DIFFERENTIAL OPERATORS, n-BRANCH CURVE SINGULARITIES AND THE n-SUBSPACE PROBLEM

R. C. CANNINGS AND M. P. HOLLAND

Abstract

Let R be the coordinate ring of a smooth affine curve over an algebraically closed field of characteristic zero k. For S a subalgebra of R with integral closure R denote by $\mathscr{D}(S)$ the ring of differential operators on S and by $H(S)$ the finite-dimensional factor of $\mathscr{D}(S)$ by its unique minimal ideal. The theory of diagonal n-subspace systems is introduced. This is used to show that if A is a finite-dimensional k-algebra and $t \geq 1$ is any integer there exists such an S with

$$
H(S) \cong\left(\begin{array}{cc}
A & * \\
0 & M_{t}(k)
\end{array}\right) .
$$

Further, the Morita classes of $H(S)$ are classified for curves with few branches, and it is shown how to lift Morita equivalences from $H(S)$ to $\mathscr{D}(S)$.

0. Introduction

Suppose R is a finitely generated Dedekind domain (or the localization at a semimaximal ideal of such) over an algebraically closed field of characteristic zero k. We investigate two analytic invariants of a curve $\operatorname{Spec} S$ with normalization $\operatorname{Spec} R$. First, there is a $\max R$-diagonal (see $\S 1$ for a definition) which may alternatively be considered as a subspace system, that is, a vector space and a collection of n subspaces (where $\operatorname{Spec} S$ has n branches). Secondly, there is a finite-dimensional algebra $H(S)$ which is the endomorphism ring of this diagonal/subspace system when considered in the appropriate category. The connection with differential operators, mentioned in the title of the paper, arises from the following rephrasing of a result of K.A. Brown [Br]. Let $\mathscr{D}(S)$ be the ring of differential operators on S, and let $J(S)$ be the minimal ideal of $\mathscr{D}(S)$. Then $H(S) \cong \mathscr{D}(S) / J(S)$. Actually, this discussion reverses the historical development which began with the work of [SS] on the algebra $\mathscr{D}(S) / J(S)$. Brown's result allowed substantial progress on the structure of this algebra. In particular, he showed, in [Br$]$, that $H(S)$ has a block upper triangular structure:

$$
H(S) \cong\left(\begin{array}{cc}
A & * \tag{*}\\
0 & M_{t}(k)
\end{array}\right),
$$

[^0]for some finite-dimensional algebra A and some $t \geq 1$. In $\S 2$ we show that, rather surprisingly, any A can occur.
0.1. Theorem. Suppose that R is a finitely generated Dedekind domain over an algebraically closed field of characteristic zero k. Let A be any finitedimensional algebra and t any positive integer. Then there exists an algebra S with integral closure R such that $H(S)$ is as in $\left(^{*}\right)$.

This shows that $H(S)$ is a rather rich invariant.
Section 1 explores the machinery of categories of finite $\max R$-diagonals. We will gloss over this here. The important point to note is that the category of finite diagonals embeds as a full subcategory of the category of subspace systems. In particular, it follows that the category of finite max R-diagonals has a KrullSchmidt theorem. Also, we can plug into the well-known theory of subspace systems (see [Be] and [GP]) to obtain a classification when S is the local ring of a curve singularity with ≤ 4 branches.

Of course, Theorem 0.1 follows from knowing precisely which max R-diagonals arise from subalgebras S. To simplify the explanation of this, let us suppose from now on that R is semilocal. We denote by $k_{\max R}$ the indecomposable $\max R$-diagonal which considered as a subspace system is the vector space k and $|\max R|$ copies of the zero subspace.
0.2. Theorem. Let R be a semilocal Dedekind domain of finite type over an algebraically closed field of characteristic zero k. Let \mathscr{V} be a $\max R$-diagonal. Then \mathscr{V} is isomorphic to the diagonal of a local ring S with integral closure R if and only if \mathscr{V} has $k_{\max R}$ as a direct summand.

In the final section we consider the question of Morita equivalences $\mathscr{D}(S) \sim$ $\mathscr{D}\left(S^{\prime}\right)$ when S, S^{\prime} are the local rings of curves with integral closure R. We examine circumstances in which these equivalences can be lifted from equivalences $H(S)=\mathscr{D}(S) / J(S) \sim \mathscr{D}\left(S^{\prime}\right) / J\left(S^{\prime}\right)=H\left(S^{\prime}\right)$. We prove that if the associated max R-diagonals of S and S^{\prime} contain the same indecomposables (albeit with different multiplicities), then $\mathscr{D}(S)$ and $\mathscr{D}\left(S^{\prime}\right)$ are Morita equivalent. This enables one to write down a large number of Morita equivalences of rings of differential operators. For example, we have the following consequence.
0.3. Theorem. Let S and S^{\prime} be the local rings of algebraic curve singularities with integral closure R. If $H(S)$ and $H\left(S^{\prime}\right)$ are both simple (and nonzero) then $\mathscr{D}(S) \sim \mathscr{D}\left(S^{\prime}\right)$.

As another corollary we can obtain the following classification.
0.4. Corollary. Let S be the local ring of an n-branch curve singularity with integral closure R. Then
(a) If $n=2$ there is exactly one Morita class amongst the $\mathscr{D}(S)$.
(b) If $n=3$ there are at most sixteen Morita classes amongst the $\mathscr{D}(S)$.
(c) If $n \geq 4$ there are infinitely many Morita classes amongst the $\mathscr{D}(S)$.

We complete the introduction with a summary of the contents of the paper. In $\S 1$ we briefly develop the theory of diagonals independently of subspace systems. One reason for doing so is that the category of diagonals admits a duality which cannot be obtained from a duality of subspace systems. This duality turns out to be closely related to the Gorenstein property; see [CHM].

In $\S 2$ we consider the richness of the two invariants. In particular we prove Theorems 0.1 and 0.2 .

The final section considers Morita equivalences of rings of differential operators and proves Theorems 0.3 and 0.4 .

1. Categories of diagonals

This section provides a rapid exposition of the necessary generalities on diagonals. There is, for the most, part a parallel theory of 'subspace problems', so some of the proofs are omitted or else are sketchy.

We cover the definitions of the categories I-Diag in $\S 1.1$; each of which is contravariantly self-equivalent ($\S 1.2$) and, possesses direct sums and hence indecomposables ($\S 1.3$) and tensor products ($\S 1.4$). Finally we compare the categories of diagonals with those of the ' n-subspace problem' in $\S 1.5$.
1.1. Fix once and for all an indexing set I and a base-field k.

Suppose $\mathscr{W}=\left(W ; W_{i}: i \in I\right)$ is a $1+I$-tuple of vector spaces. We say that \mathscr{W} is an I-diagonal if
(1) $W \subseteq \bigoplus_{i \in I} W_{i}$;
(2) $W \cap W_{i}=0$ for each $i \in I$;
(3) $\pi_{i}(W)=W_{i}$ for each $i \in I$, where $\pi_{i}: \bigoplus_{j \in I} W_{j} \rightarrow \bigoplus_{j \in I} W_{j}$ is the projection onto the i th summand.
W is termed the slant of \mathscr{W}, and we will write Slant \mathscr{W} if useful. W_{i} is termed the i th summand of \mathscr{W}, and $\bigoplus_{i \in I} W_{i}$, its sum, is written Sum \mathscr{W}. π_{i} will always mean the i th projection map and $\pi_{i} \mathscr{W}$ the i th summand. The inclusion map Slant $\mathscr{W} \rightarrow \operatorname{Sum} \mathscr{W}$ is denoted by i, and the projection map Sum $\mathscr{W} \rightarrow \operatorname{Sum} \mathscr{W} /$ Slant \mathscr{W} is denoted by χ. We define $\left(\pi_{i} \mathscr{W}\right)^{\perp}:=\operatorname{ker} \pi_{i}=$ $\bigoplus_{j \neq i} \pi_{j} \mathscr{W}$ and call it the i th perp. We say a diagonal is finite dimensional if all its summands are finite dimensional and finite if its sum is finite dimensional.

Given I-diagonals $\mathscr{W}=\left(W ; W_{i}: i \in I\right)$ and $\mathscr{V}=\left(V ; V_{i}: i \in I\right)$ we define

$$
\begin{aligned}
& \mathscr{E}(\mathscr{W}, \mathscr{V}):=\left\{\theta \in \operatorname{Hom}(W, V): \theta\left(W \cap W_{i}^{\perp}\right) \subseteq V \cap V_{i}^{\perp} \text { for } i \in I\right\} \\
&=\{\theta \in \operatorname{Hom}(\operatorname{Slant} \mathscr{W}, \operatorname{Slant} \mathscr{V}): \\
&\left.\theta\left(\text { Slant } \mathscr{W} \cap \operatorname{ker} \pi_{i}\right) \subseteq \operatorname{Slant} \mathscr{V} \cap \operatorname{ker} \pi_{i} \text { for all } i \in I\right\}, \\
& \mathscr{F}(\mathscr{W}, \mathscr{V}):=\left\{\theta \in \operatorname{Hom}\left(\bigoplus_{i \in I} W_{i}, \bigoplus_{i \in I} V_{i}\right): \theta\left(W_{i}\right) \subseteq V_{i} \text { for } i \in I \text { and } \theta(W) \subseteq V\right\} \\
&=\left\{\theta \in \operatorname{Hom}(\operatorname{Sum} \mathscr{W}, \operatorname{Sum} \mathscr{V}): \theta \pi_{i}=\pi_{i} \theta\right. \\
&\quad \text { for all } i \in I \text { and } \theta(\text { Slant } \mathscr{W}) \subseteq \operatorname{Slant} \mathscr{V}\},
\end{aligned}
$$

$$
\mathscr{G}(\mathscr{W}, \mathscr{V}):=\left\{\theta \in \operatorname{Hom}\left(\left(\bigoplus_{i \in I} W_{i}\right) / W,\left(\bigoplus_{i \in I} V_{i}\right) / V\right): \theta \chi\left(W_{i}\right) \subseteq \chi\left(V_{i}\right) \text { for } i \in I\right\}
$$

We distinguish $\mathscr{E}(\mathscr{W}):=\mathscr{E}(\mathscr{W}, \mathscr{W}), \mathscr{F}(\mathscr{W}):=\mathscr{F}(\mathscr{W}, \mathscr{W})$, and $\mathscr{G}(\mathscr{W}):=$ $\mathscr{G}(\mathscr{W}, \mathscr{W})$. Note that $\mathscr{E}(\mathscr{W})$ is an algebra while $\mathscr{E}(\mathscr{W}, \mathscr{V})$ is an $\mathscr{E}(\mathscr{V})$ $\mathscr{E}(\mathscr{W})$ bimodule and similarly for \mathscr{F} and \mathscr{G}.

We define $I-\operatorname{diag}_{\mathscr{E}}$, respectively I - $\operatorname{diag}_{\mathscr{F}}$, respectively I - $\operatorname{diag}_{\mathscr{G}}$ to be the category whose objects are the I-diagonals and whose morphisms are given by $\operatorname{Mor}(\mathscr{V}, \mathscr{W}):=\mathscr{E}(\mathscr{V}, \mathscr{W})$, respectively $\operatorname{Mor}(\mathscr{V}, \mathscr{W}):=\mathscr{F}(\mathscr{V}, \mathscr{W})$, respectively $\operatorname{Mor}(\mathscr{V}, \mathscr{W}):=\mathscr{G}(\mathscr{V}, \mathscr{W})$.

Define maps ^: $\mathscr{F}(\mathscr{W}, \mathscr{V}) \longrightarrow \mathscr{E}(\mathscr{W}, \mathscr{V}): \theta \longmapsto \hat{\theta}$, where $\hat{\theta}(w)=\theta(w)$ and $\quad: \mathscr{F}(\mathscr{W}, \mathscr{V}) \longrightarrow \mathscr{G}(\mathscr{W}, \mathscr{V}): \theta \longmapsto \check{\theta}$, where $\dot{\theta}(w+W)=\theta(w)+V$.

Note that these maps are k-algebra homomorphisms when $\mathscr{W}=\mathscr{V}$. The next proposition shows that the three categories defined above are isomorphic, so henceforth where convenient we shall just use the generic I-diag.

Proposition. Let \mathscr{W}, \mathscr{V}, and \mathscr{U} be I-diagonals.
(1) The linear map ${ }^{\wedge}$ is a bijection. In particular ${ }^{\wedge}: \mathscr{F}(\mathscr{W}) \rightarrow \mathscr{E}(\mathscr{W})$ is an isomorphism of k-algebras.
(2) The linear map ${ }^{\text {^ }}$ is a bijection. In particular ${ }^{`}: \mathscr{F}(\mathscr{W}) \rightarrow \mathscr{G}(\mathscr{W})$ is an isomorphism of k-algebras.
(3) We have a commuting diagram:
$\mathscr{E}(\mathscr{V}, \mathscr{U}) \times \mathscr{E}(\mathscr{W}, \mathscr{V}) \xrightarrow{\hat{}^{-1} \times^{-1}} \mathscr{F}(\mathscr{V}, \mathscr{U}) \times \mathscr{F}(\mathscr{W}, \mathscr{V})$

$$
\longrightarrow \quad \mathscr{G}(\mathscr{W}, \mathscr{U})
$$

where the vertical maps are given by composition of linear maps.
(4) We have a commuting diagram:

\[

\]

where the $\mu_{\mathscr{E}}, \mu_{\mathscr{F}}$, and $\mu_{\mathscr{G}}$ are the evaluation maps.
Proof. (1), (2), and (4) are routine extensions of [CH2, Proposition 5.3]. (3) is immediate from the definitions.

Example. Given a vector space V we write V_{I} for any diagonal isomorphic to the diagonal which has all its summands equal to V and slant the diagonal copy of V.
1.2. Self-duality. Write V^{*} for $\operatorname{Hom}(V, k)$ when V is a vector space. We may define a (contravariant) equivalence of categories $*: I$-Diag $\longrightarrow I$-Diag by

$$
\mathscr{V}^{*}:=\left(\left\{\theta \in \bigoplus\left(\pi_{i} \mathscr{V}\right)^{*}: \theta(\operatorname{Slant} \mathscr{V})=0\right\} ;\left(\pi_{i} \mathscr{V}\right)^{*}: i \in I\right)
$$

whenever \mathscr{V} is an I-Diagonal and $\theta^{*}: \bigoplus\left(\pi_{i} \mathscr{W}\right)^{*} \longrightarrow \bigoplus\left(\pi_{i} \mathscr{V}\right)^{*}: \sum_{i} \psi_{i} \longmapsto$ $\sum \psi_{i} \theta \pi_{i}$ whenever $\theta \in \mathscr{F}(\mathscr{V}, \mathscr{W})$. The main point to check is that \mathscr{V}^{*} is a diagonal. Indeed if $\theta \in \operatorname{Slant}\left(\mathscr{V}^{*}\right) \cap\left(\pi_{i} \mathscr{V}^{*}\right)$, then

$$
\theta\left(\bigoplus_{i \in I} \pi_{i} \mathscr{V}\right) \subseteq \theta\left(\text { Slant } \mathscr{V}+\left(\pi_{i} \mathscr{V}\right)^{\perp}\right)=0
$$

and so $\theta=0$. Further if $x \in \operatorname{Sum} \mathscr{V}$ is such that (Slant $\left.\mathscr{V}^{*}+\bigoplus_{j \neq i}\left(\pi_{j} \mathscr{V}\right)^{*}\right)(x)$ $=0$, then $x \in \pi_{i} \mathscr{V} \cap \operatorname{Slant} \mathscr{V}=0$. Thus $\operatorname{Slant}\left(\mathscr{V}^{*}\right)+\oplus_{j \neq i}\left(\pi_{j} \mathscr{V}\right)^{*}=$ $\oplus\left(\pi_{j} \mathscr{V}\right)^{*}$ and so $\pi_{i}\left(\operatorname{Slant}\left(\mathscr{V}^{*}\right)\right)=\left(\pi_{i} \mathscr{V}\right)^{*}=\pi_{i}\left(\mathscr{V}^{*}\right)$.

We should point out that ${ }^{* *}$ is naturally equivalent to the identity. In particular it follows that $\operatorname{Mor}(\mathscr{V}, \mathscr{V}) \simeq \operatorname{Mor}\left(\mathscr{V}^{*}, \mathscr{V}^{*}\right)^{o p}$.
1.3. Direct sums. Suppose \mathscr{V}_{l} is an I-diagonal for each $l \in L$. Define the direct sum of the \mathscr{V}_{l} by

$$
\bigoplus_{l \in L} \mathscr{V}_{l}:=\left(\sum_{l \in L} \operatorname{Slant} \mathscr{V}_{l} ; \bigoplus_{l \in L} \pi_{i}\left(\mathscr{V}_{l}\right): i \in I\right) .
$$

Let $\sigma_{l} \in \operatorname{Mor}\left(\mathscr{V}_{l}, \oplus_{l \in L} \mathscr{V}_{l}\right)$ be the natural 'embedding' and let $\pi_{l} \in$ $\operatorname{Mor}\left(\oplus_{l \in L} \mathscr{V}_{l}, \mathscr{V}_{l}\right)$ be the natural 'projection'. Let $e_{l}=\pi_{l} \sigma_{l}$. If $L=\{1, \ldots, n\}$, $M=\{1, \ldots, p\}$, and \mathscr{W}_{m} is an I-diagonal for each $m \in M$, then we have

$$
\begin{aligned}
\operatorname{Mor} & \left(\bigoplus_{l \in L} \mathscr{V}_{l}, \bigoplus_{m \in M} \mathscr{W}_{m}\right) \\
& =\bigoplus_{(l, m) \in L \times M} e_{m} \operatorname{Mor}\left(\bigoplus_{l \in L} \mathscr{V}_{l}, \bigoplus_{m \in M} \mathscr{W}_{m}\right) e_{l} \\
& \cong \bigoplus_{(l, m) \in L \times M} \sigma_{m} \operatorname{Mor}\left(\mathscr{V}_{l}, \mathscr{W}_{m}\right) \pi_{l} \\
& =\left(\begin{array}{cccc}
\operatorname{Mor}\left(\mathscr{V}_{1}, \mathscr{W}_{1}\right) & \operatorname{Mor}\left(\mathscr{V}_{2}, \mathscr{W}_{1}\right) & \cdots & \operatorname{Mor}\left(\mathscr{V}_{n}, \mathscr{W}_{1}\right) \\
\operatorname{Mor}\left(\mathscr{V}_{1}, \mathscr{W}_{2}\right) & \operatorname{Mor}\left(\mathscr{V}_{2}, \mathscr{W}_{2}\right) & \cdots & \operatorname{Mor}\left(\mathscr{V}_{n}, \mathscr{W}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Mor}\left(\mathscr{V}_{1}, \mathscr{W}_{p}\right) & \operatorname{Mor}\left(\mathscr{V}_{2}, \mathscr{W}_{p}\right) & \cdots & \operatorname{Mor}\left(\mathscr{V}_{n}, \mathscr{W}_{p}\right)
\end{array}\right) .
\end{aligned}
$$

We say an I-diagonal \mathscr{V} is indecomposable if it is nonzero and $\mathscr{V} \cong \mathscr{W}_{1} \oplus \mathscr{W}_{2}$ implies $\mathscr{W}_{1} \cong 0$ or $\mathscr{W}_{2} \cong 0$.

The following result is easily derived.
Proposition. (1) An I-diagonal \mathscr{V} is indecomposable if and only if $\operatorname{Mor}(\mathscr{V}, \mathscr{V})$ is a local ring.
(2) Every finite I-diagonal decomposes in an essentially unique way as a sum of indecomposable I-diagonals.
(3) Suppose $\mathscr{V}=\oplus_{i} \mathscr{V}_{i}^{n_{i}}$ where each n_{i} is a positive integer and each \mathscr{V}_{i} is an indecomposable I-diagonal with $\mathscr{V}_{i} \neq \mathscr{V}_{j}$ when $i \neq j$. Then $\operatorname{Mor}(\mathscr{V}, \mathscr{V}) \cong$ $\oplus_{i} \operatorname{Mor}\left(\mathscr{V}, \mathscr{V}_{i}\right)^{n_{i}}$ is a decomposition of $\operatorname{Mor}(\mathscr{V}, \mathscr{V})$ into indecomposable projective right ideals. In particular, the basic algebra corresponding to $\operatorname{Mor}(\mathscr{V}, \mathscr{V})$ is $\operatorname{Mor}\left(\oplus_{i} \mathscr{V}_{i}, \oplus_{i} \mathscr{V}_{i}\right)$.
Example. k_{I} is an indecomposable I-diagonal. We say a diagonal \mathscr{V} is spanned by perps if Slant $\mathscr{V}=\sum_{i \in I}$ Slant $\mathscr{V} \cap\left(\pi_{i} \mathscr{V}\right)^{\perp}$. It is easy to check that the only indecomposable I-diagonal which is not spanned by perps is k_{I} and further that an I-diagonal is spanned by perps if and only if it has no indecomposable direct summand which is isomorphic to k_{I}.
1.4. Tensor products. Suppose V, W are vector spaces, I, J are sets, \mathscr{V} is an I-diagonal, and \mathscr{W}. is a J-diagonal. We have various tensor products.

First we define an I-diagonal $\mathscr{V} \otimes W:=\left(\right.$ Slant $\left.\mathscr{V} \otimes W ; \pi_{i}(\mathscr{V}) \otimes W: i \in I\right)$ and by similar means a J-diagonal $V \otimes \mathscr{W}$. At the same time we have an $I \times J$-diagonal $\mathscr{V} \otimes \mathscr{W}:=\left(\right.$ Slant $\mathscr{V} \otimes$ Slant $\left.\mathscr{W} ; \pi_{i} \mathscr{V} \otimes \pi_{j} \mathscr{W}:(i, j) \in I \times J\right)$.

If \mathscr{V}, \mathscr{W} are finite I-diagonals and $\mathscr{V}^{\prime}, \mathscr{W}^{\prime}$ are J-diagonals and we write V, W, V^{\prime}, and W^{\prime} for the slants of $\mathscr{V}, \mathscr{W}, \mathscr{V}^{\prime}$, and \mathscr{W}^{\prime}, respectively, then, after making the appropriate identifications, we have

$$
\begin{aligned}
\mathscr{E}(\mathscr{V} & \left., \mathscr{V}^{\prime}\right) \otimes \mathscr{E}\left(\mathscr{W}, \mathscr{W}^{\prime}\right) \\
& \subseteq \mathscr{E}\left(\mathscr{V} \otimes \mathscr{W}, \mathscr{V}^{\prime} \otimes \mathscr{W}^{\prime}\right) \\
& \subseteq \mathscr{E}\left(\mathscr{V} \otimes W, \mathscr{V}^{\prime} \otimes W^{\prime}\right) \cap \mathscr{E}\left(V \otimes \mathscr{W}, V^{\prime} \otimes \mathscr{W}^{\prime}\right) \\
& =\left(\mathscr{E}\left(\mathscr{V}, \mathscr{V}^{\prime}\right) \otimes \operatorname{Hom}\left(W, W^{\prime}\right)\right) \cap\left(\operatorname{Hom}\left(V, V^{\prime}\right) \otimes \mathscr{E}\left(\mathscr{W}, \mathscr{W}^{\prime}\right)\right) \\
& =\mathscr{E}\left(\mathscr{V}, \mathscr{V}^{\prime}\right) \otimes \mathscr{E}\left(\mathscr{W}, \mathscr{W}^{\prime}\right)
\end{aligned}
$$

We thus have the following proposition.
Proposition. If \mathscr{V}, \mathscr{W} are finite I-diagonals and $\mathscr{V}^{\prime}, \mathscr{W}^{\prime}$ are J-diagonals, then there is a canonical isomorphism $\operatorname{Mor}\left(\mathscr{V} \otimes \mathscr{W}, \mathscr{V}^{\prime} \otimes \mathscr{W}^{\prime}\right) \simeq \operatorname{Mor}\left(\mathscr{V}, \mathscr{V}^{\prime}\right) \otimes$ $\operatorname{Mor}\left(\mathscr{W}, \mathscr{W}^{\prime}\right)$.

Remark. If \mathscr{V} or \mathscr{W} is spanned by perps, then so is $\mathscr{V} \otimes \mathscr{W}$.
1.5. The n-subspace problem. The study of diagonals is closely related to the following much studied problem "Given a vector space V in what ways (up to appropriate isomorphism) can one choose n subspaces of V ". We can use the extensive theory developed in the setting of this problem to give information on diagonals. In particular, we may obtain lists of indecomposable diagonals for $|I| \leq 4$.

We say a $1+I$-tuple $\mathscr{S}=\left(S ; S_{i}: i \in I\right)$ of vector spaces is an I-subspace system provided $S_{i} \subseteq S$ for each $i \in I$. Given two I-subspace systems $\mathscr{S}=$ $\left(S ; S_{i}: i \in I\right)$ and $\mathscr{T}=\left(T ; T_{i}: i \in I\right)$ we can define $\operatorname{Hom}(\mathscr{S}, \mathscr{T})=\{\theta \in$ $\operatorname{Hom}(S, T): \theta S_{i} \subseteq T_{i}$ for all $\left.i \in I\right\}$. In this way we create a category, 'the category of I-subspace systems'.

There is a functor, l, from I-diag $\mathscr{E}^{\varepsilon}$ to the category of I-subspace systems defined by $l(\mathscr{W}):=\left(\right.$ Slant \mathscr{W}; Slant $\left.\mathscr{W} \cap \operatorname{ker} \pi_{i}: i \in I\right)$ and $l(\phi)=\phi$ whenever $\phi \in \mathscr{E}(\mathscr{W}, \mathscr{V})$. Given an I-subspace system $\mathscr{T}=\left(T ; T_{i}: i \in I\right)$ the $1+I$ tuple $\mathscr{W}:=\left(T ; T / T_{i}: i \in I\right.$) is a diagonal (with $T \hookrightarrow \bigoplus_{i \in I} T / T_{i}$ the canonical map) if and only if

$$
\begin{equation*}
\bigcap_{j \neq i} T_{j}=0 \quad \text { for all } i \in I \tag{*}
\end{equation*}
$$

Further when \mathscr{W} is a diagonal we have $l(\mathscr{W}) \cong \mathscr{T}$. Thus we may regard I-diag as a subcategory of the I-subspace systems via l.

Proposition. The functor 1 makes I-diag isomorphic to a full subcategory of the category of I-subspace systems. A subspace system $\mathscr{T}=\left(T ; T_{i}: i \in I\right)$ is in the image of l if and only if $\left(^{*}\right)$ is satisfied.

The category of I-subspace systems is endowed with both direct sums and tensor products which extend the corresponding notions developed for I-diag. Further, because I-diag is a full subcategory of the I-subspace systems, its indecomposable objects are precisely those diagonals which are indecomposable
when regarded as I-subspace systems. There are comparatively few indecomposable I-subspace systems which do not correspond to I-diagonals. Indeed by [Be, $\S 6$, Corollary to Lemma 2], if I is finite, then there are precisely $|I|+1$ such subspace systems, namely $(k ; 0, k, \ldots, k), \ldots,(k ; k, \ldots, k, 0)$ and $(k ; k, \ldots, k)$ (after ordering I).

Using this observation we can classify I-diagonals for $|I| \leq 4$. Indeed if $I=\{1,2\}$, then the only indecomposable is k_{I}. For $I=\{1,2,3\}$ the indecomposables are $k_{I}, k_{I}^{*},(k ; k, k, 0),(k ; k, 0, k)$, and $(k ; 0, k, k)$. If $\delta, \delta^{*}, \epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in\{0,1\}$ and $\mathscr{V}=k_{I}^{* \delta^{*}} \oplus(k ; 0, k, k)^{\epsilon_{1}} \oplus(k ; k, 0, k)^{\epsilon_{2}} \oplus$ $(k ; k, k, 0)^{\epsilon_{3}} \oplus k_{I}^{\delta}$, then define $\mathscr{E}_{\delta, \delta^{*}, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}}:=\mathscr{E}(\mathscr{V})$. For example,

$$
\mathscr{E}_{1,1,1,1,1} \cong\left\{\left(\begin{array}{cccccc}
\alpha^{*} & 0 & \delta_{1} & 0 & \delta_{3} & \gamma_{1} \\
0 & \alpha^{*} & -\delta_{1} & \delta_{2} & 0 & \gamma_{2} \\
0 & 0 & \alpha_{1} & 0 & 0 & \beta_{1} \\
0 & 0 & 0 & \alpha_{2} & 0 & \beta_{2} \\
0 & 0 & 0 & 0 & \alpha_{3} & \beta_{3} \\
0 & 0 & 0 & 0 & 0 & \alpha
\end{array}\right): \alpha, \alpha^{*}, \alpha_{p}, \beta_{q}, \gamma_{r} \in k\right\} .
$$

The case $I=\{1,2,3,4\}$ is somewhat more complicated and in particular there are infinitely many indecomposables. These indecomposables may be read off from Gelfand and Ponomarev's classification of I-subspace systems in [GP]. When $|I| \geq 5$ the problem is wild. However, Kac's work in [KR] does describe the dimension vectors of the indecomposables.

2. The diversity of finite-dimensional factors

In this section we associate diagonals to curves and determine precisely which diagonals arise in this way.
2.1. Suppose R is a Dedekind domain of finite type over an algebraically closed field of characteristic zero k. Further, suppose that if $m \in \max R$, then $R / m \cong k$.

We recall some notation and results from [CH] and [CH2]. Suppose V is a subspace of R. We describe V as dense if it contains an ideal of R with finite codimension in R. Given m a maximal ideal of R let $V(m)=$ $\bigcap_{n=0}^{\infty} V+m^{n}$. We say $V \subseteq R$ is m-primary if it contains a power of m or equivalently if $V=V(m)$. Define $V^{+}=\bigcap_{m \in \max R} V(m)$. We say V is primary decomposable if $V=V^{+}$or equivalently $[\mathrm{CH}, 2.4]$ if it is the intersection of finitely many primary subspaces of R. Define V^{-}to be the sum of all the primary decomposable subspaces of V. We will have $V=V^{-}$if and only if V is primary decomposable [CH, 2.14]. If S is a dense subalgebra of R, then so is S^{+}; further, Spec $R \rightarrow$ Spec S^{+}is injective, Spec $S^{+} \rightarrow$ Spec S is unramified, and $S^{-}=$ann S^{+} / S (see [CH2, 2.4; CH, 2.16]).

The canonical map $V^{+} / V^{-} \longrightarrow \oplus V^{+}(m) / V^{-}(m)$ is an isomorphism of vector spaces [CH, 2.7], which we shall treat as an identification. With this in mind, we may associate to V a finite $\max R$-diagonal $\mathscr{V}:=\left(V / V^{-} ; V^{+}(m) / V^{-}(m)\right.$: $m \in \max R)$. Henceforth where we denote a dense subspace of R by a latin letter the corresponding diagonal will be denoted by the corresponding script letter.

Example. Let $R=k[x]_{(x-1)} \cap k[x]_{(x+1)}$, with maximal ideals $m_{1}=(x-1) R$, $m_{2}=(x+1) R$. Consider $S=k+\left(x^{2}-1\right)^{2} R$. Then

$$
\begin{aligned}
S^{+} & =S\left(m_{1}\right) \cap S\left(m_{2}\right)=\left(k+(x-1)^{2} R\right) \cap\left(k+(x+1)^{2} R\right) \\
& =k+k\left(x^{3}-3 x\right)+\left(x^{2}-1\right)^{2} R
\end{aligned}
$$

and $S^{-}=\left(x^{2}-1\right)^{2} R$. Note that Spec S has a unique singularity, with two cuspidal branches. Pulling the branches apart yields Spec S^{+}, which has two cuspidal singular points.
Lemma. Let S be a subalgebra of R with integral closure R, and let ψ : $\max R \rightarrow \max S$ be the normalisation map. Let Sing S denote the subset of $\max S$ consisting of singular points. Then

$$
\mathscr{S}=\bigoplus_{x \in \operatorname{Sing} S} \mathscr{S}_{x},
$$

where \mathscr{S}_{x} is a $\max R$-diagonal with $\pi_{m}\left(\mathscr{S}_{x}\right)=0$ for $\psi(m) \neq x$.
Set-theoretic knowledge of any branching is enough to determine some of the indecomposables occurring. Suppose T is a finite set of maximal ideals of R which is not a singleton. For a vector space Z define a diagonal $Z_{\max R, T}:=$ $\left(Z ; Z_{\max R, T, m}: m \in \max R\right)$ where $Z_{\max R, T, m}$ is a copy of Z if $m \in T$ and is zero otherwise.
Proposition. Suppose S is a dense subalgebra of R and we have normalization map $\psi: \max R \longrightarrow \max S$. Suppose $x \in \max S$ is a singular point over which ψ is not injective. Then $k_{\max R, \psi^{-1}(x)}$ is an indecomposable summand of \mathscr{S}.
Proof. By virtue of the lemma we may suppose that S is local. Define $K=$ $\sum_{m}\left(\right.$ Slant $\left.\mathscr{S} \cap\left(\pi_{m} \mathscr{S}\right)^{\perp}\right)$, and let Slant $\mathscr{S}=K \oplus L$. As ψ is not injective over x, if $m \in \max R$ there exists $m^{\prime} \neq m$ with $\psi\left(m^{\prime}\right)=x$. Also, $S^{-} \neq S$. Thus, for each $m \in \max R$ we have that

$$
S \cap \bigcap_{\substack{n \in \max R \\ n \neq m}} S^{-}(n) \subseteq S \cap\left(S^{-}+m^{\prime}\right)=x .
$$

It follows that K lies inside x / S^{-}and so $L \neq 0$. It is not hard to see that

$$
\mathscr{S} \cong\left(K ; \pi_{m} K: m \in \max R\right) \oplus L_{\max R, \psi^{-1}(x)},
$$

as required.
2.2. Amazingly 'almost all' (see Proposition of $\S 2.1$) finite $\max R$-diagonals occur as diagonals corresponding to curves.
Theorem. Suppose \mathscr{V} is a finite $\max R$-diagonal, and let Presing $:=\{m \in$ $\left.\max R: \pi_{m} \mathscr{V} \neq 0\right\}$. Then there is a dense subalgebra $S \subseteq R$ such that
(1) the normalization map $\max R \longrightarrow \max S$ is injective whenever $\pi_{m} \mathscr{V}=0$ and identifies together all the points m for which $\pi_{m} \mathscr{V} \neq 0$.
(2) $\mathscr{S} \cong \mathscr{V} \oplus k_{\max R, \text { Presing }}$.

Proof. Let

$$
n:=\max \left\{\operatorname{dim} \pi_{m} \mathscr{V}: m \in \max R\right\} .
$$

Without loss of generality we may assume $\pi_{m} \mathscr{V} \subseteq m^{n} / m^{2 n}$ for each $m \in \max R$ and Slant $\mathscr{V} \subseteq \mu^{n} / \mu^{2 n}$ where $\mu=\bigcap$ Presing and $\mu^{n} / \mu^{2 n}$ has been identified
with $\bigoplus_{m \in \text { Presing }} m^{n} / m^{2 n}$. Thus Slant $\mathscr{V}=\Omega / \mu^{2 n}$ where $\mu^{2 n} \subseteq \Omega \subseteq \mu^{n}$. Now take $S=k+\Omega$. It is easy to verify that S has the required properties.

For the rest of this section we suppose that $\max R$ is infinite.
Corollary. Suppose A is a finite-dimensional algebra and n is a positive integer. Then there is a commutative algebra S with integral closure R such that

$$
\mathscr{D}(S) / J(S) \cong\left(\begin{array}{cc}
B & * \\
0 & M_{n}(k)
\end{array}\right)
$$

where B is a subalgebra of a matrix algebra which is isomorphic to A.
Proof. Choose \mathscr{V} an I-diagonal where I is finite such that $\operatorname{Mor}(\mathscr{V}, \mathscr{V}) \cong A$ (see [CH2, Theorem 5.5]). We have

$$
\begin{aligned}
\operatorname{Mor}\left(\mathscr{V} \otimes k_{\{0,1,2\}}^{*}, \mathscr{V} \otimes k_{\{0,1,2\}}^{*}\right) & \cong \operatorname{Mor}(\mathscr{V}, \mathscr{V}) \otimes \operatorname{Mor}\left(k_{\{0,1,2\}}^{*}, k_{\{0,1,2\}}^{*}\right) \\
& \cong A
\end{aligned}
$$

$\mathscr{V} \otimes k_{\{0,1,2\}}^{*}$ does not have $k_{I \times\{0,1,2\}}$ as an indecomposable summand by the remark in §1.4. Thus without loss of generality k_{I} is not an indecomposable summand of \mathscr{V}. Without loss of generality $I \subseteq \max R$. Define a $\max R$ diagonal $\mathscr{W}:=\left(\right.$ Slant $\left.\mathscr{V} ; \mathscr{W}_{m}: m \in \max R\right)$ where \mathscr{W}_{m} is $\pi_{m} \mathscr{V}$ when $m \in I$ and zero otherwise. By the theorem we may choose S a dense subalgebra of R such that $\mathscr{S} \cong \mathscr{W} \oplus k_{\max R, I}^{n}$. This S has the required properties.

Remark. The converse of this result also holds, see [Br , Theorem 5.5]. It also follows from the proposition of $\S 2.1$.

3. Morita equivalences

3.1. Differential operators. Retain the hypotheses of $\S 2.1$.

Given dense subspaces V, W we may define the differential operators from V to W by $\mathscr{D}(V, W):=\{\theta \in \mathscr{D}(Q): \theta * V \subseteq W\}$ where $\mathscr{D}(Q)$ is the ring of differential operators on Q, the field of fractions of $R . \mathscr{D}(V)$ is a ring, and $\mathscr{D}(V, W)$ is a $\mathscr{D}(W)$ - $\mathscr{D}(V)$-bimodule.

There is a close connection between the subbimodule structure of $\mathscr{D}(V, W)$ and the diagonals associated to V and W. Indeed $\mathscr{D}(V, W)$ has a unique minimal nonzero subbimodule $J(V, W)$ and the canonical map $\mathscr{D}(V, W) \longrightarrow \operatorname{Mor}(\mathscr{V}, \mathscr{W})$ is surjective with kernel $J(V, W):=\mathscr{D}\left(V^{+}, W\right)$ $=\mathscr{D}\left(V^{+}, W^{-}\right)=\mathscr{D}\left(V, W^{-}\right)$. For the details, see $[\mathrm{CH} 2]$. Further, $\mathscr{D}(V, W) J(U, V), J(V, W) \mathscr{D}(U, V) \subseteq J(U, W)$ and the following diagram commutes

$$
\begin{aligned}
& \mathscr{D}(V, W) / J(V, W) \times \mathscr{D}(U, V) / J(U, V) \longrightarrow \mathscr{D}(U, W) / J(U, W) \\
& \longrightarrow \\
& \operatorname{Mor}(\mathscr{V}, \mathscr{W}) \times \operatorname{Mor}(\mathscr{U}, \mathscr{V}) \longrightarrow \\
& \operatorname{Mor}(\mathscr{U}, \mathscr{W})
\end{aligned}
$$

A portion of this information may be expressed by saying there is a functor from the category of dense subspaces of R (with morphisms being differential operators) to the category of $\max R$-diagonals.
3.2. Morita theory. We are interested in finding pairs V, W of dense subspaces of R whose rings of differential operators are Morita equivalent. The most natural class of Morita equivalences arise when $\mathscr{D}(V, W)$ is the relevent progenerator. We examine the question "when does the Morita context

$$
\left(\begin{array}{cc}
\mathscr{D}(V) & \mathscr{D}(W, V) \\
\mathscr{D}(V, W) & \mathscr{D}(W)
\end{array}\right) \subseteq M_{2}\left(\mathscr{D}_{Q}(Q)\right)
$$

give rise to a Morita equivalence between $\mathscr{D}(V)$ and $\mathscr{D}(W)$?" This problem can be reduced to one phrased in terms of the associated diagonals of V and W as follows.

Theorem. Suppose V and W are dense subspaces of R with corresponding diagonals \mathscr{V} and \mathscr{W}. Consider the following statements:
(1) The canonical maps

$$
\frac{\mathscr{D}(V, W)}{J(V, W)} \times \frac{\mathscr{D}(W, V)}{J(W, V)} \longrightarrow \frac{\mathscr{D}(W)}{J(W)}
$$

and

$$
\frac{\mathscr{D}(W, V)}{J(W, V)} \times \frac{\mathscr{D}(V, W)}{J(V, W)} \longrightarrow \frac{\mathscr{D}(V)}{J(V)}
$$

are surjective.
(2) $\mathscr{D}(V, W) \mathscr{D}(W, V)=\mathscr{D}(W)$ and $\mathscr{D}(W, V) \mathscr{D}(V, W)=\mathscr{D}(V)$.
(3) $\mathscr{E}(\mathscr{V}, \mathscr{W}) \mathscr{E}(\mathscr{W}, \mathscr{V})=\mathscr{E}(\mathscr{W})$ and $\mathscr{E}(\mathscr{W}, \mathscr{V}) \mathscr{E}(\mathscr{V}, \mathscr{W})=\mathscr{E}(\mathscr{V})$.
(4) $\mathscr{D}(V)$ are $\mathscr{D}(W)$ are Morita equivalent.
(5) $\mathscr{D}(V) / J(V)$ and $\mathscr{D}(W) / J(W)$ are Morita equivalent.
(1), (2), and (3) are equivalent. Either implies (4) and (4) implies (5).

Proof. The equivalence of (1), (2), and (3) stems immediately from the remarks of $\S 3.1$. The rest is routine Morita theory.

3.3. Morita theory for simple $\mathscr{D}(V)$.

Corollary. Suppose V is a dense subspace of R; then the following are equivalent:
(1) V is primary decomposable.
(2) $\mathscr{D}(V)$ is Morita equivalent to $\mathscr{D}(W)$, the equivalence being induced by the progenerator $\mathscr{D}(V, W)_{\mathscr{D}(V)}$, for every primary decomposable subspace $W \subseteq$ R.
(3) $\mathscr{D}(V)$ is Morita equivalent to $\mathscr{D}(W)$, for some primary decomposable subspace $W \subseteq R$.
(4) $\mathscr{D}(V)$ is a simple ring.
(5) $\mathscr{D}(W, V) \cdot W=V$ for every primary decomposable subspace $W \subseteq R$.
(6) $\mathscr{D}(W, V) \cdot W=V$ for some primary decomposable subspace $W \subseteq R$.

Proof. Suppose V and W are primary decomposable subspaces of R. Then [CH2, Proposition 4.4] asserts that $\mathscr{D}(V)$ and $\mathscr{D}(W)$ are simple rings. Hence

$$
\mathscr{D}(V, W) \mathscr{D}(W, V)=\mathscr{D}(W) \quad \text { and } \quad \mathscr{D}(W, V) \mathscr{D}(V, W)=\mathscr{D}(V)
$$

since in each case the left-hand side is nonzero (for example, it contains a nonzero ideal of R). Thus $\mathscr{D}(V)$ and $\mathscr{D}(W)$ are Morita equivalent, or (1) implies (2). A priori (2) implies (3).
(3) implies that $\mathscr{D}(V)$ is Morita equivalent to a simple ring. In particular (3) implies (4).

Suppose $\mathscr{D}(V)$ is a simple ring and W is primary decomposable. We have

$$
0 \neq \operatorname{Ann}_{\mathscr{D}(V)}(V / \mathscr{D}(W, V) \cdot W) \subseteq \mathscr{D}(V)
$$

where the inequality occurs because the annihilator contains a nonzero ideal of R. Thus $\operatorname{Ann}_{\mathscr{D}(V)}(V / \mathscr{D}(W, V) \cdot W)=\mathscr{D}(V)$ and hence $\mathscr{D}(W, V) \cdot W=V$, proving that (4) implies (5). A priori (5) implies (6).

Finally suppose W is a primary decomposable subspace of R. Recall that $\mathscr{D}(W, V)=J(W, V)=\mathscr{D}\left(W, V^{-}\right)$and hence $\mathscr{D}(W, V) * V \subseteq V^{-}$. Thus (6) implies (1) and the cycle is complete.

Recall (from [CH2]) that a dense subalgebra of R is primary decomposable if and only if the normalization map is injective. Thus, specialising the above result to dense subalgebras, we obtain a new proof of a theorem of [SS].

Theorem: Smith and Stafford. Suppose S_{1}, S_{2} are dense subalgebras of R such that the normalization map $\operatorname{Max} R \longrightarrow \operatorname{Max} S_{1}$ is injective. Then $\mathscr{D}\left(S_{1}\right)$ and $\mathscr{D}\left(S_{2}\right)$ are Morita equivalent if and only if the normalization map $\operatorname{Max} R \longrightarrow$ $\operatorname{Max} S_{2}$ is injective. When this is the case $\mathscr{D}\left(S_{1}, S_{2}\right) \mathscr{D}\left(S_{1}\right)$ is the progenerator giving rise to the Morita equivalence.
3.4. Morita theory for simple factors and two branch singularities. The main idea behind the theorem of $\S 3.2$ is that one can lift Morita equivalences from the level of the finite-dimensional factors. Its corollaries may be interpreted as achieving this when the finite-dimensional factor is zero. This subsection deals with the case where the factor is simple artinian.

Theorem. Let V and W be dense subspaces of R. Suppose that for each $m \in \max R$ either $V^{+}(m)=V^{-}(m)$ and $W^{+}(m)=W^{-}(m)$ or $\operatorname{dim} V / V^{-}=$ $\operatorname{dim} V^{+}(m) / V^{-}(m)$ and $\operatorname{dim} W / W^{-}=\operatorname{dim} W^{+}(m) / W^{-}(m)$. Then $\mathscr{D}(V)$ and $\mathscr{D}(W)$ have simple finite-dimensional factors and are Morita equivalent via the progenerator $\mathscr{D}(V, W)_{\mathscr{D}(V)}$.
Proof. The hypotheses ensure that

$$
\begin{aligned}
& \left(\begin{array}{cc}
\mathscr{E}(\mathscr{V}) & \mathscr{E}(\mathscr{W}, \mathscr{V}) \\
\mathscr{E}(\mathscr{V}, \mathscr{W}) & \mathscr{E}(\mathscr{W})
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
\operatorname{End}\left(V / V^{-}\right) & \operatorname{Hom}\left(W / W^{-}, V / V^{-}\right) \\
\operatorname{Hom}\left(V / V^{-}, W / W^{-}\right) & \operatorname{End}\left(W / W^{-}\right)
\end{array}\right) .
\end{aligned}
$$

The result is now clear by the theorem of $\S 3.2$.
Corollary. Suppose S_{1} and S_{2} are subalgebras of R with integral closure R, and let $\psi_{i}: \operatorname{Max} R \rightarrow \operatorname{Max} S_{i}$ for $i=1,2$ be their normalisation maps. Suppose that there is a bijection $\alpha: \operatorname{Max} S_{1} \rightarrow \operatorname{Max} S_{2}$ such that

commutes. Finally, suppose that $\mathscr{D}\left(S_{1}\right) / J\left(S_{1}\right)$ and $\mathscr{D}\left(S_{2}\right) / J\left(S_{2}\right)$ are both nonzero and simple. Then $\mathscr{D}\left(S_{1}\right)$ and $\mathscr{D}\left(S_{2}\right)$ are Morita equivalent via the progenerator $\mathscr{D}\left(S_{1}, S_{2}\right)$.
Proof. The diagonals \mathscr{S}_{1} and \mathscr{S}_{2} corresponding to S_{1} and S_{2} are each a power of $k_{\max R, T}$ for some fixed $T \subseteq \max R$. (In fact $T=\psi_{i}^{-1}\left(m_{i}\right)$, where m_{i} is the unique branched singular point of $\max S_{i}$ and with ψ_{i} being the appropriate normalization map.)

Corollary. (1) Suppose S_{1} is a subalgebra of R with integral closure R and the normalization map $\psi_{1}: \max R \longrightarrow \max S_{1}$ is injective except at the points x and y of $\max R$. Then $\mathscr{D}\left(S_{1}\right) / J\left(S_{1}\right) \cong \operatorname{End}\left(S_{1} / S_{1}^{-}\right)$.
(2) If S_{2} is a subring of R with integral closure R and the normalization map $\psi_{2}: \max R \longrightarrow \max S_{2}$ is injective except at the two points x and y of $\max R$, then $\mathscr{D}\left(S_{1}\right)$ and $\mathscr{D}\left(S_{2}\right)$ are Morita equivalent via $\mathscr{D}\left(S_{1}, S_{2}\right)$.
Proof. This is an immediate consequence of the last corollary.
Remark. The Morita class of the differential operators on an n-branch singularity is not determined by n whenever n is larger than 2 . Morita classes of rings of differential operators on three branch singularities are briefly discussed in §3.7.
3.5. Upper triangular factors. Suppose V and W are dense subspaces and

$$
\begin{aligned}
\{m \in & \left.\max R: V^{-}(m) \neq V^{+}(m)\right\} \\
\quad & =\left\{m_{1}, \ldots, m_{n}\right\}=\left\{m \in \max R: W^{-}(m) \neq W^{+}(m)\right\} .
\end{aligned}
$$

Suppose $V \cap V^{-}\left(m_{1}\right) \subseteq \cdots \subseteq V \cap V^{-}\left(m_{n}\right)$ and $W \cap W^{-}\left(m_{1}\right) \subseteq \cdots \subseteq W \cap$ $W^{-}\left(m_{n}\right)$ with $V \cap V^{-}\left(m_{i}\right)=V \cap V^{+}\left(m_{i}\right)$ if and only if $W \cap W^{-}\left(m_{i}\right)=$ $W \cap W^{+}\left(m_{i}\right)$ for each i. Then $\mathscr{D}(V)$ and $\mathscr{D}(W)$ are block upper triangular and are Morita equivalent via $\mathscr{D}(V, W)$.

We leave the proof as an easy exercise.
3.6. It is possible to go yet further and model essentially all Morita equivalences of finite-dimensional algebras using differential operators.

Theorem. Suppose A and B are finite-dimensional algebras which are Morita equivalent via P_{A} a progenerator. Then we may choose finite diagonals \mathscr{V}, \mathscr{W} such that $A \cong \operatorname{Mor}(\mathscr{V}, \mathscr{V})$ and $B \cong \operatorname{Mor}(\mathscr{W}, \mathscr{W})$ and after identification $\operatorname{Mor}(\mathscr{V}, \mathscr{V})$ and $\operatorname{Mor}(\mathscr{W}, \mathscr{W})$ are Morita equivalent via ${ }_{B} \operatorname{Mor}(\mathscr{V}, \mathscr{W})_{A} \cong$ ${ }_{B} P_{A}$.
Proof. Choose \mathscr{U} a diagonal such that

$$
T:=\left(\begin{array}{cc}
A & P^{*} \\
P & B
\end{array}\right) \cong \operatorname{Mor}(\mathscr{U}, \mathscr{U}) .
$$

If $1=i_{A}+i_{B}$ where $i_{A}, i_{B} \in T$ are the idempotents such that $i_{A} T i_{A}=A$ and $i_{B} T i_{B}=B$, then $\mathscr{U}=\mathscr{V} \oplus \mathscr{W}$ where $\mathscr{V}=i_{A} \mathscr{U}$ and $\mathscr{W}=i_{B} \mathscr{U} . \mathscr{V}$ and \mathscr{W} have the required properties.

For the remainder of this section suppose that $\max R$ is infinite.
Corollary. Suppose A_{1} and A_{2} are finite-dimensional algebras which are Morita equivalent and n_{1}, n_{2} are positive integers. Then there are algebras S_{1}, S_{2} with
integral closure R such that

$$
\mathscr{D}\left(S_{i}\right) / J\left(S_{i}\right) \cong\left(\begin{array}{cc}
B_{i} & * \\
0 & M_{n_{i}}(k)
\end{array}\right)
$$

where B_{i} is a subalgebra of a matrix algebra isomorphic to A_{i}. Further $\mathscr{D}\left(S_{1}\right)$ is Morita equivalent to $\mathscr{D}\left(S_{2}\right)$ via $\mathscr{D}\left(S_{1}, S_{2}\right)$.
Proof. The proof is similar to that of the corollary of $\S 2.2$.
3.7. Morita classes of differential operators on three-branch singularities. Suppose m_{1}, m_{2}, m_{3} are distinct maximal ideals of R. In view of $\S \S 1.5,2.1$, and 3.2 we may obtain good information about the number of Morita classes of $\mathscr{D}(S)$ where S is a subalgebra of R with integral closure R such that the normalization map identifies m_{1}, m_{2}, and m_{3} and is injective at all other points. If \mathscr{V} and \mathscr{W} have the same indecomposable summands (albeit with different multiplicities), then $\operatorname{Mor}(\mathscr{V}, \mathscr{V})$ and $\operatorname{Mor}(\mathscr{W}, \mathscr{W})$ are Morita equivalent via $\operatorname{Mor}(\mathscr{V}, \mathscr{W})$. By $\S 1.5$ there are at most 2^{4} such classes since $k_{\max R,\left\{m_{1}, m_{2}, m_{3}\right\}}$ must appear and each of the other four indecomposables may or may not appear. Further analysis of $\S 1.5$ reveals the following result.
Theorem. (a) There are eight Morita classes of $\mathscr{D}(S) / J(S)$. Their basic algebras are $\mathscr{E}_{11111}, \mathscr{E}_{11110} \cong \mathscr{E}_{11101} \cong \mathscr{E}_{11011}, \mathscr{E}_{11100} \cong \mathscr{E}_{11010} \cong \mathscr{E}_{11001}, \mathscr{E}_{11000}, \mathscr{E}_{10111}$, $\mathscr{E}_{10110} \cong \mathscr{E}_{10101} \cong \mathscr{E}_{10011}, \mathscr{E}_{10100} \cong \mathscr{E}_{10010} \cong \mathscr{E}_{10001}$ and \mathscr{E}_{10000}.
(b) There are at most sixteen Morita classes of $\mathscr{D}(S)$.

The precise number of Morita classes of $\mathscr{D}(S)$ presumably depends on R. In view of $\S \S 1.5,3.2$ and 2.1 , there are infinitely many Morita classes of rings of differential operators on curves with an n-branch singularity whenever $n \geq 4$.

References

[Be] S. Brenner, Endomorphism algebras of vector spaces with distinguished sets of subspaces, J. Algebra 6 (1967), 100-1 14.
[Br] K.A. Brown, The Artin algebras associated with differential operators on singular affine curves, Math Z. 206 (1991), 423-442.
$[\mathrm{CH}] \quad$ R.C. Cannings and M.P. Holland, Right ideals of rings of differential operators, J. Algebra 167 (1994), 116-141.
[CH2] , Differential operators and finite dimensional algebras, J. Algebra (to appear).
[CHM] R.C. Cannings, M.P. Holland, and G. Masson, Gorenstein curve singularities and self-dual diagonal systems of vector spaces, in preparation.
[GP] I.M. Gelfand and V.A. Ponomarev, Problems of linear algebra and classification of quadruples of subspaces in a finite dimensional vector space, Colloq. Math. Soc. János Bolyai, vol. 5, North-Holland, Amsterdam, 1970.
[KR] H. Kraft and C. Riedtmann, Geometry of representations of quivers, Representations of Algebras (P. Webb, ed.), London Math. Soc. Lecture Note Ser., vol. 116, Cambridge Univ. Press, Cambridge, 1986, pp. 109-146.
[SS] S.P. Smith and J.T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. (3) 56 (1988), 229-259.

[^0]: Received by the editors September 12, 1993 and, in revised form, February 9, 1994; originally communicated to the Proceedings of the AMS by Ken Goodearl.

 1991 Mathematics Subject Classification. Primary 14H20, 16S32.
 Key words and phrases. Differential operators, finite-dimensional algebras, Morita equivalences, diagonals, subspace sytems, curves, singularities.

