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ASYMPTOTIC STABILITY IN FUNCTIONAL DIFFERENTIAL
EQUATIONS BY LIAPUNOV FUNCTIONALS

BO ZHANG

Abstract. We consider the asymptotic stability in a system of functional dif-

ferential equations x'(t) = F(t, xt) by Liapunov functionals V . The work

generalizes some well-known results in the literature in that we only require the

derivative of V to be negative definite on a sequence of intervals /„ = [sn , tn].

We also show that it is not necessary to require a uniform upper bound on V

for nonuniform asymptotic stability.

1. Introduction

We consider a system of functional differential equations with finite delay

(1.1) x'(t) = F(t,xt),       xeR",

and obtain conditions on a Liapunov functional V to ensure that the zero

solution of (1.1) is asymptotically stable or uniformly asymptotically stable.

Our results generalize some well-known theorems in the literature in that we

only require the following properties of V.

,p , The derivative of V along a solution of (1.1) is negative definite

' on a sequence of intervals /„ = [s„ , tn].

(P2) V has a uniform upper bound on J„ = [t„ -a, t„] with a > 0.

For reference, the discussion here follows closely those of Burton [1] and Burton
and Hatvani [3, 4]. Our work also has roots in the recent work of Burton and

Makay [5] in which the asymptotic stability of (1.1) was obtained by a Liapunov

functional V having property (Pi) and a uniform upper bound on a sequence

{t„} . A growth condition on F(t, tp) is required in [5].

For x e Rn, | • | denotes the Euclidean norm of x. The length of an

interval I„ = [a, b] is defined by /(/„). For an n x n matrix A, define the

norm |^4| of A by \A\ = sup{\Ax\ : \x\ < 1}. For a given h > 0, C will be
the space of continuous functions <p : [-h, 0] —► R" with the supremum norm

\\<p\\ = sup{|?>(s)| : -h < s < 0} . CH denotes the set of cp e C with ||$!>|| < H.
If x is a continuous function of u defined on -h < u < A, A > 0, and if t

Received by the editors January 15, 1994; originally communicated to the Proceedings of the

AMS by Hal L. Smith.
1991 Mathematics Subject Classification. Primary 34K20, 34D20.
Key words and phrases. Functional differential equations, Liapunov functionals, asymptotic

stability.

©1995 American Mathematical Society
0002-9947/95 $1.00+ $.25 per page

1375



1376 BO ZHANG

is a fixed number satisfying 0 < t < A , then x, denotes the restriction of x to

the interval [t-h , t] so that xt is an element of C defined by xt(s) = x(t-hs)
for -h < s < 0. For any y> e C we define

r ,0 i x<2

W\i=   /   \<p(s)\2ds
J-h

In (1.1), x'(t) denotes the right-hand derivative of x at t. It is assumed

that F : R+ x Ch —> R" , R+ = [0, +oc), is continuous so that a solution will

exist for each (/0, <p) £ R+ x CH ■ We denote by x(to, <p) a solution of (1.1)

with initial function q> e Ch where xto(t0, tp) = tp . The value of x(/o, <p) at t

will be x(t) = x(t, to, <p). For the continuation of solutions, we suppose that

F takes bounded sets of R+ x Ch into bounded sets of R" . We also assume

that F(t, 0) = 0 so that x = 0 is a solution of (1.1). Let V : R+ x CH -> R+ be
a continuous functional and define the upper right-hand derivative of V along

a solution of (1.1) by

V'}(t, <p) = limsup{V(t + S , xl+g(t, tp))- V(t, <p)}/S.

For reference on Liapunov's direct method and fundamental theorems of (1.1),

we refer to the work of Burton [2], Hale [6], Kato [7], and Yoshizawa [8].

Definition 1.1. The zero solution of (1.1) is said to be stable if, for each e > 0

and to > 0, there exists 3 = S(e, to) > 0 such that [<p e CH, \\<p\\ < 3, t > to]
imply that |x(/, to, <p)\ < e . If 3 is independent of to , then the zero solution
is uniformly stable.

Definition 1.2. The zero solution of (1.1) is asymptotically stable (AS) if it is

stable and if, for each t0 £ R+, there exists 3 = 3(to) > 0 such that \\<p\\ <
3 implies that x(t, to, tp) —> 0 as t —> +00. The zero solution of (1.1) is

uniformly asymptotically stable (UAS) if it is uniformly stable and if there

is a 0 > 0 and if for each e > 0 there exists T = T(e) > 0 such that

[t0 € R+, \\<p\\ < a, t > t0 + T] imply that \x(t, t0, <p)\ < e.

Definition 1.3. W : R+ —> R+ is called a wedge if W is continuous and strictly

increasing with ^(0) = 0. Throughout this paper W ,W} (7 = 0, 1,2,...)

will denote the wedges.

Definition 1.4. A continuous function G : R+ —> R+ is convex downward if

G([t + s]/2) < [G(t) + G(s)]/2 for all t, s e R+ .

Jensen's inequality. Let W be convex downward and let /, p : [a, b] —» R+

be continuous with Ja p(s) ds > 0. Then

f p(s)dsW    f p(s)f(s)ds I f p(s)ds   < j p(s)W(f(s))ds.
Ja Ja I     Ja Ja

2. Main theorems

The following lemmas will be used in the proof of our results.
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Lemma 2.1. If Wi is a wedge, then for any L > 0 there is a convex downward

wedge Wo such that W0(r) < Wx(r) for all r e [0,L]. In fact, W0(r) =

Jo Wi(s)ds/L will suffice.

Lemma 2.2 [4, p. 286]. Let x : [t0 - h, +00) -»J?" be a bounded continuous

function and {tn} be an increasing sequence of real numbers with t„ -* +00

as n —* +00 (short notation {tn} | 00) such that \xln\2 —► 0 as n -* +oc.

Then there exist a subsequence {t„k} of {tn} and a sequence {sk} with sk e

[t„k - h, t„k] and \t„k - sk\ < £ such that \x(sk)\ + \xSk\2 -» 0 as k -» +oc .

Theorem 2.1. Suppose that there exist a continuous functional V : R+ x Ch -*

R+, wedges W, Wj (i = 1, 2, 3), a constant a > 0 and a sequence {t„} | 00

such that

(i) Wi(\<p(0)\) < V(t, <p), V(t, 0) = 0 for all t e R+  and V(t, tp) <
W2(\<p(Q)\) + W3(\q>\2) for te[tn-<j,tn],

(ii)  V{'lA)(t, xt) < 0 for all t > t0 and V{\A)(t, x,) < -W(\x(t)\) for t e

[t„-h, t„], where x(t) = x(t, to, tp) is any solution o/(l.l) with xt G

Ch and tn - h > to.

Then the zero solution of (1.1) is AS.

Proof. Let to G R+ and e > 0. Then there exists 3 > 0 (3 < H) such that
V(to, <p) < Wi(e) whenever \\tp\\ < 3. Let x(t) = x(t, to, <p) be a solution of

(1.1) with \\tp\\ < 8. It then follows that Wx(\x(t)\) < V(t, xt) < V(t0, <p) <
Wi(e) and, therefore, |x(/)| < e for t > to ■ Thus the zero solution of (1.1) is

stable.
Next let to > 0 and find 3 > 0 of stability for e0 = min{H, 1} . If \\y>\\ < 3,

then \x(t, to, <p)\ < fio for t > to. We will show that x(t, to, <p) —* 0 as
t —> +00. Without loss of generality, we may assume that ?„_i + h < t„ for

n = 1, 2, ... . By Lemma 2.1 there exists a convex downward wedge W4 such

that W4(r2) < W(r) for 0 < r < 1. For t > tn , we have

V(t,xt)<V(to,<p)-z2 f'J   W(\x(s)\)ds
% Jtj-h

<V(to,<p)-J2['J   W4(\x(s)\2)ds.
;=1 Jtj-h

Apply Jensen's inequality to obtain

(2.1) V(t,xl)<V(t0,9)-z2hwJ±i\xlj\l\ .

This implies that

+00       , j        ,

X] ^4 ( ttI-^oI2) < +00   and   \xtn\i -* 0 as « ^ +00.
j=\

By Lemma 2.2, it follows that there exist a subsequence {t„k} of {t„} and a

sequence {sk} with sk e [t„k -h,t„k] and t„k -sk < % such that

(2.2) |*Cs*)| + \xsk\i ^0   as   k^+00.
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Without loss of generality, we may assume that sk e [t„k - a, t„k] for k =

1,2,.... For the given e > 0 there exists K > 0 such that W2(\x(sK)\) +

Wi(\xSk\2) < Wx(e). We then have

Wi(\x(t)\) < V(t, xt) < V(sK,xSK) < Wi(e) and \x(t)\ < e

for t>t„K>Sfc- Thus the proof is complete.

Theorem 2.2. Suppose that there exist a continuous functional V : R+ x Ch ->•

R+ , wedges W, Wt (i = 1, 2, 3), a constant a > 0 and a sequence {t„} | 00
such that

(i) Wi(\tp(0)\) < V(t, tp), V(t, 0) = 0 for all t 6 R+ and V(t, <p) <
W2(\<p(0)\) + W3(\<p\2) for te[t„-a,t„],

(ii) V{\A)(t,xt) < 0 for all t > tQ and V{'lA)(t,xt) < -W(\x,\2) for t e

/„ and xt e Ch, where x(t) - x(t, to, <p) is any solution o/" (1.1)

with tn - h > to and In is a sequence of intervals In = [sn, tn] with

E£i'(/») =+00.

Then the zero solution 0/(1.1) is AS.

Proof. The fact that the zero solution of (1.1) is stable follows from the proof

of Theorem 2.1. We now show that the zero solution of (1.1) is AS. Let to > 0

and find 3 > 0 of stability for e0 = min{/f, 1}. Thus if \\<p\\ < 3, then
\x(t, to, <p)\ < eo for t>to- We claim that

(2.3) Uminfljc. |2 = 0.
n—>+oo

Suppose that there exists K > 0 and a constant a > 0 such that \xt„\2 > a for

all n > K. Define P(t) = Jl_h\x(s)\2ds. Then P'(t) = \x(t)\2 - \x(t - h)\2
and there exists a constant L > 0 such that \P'(t)\ < L for all t > to ■ For

\tn ~t\< a2/2L we have \P(tn) - P(t)\ < L\tn - t\ < a2/2 and P(t) > P(tn) -
a2/2 > a2/2 • This implies that |x,|2 > a/2 for t e Jn = [tn - a2/2L, tn]. We

consider the following cases.

Case 1. There exist a constant y > 0 and a subsequence {tnk} of {tn} such

that 1(1 nk) > 7 with «i > K. We then choose L > 0 sufficiently large such

that J„k c I„k. Let t > t„m and integrate (ii) from to to t to obtain

m      .

(2.4) F(/,x,)<F(f0,p)-£ /    IT(|x,|2)^
A:=l "/j"*

< V(to, (p) - mW(a/2)a2/2L -* -00    as m —> +00,

a contradiction.
Ca5e 2. Suppose that /(/„) —► 0 as n —> +00 . We may assume that /„ c Jn

for all n> K . Thus for t > tn we have

V(t,x,)<V(to,<p)-J2 i W(\xs\2)ds
j=KJlJ

n

< V(to, <P) - W(a/2) Y, l(Ij) ~* -00   as n -► +00,

a contradiction. This proves (2.3). By Lemma 2.2, we again conclude that (2.2)

holds for a sequence {sk} with sk e [t„k-a, t„ J , where {t„k} is a subsequence
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of {tn}. Therefore, the zero solution of (1.1) is asymptotically stable by the
proof following (2.2) in Theorem 2.1.

We now discuss the uniform asymptotic stability.  Our result generalizes a
well-known theorem of Burton [1].

Theorem 2.3. Suppose that there exist a continuous functional V : R+ x Ch -*

R+, wedges W, Wt (i = 1, 2, 3), a positive constant J and a sequence {t„} |

oo with t„ - t„-i < J such that

(i)  Wi(\tp(0)\) < V(t, <p) < W2(\9(0)\) + m<P\2) Mall (t,<p)eR+xCH,
(ii)  V{'lA)(t,xt) < 0 for all t > t0 and V{'lA)(t, xt) < -W(\x(t)\) for t G

[tn- h, tn], where x(t) — x(t, to, <p) is any solution 0/(1.1) with xt G

CH and t„ - h > to.

Then the solution of (I A) is UAS.

Proof. There exists a wedge W* such that W2(r) + W3(ryfh) < W*(r) for all

0 < r < 1. The uniform stability is clear from (i). Next choose 8 > 0 of

uniform stability for eq = min{/f, 1} . Thus, if x(t) = x(t, to, y>) is a solution

of (1.1), then \x(t, to, <p)\ < £o whenever ||^|| < 8 and t > to. Moreover,

V(t,xt) < W*(8) for all t > t0 . We will follow the proof of Theorem 2.1. For
any e > 0 find n > 0 such that W2(n) + W3(n) < Wx(e). From (2.1) we have

(2.5) V(t,xt)<W*(8)-j^hwJ±\xtj\i\ .
j=\

This implies that there exists a positive integer K = K(8) such that |x,J2 <

n/2 for some k with 1 < k < K. Consequently, there exists a subsequence

{t„k} of {tn} such that |x,„J2 < n/2 and tnk - t„k_t < KJ with tno = t0

for k = 1,2,.... For brevity, we rename {t„k} by rk = t„k. Since P(t) =

It'-h \x(s)\2ds is uniformly continuous on R+ , there exists y > 0 (y < h) such

that |x,|2 < r\ on [xk - y, xk] for k — 1,2, ... . Let Af be a positive integer
such that W*(8) - MW(n)y < 0. We claim that there exists an integer m with

1 < m < M and a sm e [xm - y, xm] with |x(sm)| < n. In fact, if |x(s)| > n
on [zk - y, Tk] for k = 1,2, ... , M, then

m    .Tk

v(tm,xXm)<w*(S)~Y<       ^(l^)D^
/t=i Jxk-y

< W*(3)- W(n)My<0,

a contradiction. Thus, such sm exists and

V(t, xt) < V(sm,xSm) < W2(\x(sm)\) + W,(\xSm\2)

< W2(n) + W3(n) < Wi(e)

for t > xM > sm . This implies that \x(t)\ < e for t > tQ+T > xM, T = KJM,
and the zero solution of (1.1) is UAS.

Our next theorem is a refinement of a simple version of Theorem 3 in [3] on
uniform asymptotic stability.

Theorem 2.4. Suppose that there exist a continuous functional V : R+ x Ch ->

R+, wedges W ,Wt (f = 1,2,3), positive constants a, J and a sequence
{t„} T oo with tn - t„-i < J such that

(i)  Wi(\<p(0)\) < V(t, tp) < W2(\<p(0)\) + W3(\<p\2) for all (t, tp) e R+ x CH,
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(ii)  V(lX)(t,xt) < 0 for all t > t0 and V(lA){t,xt) < -W(\xt\2) for t G

[tn -a, tn], where x(t) = x(t, to, <p) is any solution o/(l.l) with x, e

Ch and t„ - a > to ■

Then the zero solution o/(l.l) is UAS.

Proof. There exists a wedge W* such that W2(r) + W3(r\fh) < W*(r) for all

0 < r < 1 . The zero solution of (1.1) is uniformly stable by (i). Next choose

8 > 0 of uniform stability for e0 = min{H, 1}. Thus if x(t) = x(t, to, <p)

is a solution of (1.1), then \x(t, to, (p)\ < eo whenever \\cp\\ < 8 and t > to.

Moreover, V(t,xt) < W*(8) for all t > t0. We will follow the proof of
Theorem 2.2. For any e > 0, choose n > 0 such that W2(n) + W3(n) < Wx(e).

We first claim that there exist a constant K = K(8) and a subsequence {t„k}

of {tn} with t„k - t„k_, < KJ and

(2.6) |x,J2<ij/2.

Since P(t) = f[_h \x(s)\2 ds is uniformly continuous on R+ , there exists y > 0

(y < min{er, h]) such that

(2.7) \P(t)-P(s)\<n2/S

whenever \t - s\ < y. Let K be the first positive integer such that W*(8) -

yKW(n/4) < 0. We will show that there exists an integer nx, 1 < «i < AT,

with |x,„J2 < n/2. Suppose that |xj > rj/2 for n = 1, 2, ... , K. By (2.7)

with t = tn , we have |xs|2 > n/A for all s e [tn - y, tn]. Integrate (ii) from to

to tK to obtain

k    rtj
V(tK,xlK)<W*(8)-J2 W(\xs\i)ds

i=i Jh-y

< W*(8)-yKW(n/4)<0,

a contradiction. Using the same argument, we obtain a subsequence {x(„ }

satisfying (2.6). Moreover, \xs\2 < n for s & [t„k - y, t„k] by (2.7). We

again rename {t„k} by xk = t„k . Next find a positive integer M such that

W*(8) - MW(t]y/yj2)y/2 < 0. We show that there exists m , 1 < m < M,

with sm G [xm - y, xm] and \x(sm)\ <n.\x\ fact, if |x(s)| > n on [xk - y, xk]

for k = \ ,2, ... , M, then for t e [xk - y/2, xk] we have

/    \x(s)\2ds> f     \x(s)\2ds
Jt-h J*k-y

fk-y/2
> / \x(s)\2ds>yn2/2

Jik-y

and |x,|2 > r\\Jy/2 . This then yields

V(xM,xXM)<W*(8)-Y/ W(\xs\2)ds
k=l->rk-y/2

< W*(8) - MW(r\s[y]2)y/2 < 0,

a contradiction. Thus, such sm exists and

V{t,xt) < V(sm,xSm) < W2(\x(sm)\) + W3(\xSm\2)

< W2(t]) + W^n) < Wi(e)
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for t > xm > sm . We then have \x(t)\ < e for t > to + T > xm , T = KJM,

and the zero solution of (1.1) is UAS.

3. Example

Consider the scalar equation

(3.1) x'(t) = -a(t)x(t) + b(t)x(t-l)

where a(t) = 3(| sin(7rr/2)| - sin(nt/2))2g2(t),

b(t) = 2(| sin(nt/2)\ - sin(7rr/2))(| cos(nt/2)\ + cos(nt/2))g(t)g(t - 1)

and g : R —► R+ is any continuous function with 1 < g(t) for all t G [4k -

\ , 4k - j] and g(t) < B on [4k - \ - a, 4k - \] for some positive numbers

a and B , where k = 1,2,... . Then the zero solution of (3.1) is AS.

Proof. Define

V(t, tp) = ̂ \<P(0)\2 + I J_ a(t + s)tp2(s)ds

for (t, <p) G R+ x C and Wx(r) = r2/2. It follows that

(3.2) Wi(\tp(0)\)<V(t,<p).

If x(/) = x(t, to, (p) is a solution of (3.1), then

F(/,x() = i|x(0|2 + ^|'  a(s)\x(s)\2ds

and

V(3A)(t, xt) = x(t)[-a(t)x(t) + b(t)x(t - 1)]

+ ^a(t)x2(t)-^a(t-l)x2(t-l)

2
= --a(t)x2(t) + b(t)x(t)x(t - 1)

- ^a(t - \)x2(t - 1).

Notice that a(t-l) = 3(|cos(^f/2)|+cos(^//2))2^2(?-l) and b(t)x(t)x(t-l) <

\a(t)x2(t) + \a(t - \)x2(t - 1). Thus,

(3.3) V{'3A)(t,xt)<-~a(t)x2(t)

for t > t0 and

(3.4) ^'31)(r,xr)<-2x2(/)   on[tk-l,tk]

where tk = 4k - \ . Define W2(r) = r2/2 and W3(r) = 4B2r2. Since g(t) < B

on [tk - 1 - a, ffc], it follows that

(3.5) V(t,<p)<W2(\<p(0)\) + W3(\<p\2)   for te[tk-a, tk].

By (3.2) through (3.5), all conditions of Theorem 2.1 are satisfied. Therefore,

the zero solution of (3.1) is AS.
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Remark 3.1. For V(t, tp) defined above, it is clear that  V/3u(t, x<) = 0 on

[4(k - 1), 4k - 2]. If we choose g(4k -\) = k, then V(t, cp) is not bounded
for fixed tp.

Remark 3.2. If g is bounded in the above example, then the zero solution of

(3.1) is UAS.

Remark 3.3. The asymptotic stability for (3.1) discussed above will not follow

from Hale [6, p. 108] because he requires that a(t) > 3 > 0 and (2a(t) - 3)8 -

b2(t) > y. It will not follow from the work of Burton and Hatvani [4, Corollar-

ies 3.1-3.3] because they require that /'_, a2(s) ds be bounded in Corollary 3.1,

Sl-i b4(s)ds be bounded in Corollary 3.2, and liminf,_+ooa(0 > 0 in Corol-

lary 3.3. It will not follow from the result of Burton and Makay [5] because

they require a growth condition on a(t) and b(t).

Remark 3.4. For brevity, we omit examples for Theorems 2.2 and 2.4. We refer

to [3, p. 84] and [4, p. 289] for equations with integral terms such as

x'(t) = -a(t)x(t) + b(t) I    X(s)x(s) ds.
Jt-h
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