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DIFFERENTIAL OPERATORS, //-BRANCH CURVE SINGULARITIES
AND THE //-SUBSPACE PROBLEM

R. C. CANNINGS AND M. P. HOLLAND

Abstract. Let R be the coordinate ring of a smooth affine curve over an

algebraically closed field of characteristic zero k . For S a subalgebra of R

with integral closure R denote by 3>(S) the ring of differential operators on

5 and by H(S) the finite-dimensional factor of 3f{S) by its unique minimal

ideal. The theory of diagonal rc-subspace systems is introduced. This is used

to show that if A is a finite-dimensional fc-algebra and / > 1 is any integer

there exists such an 5 with

H{S}-\0     M*{k))-

Further, the Morita classes of H(S) are classified for curves with few branches,

and it is shown how to lift Morita equivalences from H(S) to 2{S).

0. Introduction

Suppose R is a finitely generated Dedekind domain (or the localization at a

semimaximal ideal of such) over an algebraically closed field of characteristic

zero k. We investigate two analytic invariants of a curve Spec 5 with nor-

malization Spec R. First, there is a max /^-diagonal (see § 1 for a definition)

which may alternatively be considered as a subspace system, that is, a vector

space and a collection of n subspaces (where SpecS has n branches). Sec-

ondly, there is a finite-dimensional algebra H(S) which is the endomorphism

ring of this diagonal/subspace system when considered in the appropriate cat-

egory. The connection with differential operators, mentioned in the title of the
paper, arises from the following rephrasing of a result of K.A. Brown [Br]. Let

31 (S) be the ring of differential operators on S, and let J(S) be the minimal
ideal of 2t(S). Then H(S) = 9?(S)/J(S). Actually, this discussion reverses

the historical development which began with the work of [SS] on the algebra

3>(S)/J(S). Brown's result allowed substantial progress on the structure of

this algebra. In particular, he showed, in [Br], that H(S) has a block upper

triangular structure:

r>_ "<s>s(o Mm)-
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for some finite-dimensional algebra A and some t > 1 . In §2 we show that,

rather surprisingly, any A can occur.

0.1. Theorem. Suppose that R is a finitely generated Dedekind domain over

an algebraically closed field oj characteristic zero k . Let A be any finite-

dimensional algebra and t any positive integer. Then there exists an algebra

S with integral closure R such that H(S) is as in (*).

This shows that H(S) is a rather rich invariant.

Section 1 explores the machinery of categories of finite max i?-diagonals. We

will gloss over this here. The important point to note is that the category of finite

diagonals embeds as a full subcategory of the category of subspace systems. In

particular, it follows that the category of finite max f?-diagonals has a Krull-

Schmidt theorem. Also, we can plug into the well-known theory of subspace

systems (see [Be] and [GP]) to obtain a classification when S is the local ring

of a curve singularity with < 4 branches.

Of course, Theorem 0.1 follows from knowing precisely which max fv-diag-

onals arise from subalgebras S. To simplify the explanation of this, let us

suppose from now on that R is semilocal. We denote by km_R the indecom-

posable max f?-diagonal which considered as a subspace system is the vector

space k and |maxf?| copies of the zero subspace.

0.2. Theorem. Let R be a semilocal Dedekind domain oj finite type over an

algebraically closed field oj characteristic zero k . Let *V be a maxR-diagonal.

Then 'V is isomorphic to the diagonal oj a local ring S with integral closure R

ij and only ij "V has km3XR as a direct summand.

In the final section we consider the question of Morita equivalences 3>(S) ~

3>(S') when S, S' are the local rings of curves with integral closure R. We

examine circumstances in which these equivalences can be lifted from equiv-
alences H(S) = 2(S)/J(S) ~ 2(S')/J(S') = H(S'). We prove that if the
associated max/^-diagonals of S and S' contain the same indecomposables

(albeit with different multiplicities), then 21 (S) and 3(S') are Morita equiv-

alent. This enables one to write down a large number of Morita equivalences of

rings of differential operators. For example, we have the following consequence.

0.3. Theorem. Let S and S' be the local rings oj algebraic curve singularities

with integral closure R. Ij H(S) and H(S') are both simple (and nonzero)

then 2(S)~2S(S').

As another corollary we can obtain the following classification.

0.4. Corollary. Let S be the local ring oj an n-branch curve singularity with

integral closure R. Then
(a) Ij n = 2 there is exactly one Morita class amongst the 2(S).
(b) Ij n = 3 there are at most sixteen Morita classes amongst the 3(S).

(c) Ij n>4 there are infinitely many Morita classes amongst the 2(S).

We complete the introduction with a summary of the contents of the paper.

In §1 we briefly develop the theory of diagonals independently of subspace

systems. One reason for doing so is that the category of diagonals admits a

duality which cannot be obtained from a duality of subspace systems. This

duality turns out to be closely related to the Gorenstein property; see [CHM].



DIFFERENTIAL OPERATORS 1441

In §2 we consider the richness of the two invariants. In particular we prove

Theorems 0.1 and 0.2.
The final section considers Morita equivalences of rings of differential oper-

ators and proves Theorems 0.3 and 0.4.

1. Categories of diagonals

This section provides a rapid exposition of the necessary generalities on di-

agonals. There is, for the most, part a parallel theory of 'subspace problems',

so some of the proofs are omitted or else are sketchy.

We cover the definitions of the categories 7-Diag in §1.1; each of which

is contravariantly self-equivalent (§1.2) and, possesses direct sums and hence

indecomposables (§1.3) and tensor products (§1.4). Finally we compare the

categories of diagonals with those of the ' //-subspace problem' in §1.5.

1.1.  Fix once and for all an indexing set I and a base-field k .

Suppose W = (W; Wj: i £ I) is a 1 + /-tuple of vector spaces. We say that

W is an I-diagonal if

(1) rVC®ieJWr,
(2) W n Wt■ = 0 for each i e I;
(3) 7ij(W) = Wi for each i £ I, where 7r, : 0;g/ Wj -> 0>€/ Wj is the

projection onto the /'th summand.

W is termed the slant of W , and we will write Slant W if useful. Wj is

termed the /'th summand of W , and ©,-e/ Wj, its sum, is written Sum W.

7t, will always mean the /'th projection map and 7ijW the /'th summand. The

inclusion map Slant W —> Sum W is denoted by /', and the projection map

Sum^" -♦ Sum^/Slant^" is denoted by x • We define (tijW)1- := ker/c, =
07^; ti jW and call it the /'th perp. We say a diagonal is finite dimensional if all

its summands are finite dimensional and finite if its sum is finite dimensional.

Given /-diagonals W = (W ;W,: i £ I) and T~ = (V; Vt : i £ I) we define

%(W ,CV):= {8 £Kom(W, V):8(WnWix)c V\~\V± for / 6 /}

= {0 £ Horn (Slants, Slants) :

0(Slant W n ker nf) c Slant 'V n ker n, for all i e 1} ,

F(W, T) := {8 £ Hom(0 W,, 0 Vt) : 8(Wt) C V, for /' e / and 8(W) C V)
(€/ 16/

= {0 £ Horn (Sum W, Sum T) : dm = nfi

for all /' £ I and 0(Slant^") c Slant T},

^(W,T) := {8 £ Hom((0 Wt)/W, (0 Vt)/V) : 8X(W,) C x(Vt) for i £ I).
i€I iel

We distinguish g(W) := %(W, W), &(W) := 3^(W ,W), and $(W) :=
%(W, W). Note that r(2T) is an algebra while %(W, T) is an %(T)-
<g(W) bimodule and similarly for & and % .

We define I-diagg, respectively I-diag^ , respectively /-diag^ to be the

category whose objects are the /-diagonals and whose morphisms are given by

Mor (T, W) := %(T, W), respectively Mor (T, W) := &yy, W), respec-
tively Mor (T, W) := giy, W).

Define maps " : ̂ (W,°^) —» W(W, V) : 8 .—» 0, where 8(w) = 8(w)

and  v : $~(W, T) —♦ &(W ,T):8>-^8, where 8(w + W) = 8(w) + V .
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Note that these maps are fc-algebra homomorphisms when W = W. The next

proposition shows that the three categories defined above are isomorphic, so

henceforth where convenient we shall just use the generic /-diag.

Proposition. Let W, "V, and % be I-diagonals.

(1) The linear map "  is a bijection. In particular " : &~(W) —> W(W) is an

isomorphism oj k-algebras.

(2) The linear map '  is a bijection. In particular " : 3r(W) -> 2?(W) is an

isomorphism oj k-algebras.

(3) We have a commuting diagram:

%(T,V)xW(W,T)   ~~'x"~'. &~(T ,%)x&(W ,T)

%(W,%) —-U F(W,%)

—^ &xy, &) x &(W, <V)

——+ %(W,%)

where the vertical maps are given by composition oj linear maps.

(4) We have a commuting diagram:

%(W ,T)xW   (*"',,'). F(W, <V) x 0; Wi ±^ %(W, "V) x (0, Wi)/W

Mf P? lis

V —^ 0,^- —?-* (®iV,)/V

where the p% , p?, and p% are the evaluation maps.

Prooj. (1), (2), and (4) are routine extensions of [CH2, Proposition 5.3]. (3) is

immediate from the definitions.

Example. Given a vector space V we write Vj for any diagonal isomorphic

to the diagonal which has all its summands equal to V and slant the diagonal

copy of V.

1.2. Self-duality. Write V* for Hom(V, k) when V is a vector space. We

may define a (contravariant) equivalence of categories * : /-Diag —> /-Diag by

T* := ({0 £ ® (K/2H* : A (Slant T) = 0}; (mT)* : i £ I)

whenever 'V is an /-Diagonal and 8* : ©(w.-ar)* —> 0(tc,^)* : £, Wi *—»

Y, Vi8n, whenever 0 £ ^(T, W). The main point to check is that T* is a

diagonal. Indeed if 0 e Slant (<V*) n (n{V), then

0(0 Ui'V) C 0(Slant^ + (n-V^) = 0
i€l
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and so 0 = 0. Further if x £ Sum^" is such that (SlantV*+ ®j^i(nj'Vy)(x)

= 0, then x £ n{r n Slants = 0. Thus Slant(2^*) + ®m(njT)* =

^(nfV)* and so 7i,-(Slant(^*)) = (n^)* = ti,-(^*).
We should point out that ** is naturally equivalent to the identity. In par-

ticular it follows that Mor(2^, V) _ Mor(^"*, T*)op .

1.3. Direct sums. Suppose VJ is an /-diagonal for each I £ L. Define the

direct sum of the V/ by

0 % -.= (y Slant *f; ® *iW) ■ i e /) •
leL \ieL Izl I

Let ai £ Mor(V/,^l€LV/) be the natural 'embedding' and let %i £

Mor (0/6i Ti,^f) be the natural 'projection'. Let ey = 7r/<7/. If L = { 1,...,«} ,
M = {I, ... , pj , and Wm is an /-diagonal for each m £ M, then we have

Mor (0^, 0 3rJ
\/e/_ m€M        I

=     0     emMor (®^, ®arMU,
(l,m)€LxM \l€L m£M I

=      0     ffmMor(^,a^)^
(l,m)eLxM

/Mor(Vx,Wx)   Mor(V2,Wx)    ■■■    yior(Vn,Wx)\
yior(Wx,W2)   yior(T2,W2)    •••    yior(Vn,W2)

\Mor(Vx,Wp)   yior(T2,Wp)   •■•    Mor(^, Wp)l

We say an /-diagonal V is indecomposable if it is nonzero and V = Wx © W2

implies ^f s 0 or 3^ = 0.
The following result is easily derived.

Proposition. (1) An I-diagonal V is indecomposable ij and only ij Mor(V, V)

is a local ring.
(2) Every finite I-diagonal decomposes in an essentially unique way as a sum

ofi indecomposable I-diagonals.
(3) Suppose V = 0,V"' where each //, is a positive integer and each 'Vi is

an indecomposable I-diagonal with Vi^-Vj when i ^ j. Then Mor(^", V) =
0, Mor(^, Vp)"' is a decomposition oj Mor(^", V) into indecomposable pro-

jective right ideals. In particular, the basic algebra corresponding to Mor(^, V)

is Mor(0(.^, 0,.^).

Example. k[ is an indecomposable /-diagonal. We say a diagonal V is

spanned by perps if Slant V = Y,i€l Slant V n (JiiV)1- . It is easy to check
that the only indecomposable /-diagonal which is not spanned by perps is ki
and further that an /-diagonal is spanned by perps if and only if it has no
indecomposable direct summand which is isomorphic to fc/.

1.4. Tensor products. Suppose V, W are vector spaces, /, J are sets, V

is an /-diagonal, and W is a /-diagonal. We have various tensor products.
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First we define an /-diagonal V <g> W := (Slants <g> W; Ui(V) ® W : i £ I)
and by similar means a /-diagonal V ® W. At the same time we have an

/ x /-diagonal V ® W := (SlantV <8> SlantW; TifT ® nfW : (i, j) £ I x J).
If V, W are finite /-diagonals and V , W are /-diagonals and we write

V, W, V , and W' for the slants of V, W, V , and W , respectively,
then, after making the appropriate identifications, we have

g(V,V)®%(W,W)

_%(V ®W ,V ®W)
cg(V®W,V®W')ng(V®W, V ®W)

= (%(V, V) ® Horn (W, W')) n (Horn (V, V) ® %(W, W))

= g(V ,V)®%(W ,W).

We thus have the following proposition.

Proposition. Ij V, W are finite I-diagonals and V, W are J-diagonals,

then there is a canonical isomorphism Mor(V®W, V'®W) _ Mor(?^, V)®

Mor(3T,W).

Remark. If V or W is spanned by perps, then so is V ®W .

1.5. The //-subspace problem. The study of diagonals is closely related to the

following much studied problem "Given a vector space V in what ways (up to

appropriate isomorphism) can one choose n subspaces of V ". We can use the

extensive theory developed in the setting of this problem to give information

on diagonals. In particular, we may obtain lists of indecomposable diagonals

for |/| < 4.
We say a 1 + /-tuple 5? = (S; S,■ : /' £ I) of vector spaces is an /-subspace

system provided S, c S for each i £ I. Given two /-subspace systems 5? =
(S; Si : i £ I) and F = (T; Tt : i £ I) we can define Hom(y,y") = {0 e
Hom(S, T) : 05, c T, for all /'€/}. In this way we create a category, 'the

category of /-subspace systems'.
There is a functor, /, from /-diag^ to the category of /-subspace systems

defined by i(W) := (Slants"; Slant^"nker 7/, : i £ I) and i(tf>) = <p whenever
cp £ %(W, V). Given an /-subspace system 9~ = (T; T, : i £ I) the 1 + /-

tuple W:=(T;T/Ti:i£ I) is a diagonal (with T <-> 0,e/ T/T the canonical
map) if and only if

(*) (\TJ = 0   for a11 ' e L

)*i

Further when W is a diagonal we have i(W) = ET. Thus we may regard

/-diag as a subcategory of the /-subspace systems via /.

Proposition. The functor i makes I-diag isomorphic to a full subcategory of the

category of I-subspace systems. A subspace system 3" = (T; T, : /' e /) is in the

image of i if and only //(*) is satisfied.

The category of /-subspace systems is endowed with both direct sums and

tensor products which extend the corresponding notions developed for /-diag.

Further, because /-diag is a full subcategory of the /-subspace systems, its in-

decomposable objects are precisely those diagonals which are indecomposable
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when regarded as /-subspace systems. There are comparatively few indecom-

posable /-subspace systems which do not correspond to /-diagonals. Indeed by

[Be, §6, Corollary to Lemma 2], if / is finite, then there are precisely |/| + 1

such subspace systems, namely (k; 0, k, ... , k), ... , (k; k, ... , k, 0) and

(k; k, ... , k) (after ordering /).
Using this observation we can classify /-diagonals for |/| < 4. Indeed if

/ = {1, 2}, then the only indecomposable is k[. For / = {1, 2, 3} the in-
decomposables are ki, kf , (k; k, k, 0), (k; k, 0, k), and (k;0,k,k). If

5, S*,ei,e2,ei £ {0, 1} and V = kf © (k;0,k, k)^ © (k;k,0, kf* ©
(k;k,k, 0)£3 © kf , then define %$,&' ,e, ,e2,et := %KV). For example,

' lo*    0      Sx      0    r53    yx \

[  0    a*    -Sx    d2     0     y2

& 0      0      ax      0     0     px , _ ,
si,1,1,1,1 = <    0    0    o    «2   o   /i2   :a,a >ap>P<" y<-£kr

0     0      0      0    a3   Pi
AoOOOOa/ J

The case / = {1, 2, 3, 4} is somewhat more complicated and in particular

there are infinitely many indecomposables. These indecomposables may be read

off from Gelfand and Ponomarev's classification of /-subspace systems in [GP].

When |/| > 5 the problem is wild. However, Kac's work in [KR] does describe

the dimension vectors of the indecomposables.

2. The diversity of finite-dimensional factors

In this section we associate diagonals to curves and determine precisely which

diagonals arise in this way.

2.1. Suppose R is a Dedekind domain of finite type over an algebraically

closed field of characteristic zero k . Further, suppose that if me max R , then

R/m ^k.
We recall some notation and results from [CH] and [CH2]. Suppose V

is a subspace of R. We describe V as dense if it contains an ideal of R
with finite codimension in R. Given m a maximal ideal of R let V(m) =

n^to V + m" . We say V _ R is m-primary if it contains a power of m or

equivalently if V = V(m). Define V+ = f)m€maxR V(m). We say V is primary

decomposable if V = V+ or equivalently [CH, 2.4] if it is the intersection of

finitely many primary subspaces of R. Define V~ to be the sum of all the

primary decomposable subspaces of V. We will have V = V~ if and only

if V is primary decomposable [CH, 2.14]. If S is a dense subalgebra of R,

then so is S+ ; further, Spec R —► Spec S+ is injective, Spec S+ -» Spec 5 is

unramified, and S~ = ann S+/S (see [CH2, 2.4; CH, 2.16]).
The canonical map V+/V~ —► 0 V+(m)/V~(m) is an isomorphism of vec-

tor spaces [CH, 2.7], which we shall treat as an identification. With this in mind,

we may associate to Fa finite max/?-diagonal V := (V/V~ ; V+(m)/V~(m) :

m £ max/?). Henceforth where we denote a dense subspace of R by a latin letter

the corresponding diagonal will be denoted by the corresponding script letter.
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Example. Let R = k[x\x-X) n k[x](X+X), with maximal ideals mx = (x - l)R,

m2 = (x+l)R. Consider S = k + (x2 - l)2R. Then

S+ = S(mx) n S(m2) = (k + (x- l)2R) n(k + (x+ l)2R)

= k + k(x3 - 3x) + (x2 - l)2R

and S~ = (x2 - 1 )2R. Note that Spec S has a unique singularity, with two

cuspidal branches. Pulling the branches apart yields Spec S+ , which has two

cuspidal singular points.

Lemma. Let S be a subalgebra of R  with integral closure R, and let  tp :

max/? —► maxS be the normalisation map.   Let SingS denote the subset of

maxS consisting of singular points. Then

■*"=   ©  &*>

xSESingS

where S?x is a max R-diagonal with itm(3^x) = 0 for y/(m) ^ x.

Set-theoretic knowledge of any branching is enough to determine some of the

indecomposables occurring. Suppose T is a finite set of maximal ideals of /?

which is not a singleton. For a vector space Z define a diagonal ZmaxR,r :=

(Z; ZmaXRtT,m '■ m £ max/?) where ZmaxK,r,m is a copy of Z if m £ T and

is zero otherwise.

Proposition. Suppose S is a dense subalgebra of R and we have normalization

map ip : max/? —► maxS. Suppose x £ maxS is a singular point over which

y/ is not injective. Then km_R>v-\(X) is an indecomposable summand of 3*.

Proof. By virtue of the lemma we may suppose that 5 is local. Define K =

^(Slant^n^m^)-1), and let Slants = K®L. As y/ is not injective over

x, if m £ max/? there exists m' ^ m with ip(m') = x . Also, S~ / S. Thus,
for each m £ max R we have that

Sn     f|     S-(n)_Sn(S-+m') = x.
n€max/?

n^m

It follows that K lies inside x/S~ and so L ^ 0. It is not hard to see that

y=- (K; nmK: m £ max/?) © LmaxRy/-l(x),

as required.

2.2. Amazingly 'almost all' (see Proposition of §2.1) finite max/?-diagonals

occur as diagonals corresponding to curves.

Theorem. Suppose V is a finite maxR-diagonal, and let Presing := {m £

max/?: nmV ^ 0}. Then there is a dense subalgebra SCR such that

(1) the normalization map max/? —► maxS is injective whenever nmV = 0

and identifies together all the points m fior which nmV ■£ 0.

(2) 3* = V © kmaxR, Presing •

Proof. Let
n := maxjdim nmV : m £ max/?}.

Without loss of generality we may assume nmV C m"/m2n for each m £ max/?

and Slants C p"/p2n where p = f|Presing and p"/p2n has been identified
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with 0mePresingmn/m2n . Thus Slants = G./p2n where p2n cQcp" . Now

take S = k + Q. It is easy to verify that S has the required properties.

For the rest of this section we suppose that max/? is infinite.

Corollary. Suppose A is a finite-dimensional algebra and n is a positive integer.
Then there is a commutative algebra S with integral closure R such that

ms)/j(s) = (B0 M;(fc))

where B is a subalgebra of a matrix algebra which is isomorphic to A .

Proof. Choose V an /-diagonal where / is finite such that Mor(2/", V) = A

(see [CH2, Theorem 5.5]). We have

Mor(^®fc{*0)1)2},^®fe{*0il2})^Mor(^,^)®Mor(fc{V1)2},fc{*0>1)2})

V®kf0 j 2| does not have /f/x {o, 1,2} as an indecomposable summand by the

remark in §1.4. Thus without loss of generality kj is not an indecomposable

summand of V. Without loss of generality / c max/?. Define a max/?-

diagonal W := (Slants"; Wm:m £ max/?) where Wm is nmV when m £ I

and zero otherwise. By the theorem we may choose S a dense subalgebra of R

such that S" = W © fc£axR ,. This S has the required properties.

Remark. The converse of this result also holds, see [Br, Theorem 5.5]. It also

follows from the proposition of §2.1.

3. Morita equivalences

3.1.    Differential operators.   Retain the hypotheses of §2.1.

Given dense subspaces V, W we may define the differential operators from

V to W by 2( V, W) := {0 e 2(Q) : 0 * V _ W} where 2(Q) is the ring of
differential operators on Q, the field of fractions of /?. 2(V) is a ring, and

2(V, W) is a ^(^)-^(F)-bimodule.

There is a close connection between the subbimodule structure of 2(V, W)

and the diagonals associated to V and W. Indeed 2(V, W) has a unique

minimal nonzero subbimodule J(V, W) and the canonical map

3(V, W)—>yior(V ,W) is surjective with kernel J(V, W):=2(V+, W)
= 2(V+,W~) = 2(V,W~). For the details, see [CH2]. Further,
2(V, W)J(U, V), J(V, W)2(U, V) C /([/, W) and the following dia-
gram commutes

2(V, W)/J(V, W)x2(U, V)/J(U, V) -► 2>(U, W)/J(U, W)

1 I
Mor(^,^")xMor(g/,^) -►        Mor(^, W)

A portion of this information may be expressed by saying there is a functor

from the category of dense subspaces of R (with morphisms being differential

operators) to the category of max/?-diagonals.
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3.2. Morita theory. We are interested in finding pairs V, W of dense sub-

spaces of R whose rings of differential operators are Morita equivalent. The

most natural class of Morita equivalences arise when 2(V, W) is the relevent

progenerator. We examine the question "when does the Morita context

/    2(V)       2(W, V)\ _ ,,,~ (n„
\2(V,W)      &{W)')=M2(2Q(Q))

give rise to a Morita equivalence between 3S(V) and 2(W) ?" This problem

can be reduced to one phrased in terms of the associated diagonals of V and

W as follows.

Theorem. Suppose V and W are dense subspaces of R with corresponding

diagonals V and W. Consider the following statements:

(1) The canonical maps

2(V, W)     2(W, V) _     2(W)

J(V, W) X J(W, V) ~^ J(W)

and
3f(W, V)     2(V, W)        3f(V)

J(W, V) *  J(V, W) ~^ J(V)

are surjective.
(2) 2(V, W)2(W, V)=2(W) and 2(W, V)2(V, W)=2(V).
(3) %(V, W)g(W, V) = r(3T) and g(W, V)%(V, W) = %(V).
(4) 2>(V) are 2(W) are Morita equivalent.

(5) 2(V)/J(V) and 2f(W)/J(W) are Morita equivalent.
(I), (2), and (3) are equivalent. Either implies (4) and (4) implies (5).

Proof. The equivalence of (1), (2), and (3) stems immediately from the remarks

of §3.1. The rest is routine Morita theory.

3.3. Morita theory for simple 2(V).

Corollary. Suppose V is a dense subspace of R; then the following are equiva-

lent:
(1) V is primary decomposable.
(2) 2(V) is Morita equivalent to 2(W), the equivalence being induced by

the progenerator 2( V, W)^,^, for every primary decomposable subspace W c

/?.

(3) 2>(V) is Morita equivalent to 2(W), for some primary decomposable

subspace W C R.
(4) 2(V) is a simple ring.
(5) 2(W, V) • W = V for every primary decomposable subspace W C R.

(6) 2>(W, V) • W = V fior some primary decomposable subspace W c R.

Proof. Suppose V and W are primary decomposable subspaces of R. Then

[CH2, Proposition 4.4] asserts that 2>(V) and 2(W) are simple rings. Hence

2(V,W)2(W,V)=2(W)   and   3(W,V)2(V,W) = 2(V),

since in each case the left-hand side is nonzero (for example, it contains a non-

zero ideal of /? ). Thus 3(V) and 2(W) are Morita equivalent, or (1) implies

(2). A priori (2) implies (3).
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(3) implies that 2(V) is Morita equivalent to a simple ring. In particular

(3) implies (4).
Suppose 2(V) is a simple ring and W is primary decomposable. We have

0^Ann3l{V)(V/2(W, V)-W)c2(V)

where the inequality occurs because the annihilator contains a nonzero ideal of

/?. Thus Knn3,{V)(V/2(W, V)-W)=2(V) and hence 2(W, V)-W=V,
proving that (4) implies (5). A priori (5) implies (6).

Finally suppose W is a primary decomposable subspace of R. Recall that
2(W, V) = J(W, V) = 2(W, V~) and hence 2(W, V) * V c V~ . Thus
(6) implies (1) and the cycle is complete.

Recall (from [CH2]) that a dense subalgebra of R is primary decomposable

if and only if the normalization map is injective. Thus, specialising the above

result to dense subalgebras, we obtain a new proof of a theorem of [SS].

Theorem: Smith and Stafford. Suppose Sx, S2 are dense subalgebras of R such

that the normalization map Max/? —> Max Si is injective. Then 2(SX) and

2(S2) are Morita equivalent if and only if the normalization map Max/? —>

MaxS2 is injective. When this is the case 2(SX, £2)^(5,) is the progenerator

giving rise to the Morita equivalence.

3.4. Morita theory for simple factors and two branch singularities. The main

idea behind the theorem of §3.2 is that one can lift Morita equivalences from

the level of the finite-dimensional factors. Its corollaries may be interpreted as

achieving this when the finite-dimensional factor is zero. This subsection deals

with the case where the factor is simple artinian.

Theorem. Let V and W be dense subspaces of R. Suppose that fior each

m £ max/? either V+(m) = V~(m) and W+(m) = W~(m) or dimF/F- =

dimV+(m)/V-(m) and dim W/W~ = dim W+(m)/W~(m). Then 2(V)
and 2(W) have simple finite-dimensional factors and are Morita equivalent

via the progenerator 2>(V, W)^^ .

Proof. The hypotheses ensure that

/  r(sn     %(w,v)\
\W(V,W)      g(W)    )

( _nd(V/V-) Hom(W/W~ ,V/V~)\

~ \Hom(V/V~ ,W/W~) End(W/W~)       J'

The result is now clear by the theorem of §3.2.

Corollary. Suppose Sx and S2 are subalgebras of R with integral closure R,

and let y/j : Max R —» Max 5, for i = 1, 2 be their normalisation maps. Suppose

that there is a bijection a : Max Si —> Max S2 such that

Max/? ____z Max/?

*"! ¥ii

MaxSi —-—> Max5"2
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commutes. Finally, suppose that 3(SX)/J(SX) and 2S(S2)/J(S2) are both non-
zero and simple. Then 2>(SX) and 2>(S2) are Morita equivalent via the progen-

erator 2(SX, S2) ■

Proof. The diagonals 3"x and S*2 corresponding to Si and S2 are each a

power of kmaxRtT for some fixed T C max/?. (In fact T = y/~x(mi), where

m, is the unique branched singular point of maxS, and with \pi being the

appropriate normalization map.)

Corollary. (1) Suppose Sx is a subalgebra of R with integral closure R and the

normalization map >px : max/? —> maxSi is injective except at the points x

and y ofimaxR. Then 2(SX)/J(SX) = End(S,/Sf).
(2) // S2 is a subring oj R with integral closure R and the normalization

map y/2 : max/? —> max^2 is injective except at the two points x and y oj

max/?, then 2(SX) and 2(S2) are Morita equivalent via 2>(SX, S2).

Prooj. This is an immediate consequence of the last corollary.

Remark. The Morita class of the differential operators on an //-branch singu-

larity is not determined by n whenever n is larger than 2. Morita classes of

rings of differential operators on three branch singularities are briefly discussed

in §3.7.

3.5. Upper triangular factors.   Suppose V and W are dense subspaces and

{m £ max/? : V~(m) ^ V+(m)}

= {mx, ... , m„) = {m £ max/?: W~(m) / W+(m)}.

Suppose  V n V~(mx) C ••• c V f) V~(m„) and W n W~(mx) _ ■ ■ ■ C W n
W-(mn) with  V n V-(mi) = V n V+(mi)  if and only if W n W-(mt) =
W r\W+(mi) for each /'. Then 2t(V) and 2(W) are block upper triangular

and are Morita equivalent via 2>(V, W).
We leave the proof as an easy exercise.

3.6. It is possible to go yet further and model essentially all Morita equivalences

of finite-dimensional algebras using differential operators.

Theorem. Suppose A and B are finite-dimensional algebras which are Morita

equivalent via PA a progenerator. Then we may choose finite diagonals V,

W such that A = Mor(^, V) and B = Mor(W, W) and after identification

Mor(^", V) and Mor(W, W) are Morita equivalent via gMor(f, W)A 2

bPa ■

Proof. Choose % a diagonal such that

T:=(i   Pn\=Mor(%,%).

If 1 = iA + ig where iA , iR £ T are the idempotents such that iA TiA = A and

iBTiB = B , then SC = V © W where V = iA%? and W = iB% . V and W
have the required properties.

For the remainder of this section suppose that max/? is infinite.

Corollary. Suppose Ax and A2 are finite-dimensional algebras which are Morita

equivalent and nx , n2 are positive integers. Then there are algebras Sx , S2 with
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integral closure R such that

where Bi is a subalgebra oja matrix algebra isomorphic to Aj. Further 2(Si)

is Morita equivalent to 2(S2) via 2(Si, S2).

Prooj. The proof is similar to that of the corollary of §2.2.

3.7. Morita classes of differential operators on three-branch singularities. Sup-

pose mi, m2, m-x, are distinct maximal ideals of /?. In view of §§1.5, 2.1,

and 3.2 we may obtain good information about the number of Morita classes of

2(S) where S is a subalgebra of R with integral closure R such that the nor-

malization map identifies mx, m2, and m^ and is injective at all other points.

If V and W have the same indecomposable summands (albeit with different

multiplicities), then Mor (V, V) and Mor (W, W) are Morita equivalent via

Mor(2/", W). By §1.5 there are at most 24 such classes since /^max/?,{m, ,m2,m3}

must appear and each of the other four indecomposables may or may not ap-

pear. Further analysis of §1.5 reveals the following result.

Theorem, (a) There are eight Morita classes oj 2(S) / J(S). Their basic algebras

ore §*i1111, ̂ niio — %inoi — %iion . ^liioo — ̂ lioio — ̂ liooi» <§nooo> ̂ loin.

^lono — ̂ 10101 — ̂ iooii. ^ioioo — ̂ iooio — «?ioooi and s?ioooo-
(b) There are at most sixteen Morita classes oj 2(S).

The precise number of Morita classes of 2(S) presumably depends on /?.

In view of §§1.5, 3.2 and 2.1, there are infinitely many Morita classes of rings of

differential operators on curves with an //-branch singularity whenever n > 4.
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