq \gamma$. It will not follow from the work of Burton and Hatvani [4, Corollaries 3.1-3.3] because they require that $\int_{t-1}^{t} a^{2}(s) d s$ be bounded in Corollary 3.1, $\int_{t-1}^{t} b^{4}(s) d s$ be bounded in Corollary 3.2 , and $\liminf _{t \rightarrow+\infty} a(t)>0$ in Corollary 3.3. It will not follow from the result of Burton and Makay [5] because they require a growth condition on $a(t)$ and $b(t)$.
Remark 3.4. For brevity, we omit examples for Theorems 2.2 and 2.4. We refer to [3, p. 84] and [4, p. 289] for equations with integral terms such as

$$
x^{\prime}(t)=-a(t) x(t)+b(t) \int_{t-h}^{t} \lambda(s) x(s) d s
$$

References

1. T. A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), 195-199.
2. , Stability and periodic solutions of ordinary and functional differential equations, Academic Press, Orlando, 1985.
3. T. A. Burton and L. Hatvani, Stability theorems for nonautonomous functional differential equations by Liapunov functionals, Tôhoku Math. J. 41 (1989), 65-104.
4. \qquad , On nonuniform asymptotic stability for nonautonomous functional differential equations, Differential and Integral Equations 2 (1990), 285-293.
5. T. A. Burton and G. Makay, Asymptotic stability for functional differential equations, Acta Math. Hungar. 65 (1994), 243-251.
6. J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977.
7. J. Kato, A conjecture in Liapunov method for functional differential equations, Preprint.
8. T. Yoshizawa, Stability by Liapunov's second method, Math. Soc. Japan, Tokyo, 1966.

E-mail address: bozhang@hazel.fsufay.edu

[^0]: Received by the editors January 15, 1994; originally communicated to the Proceedings of the $A M S$ by Hal L. Smith.

 1991 Mathematics Subject Classification. Primary 34K20, 34D20.
 Key words and phrases. Functional differential equations, Liapunov functionals, asymptotic stability.

