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MATRIX VARIATE ^-GENERALIZED NORMAL DISTRIBUTION

A. K. GUPTA AND T. VARGA

Abstract. In this paper, the matrix variate ^-generalized normal distribution

is introduced. Then its properties are studied. In particular, it is proved that

this distribution has maximal entropy in a certain class of distributions.

1. Introduction

Goodman and Kotz (1973) introduced the family of the multivariate 8-

generalized normal distributions and derived its basic properties. In the present

paper, a definition of the matrix variate ^-generalized normal distribution is

proposed. These distributions are very useful in robustness studies. It is shown

that for matrices with one column, this definition is equivalent to the definition

of the multivariate ^-generalized normal distribution. On the other hand, the

matrix variate normal distribution is also a special case of this family of distri-

butions. Properties of the matrix variate ^-generalized normal distribution are

also studied.
In this paper, the following notations will be used. Let A be a p x n matrix;

then Ay denotes the (/', j)th element of A , i = 1, ... , p , j = 1, ... , n . Let

B he a p x p nonsingular matrix; then Byx denotes the (i, j)th element of

B~x, i, j = I, ... , p . Let the columns of matrix A (p x n) be denoted by

A^ , /' = 1, ... , n ; then (see Gupta and Varga, 1993)

A&
vec(^4) =

\a'w)

2. Basic results

Definition 2.1. For 6 > 0, X = (Xjj), i, j = 1, ... , n, has a matrix variate

standard 8-generalized normal distribution if the X,/s are independent iden-

tically distributed random variables with probability density function

/(*,,) = J2r(l + ±)}    e~W,        Xij£R,  i,j=l,...,n.
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Definition 2.2. For 6 > 0, Y : p x n is said to have a matrix variate 0-

generalized normal distribution if Y can be written as Y = AXB + M where

X is a standard 0-generalized normal random matrix, A : p x p , B : n x n,

and M : p x n are constant matrices, with A and B being nonsingular. The

distribution of Y is denoted by NPi„(M, A, B, 8).

For n = 1, we get the multivariate 8-generalized normal distribution as

defined by Goodman and Kotz (1973). Furthermore the case n =p = 1 reduces

to the Laplace density for 8 = 1, and the normal density for 8 = 2. It

approaches the uniform density as 8 —> oc , and an improper uniform one over

the real line as 0 —► 0. The probability density function of a matrix variate

0-generalized normal distribution is given in the following theorem.

Theorem 2.1. Let Y ~ Np<n(M, A, B, 8). Then the probability density junc-
tion oj Y is

(2.1) j(Y) = kPAA,B,8)exo\-YYYYArkx(Yu-Mki)B-x    1,
[    ,=i j=x fe=i t=i J

and kp,n(A,B,0) = (2T(1 + ±))-?"\A\-"\B\-p .

Prooj. If X ~ Np,„(0, Ip , In , 8) then the p.d.f. of X is

^W = (2r(i + I))"Pnexp|-X:^|^r|,

and from Y = AXB + M it follows that (2.1) is true.   □

Linear transformations of matrices with matrix variate 0-generalized normal

distribution also have matrix variate 0-generalized normal distribution. This is

proved in the next theorem.

Theorem 2.2. Let Y ~ NPt„(M, A, B, 8). Let C (p x p), D (n x n) be

nonsingular matrices, L be a p x n matrix, and define Z = CYD + L. Then

(2.2) Z ~ Np,n(CMD + L,CA,BD,8).

Proof. Let X ~ /Vp,„(0, Ip,In, 0) and Y = AXB + M. Then Z = (CA) x
(BD) + (CMD + L), where CA and BD are nonsingular. From this (2.2)

follows.    □

In multivariate analysis, the normal distribution plays a central role. By

definition, the p x n random matrix Y is said to have a matrix variate normal

distribution if its probability density function is

f(Y) = (2n)-er\l\-i|0»|-§ exp (tr (-i(T - M)'_~X(Y - M)Q>~X^ ,

where _: pxp and <P : n x n are positive definite matrices, and M is a p x n

matrix. We denote this by Y ~ NP,„(M, X <8> <J>), e.g. see Gupta and Varga

(1992). It is an important fact that the class of matrix variate 0-generalized

normal distributions contains the matrix variate normal distribution as a special

case. We can state this result more precisely in the following remark.

Remark 2.1.  NPt„(M, A, B, 2) = Np,n(M, \(AA') ® (B1'£)).
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Indeed, let Y ~ Np,n(M, A,B,2). Then Y = AXB + M, where y/2X ~
NPy„(0, Ip <8> /„) from which the statement follows.

The relationship between matrix variate 0-generalized normal distributions
and multivariate 0-generalized normal distributions is pointed out in the next

theorem.

Theorem 2.3.   Y ~ Npt „ (M, A, B, 8) ij and only ij

Y = vec(Y') ~ NpnA(-vec(M'), A®B', 1, 8).

Prooj.   Y = AXB + M is equivalent to vec(T') = (A® B') vec(X') + vec(M'),

from which the statement of the theorem follows.   □

The next theorem shows that the parameters of a matrix variate 0-generalized

normal distribution are not uniquely determined.

Theorem 2.4.  NP,„(M, A, B, 8) and Np,n(M*, A*, B*, 8) define the same
distribution ij and only ij M = M* and

(a) in the case oj 8 = 2, there exist G : p x p and H : n x n orthogonal

matrices and c> 0 such that A* = cAG and B* = \HB ;
(b) in the case oj 8 ^ 2, there exist P : pxp and Q: nxn signed permutation

matrices and c> 0 such that A* = cAP and B* = \QB.

Prooj. The sufficiency of the conditions is obvious. To prove the necessity of

the conditions assume that

NpHii{vec{M'),A®B',l,6)   and   Npn,x(vec(M*'), A* ® B*', 1, 0)

define the same distribution.   Since the first distribution is symmetric about

vec(Af') and the second one about vec(Af*'), we must have M = M*.

(a) If 0 = 2, we get

Npn (vec(M'), \(AA') <8> (B'B)) = Npn (vec(M'), \(A*A*') ® (B*'B*)).

Hence there exists c2 > 0  such that A*A" = c2AA'  and B*'B* = \B'B.
c1

But then we can find G : p x p and H : n x n orthogonal matrices such that

A* = cAG and B* = X-HB (see Muirhead (1982)).
(b) If 0 ± 2  the result follows from Theorem 3 of Goodman and Kotz

(1973).    □

The first four moments of a matrix variate 0-generalized normal distribution
are derived next.

Theorem 2.5. Let X ~ /Vp,„(0, Ip,In,8). Then ^(Xu) = 0,

®\X^jxXi2j2) = pTTTm   'i >'2  7i Ji > ^(^>\J\^i2J2^i}Ji) = 0,

and

xix--x   x   x   \-(r____   ^(^V      v
&\-*i\j\-"-ii}i-A-iij}Auj*)- Ini/0)     r2(i/0)/ 'dthu^jMijA

r2(3/0)
+ T2( 1 /8) j,J2   3'4 J3J* +    ''3 Jdi"iiU*JiJA + *i\i*fyij**htifyiji)'
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where

_ ( I    ija = b, fl    ija = b = c = d,

1 0   ija^b a c      1 0   otherwise.

Prooj. If Xu has the pdf

j(Xij) = J2T (l + i)}"1 e-\*»f

and /t > 1, then

fv^fv Wv _r((fe + i)/g)
y0    '^( ,;)    °"   2r(i/0)   '

Then if A: is a nonnegative integer, we have

nn riYk\     1 + (~')fc   T{{k + l)IO)
(2.3) r(^) = —--r(1/0)   .

Using (2.3) and the fact that the elements of A' are independent of one another

we obtain the results of the theorem.   □

Corollary 2.5.1. Let Y ~ NPi„{0, A, B, 8). Then %(Ytj) = 0,

&\Yi\J\*hii) = Y(l/6)^']'2        ' '      2    3j3^ =

flrtfl"

*• y-  t-  t  y■ ̂  - ffl _ 3r2(3/en r... fl ...
& \IhJl1'2j2I'iJiIlAjA) —  I  r(l/f9) r2(l/0) /    '''2'3,4^7i727374

r2(3/0)
+ y5(TJ(f\{£'i'i   JiteS'*'*   Ma ~*~ 8>thhjljigi2H'lJ2J4 + 8i\ii,rlj\jigiih'ljij-$) j

p « p

£wd = ^^ AukAvk ,     huv = 2_^ B(UB(V ,     rMt)iof = ^^ AukAvkAwkAtk ,

k=i e=i fe=i

flttfl"
n

<7i«jw = / ^BeuB(VBewBtt.

c=i

Corollary 2.5.2. Le/ T ~ NP,„(M, A , B, 0). 7%«i r(T,7) = M,7 ,

® (^'i7i ^i'27'2) = p/j iQ\Si,i2hjij2 + MiljtMi2j2,

&(XiJi YhJ2Yhj,) = Tvwgd8t,hhhMiih + ShhhhhMi2J2 + ghiihhhMhh]

+ MhhMi2J2Mhh,
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and

*(Y-    Y    Y    Y    )- (T{5/6)     3T2{3/6)ir        a

r2(3/0)
+ r2f j lfj\ (&'<'2   7i72Sh'4"7374 + Shhhjxjigi2ithj2jt + giliAhj]j4gj2jihj2j})

Y(3/8)
+ Y^iQ^MijiMiiJiSiiUhjiJA + MiiJiMhJ3gi2iAhJ2JA + MioMukShhhhU

+ MhhMhhgilUhjlJA + MhhMUhghhhhh + MhhMUhghi2hhJ2)

+ MUhMhhMhhMuu,

where the junctions g, h, r, and q are defined in Corollary 2.5.1.

Corollary 2.5.3. Let X ~ NPiK(M, A, B, 0). Then W(X) = M and

(2.4) Cov(vec(X')) = W^(AA') ® (B'B).

Corollary 2.5.4. Let Y ~ Np<n(M, A, B, 0). Then

Corr(Y       Y ■ ) - ^i2njxj2
*-orn/iUi >  -"(272/1 —      /—- .-r-»

V *'i'i S'2'2nj\ji nhh

and hence the Corr(y,i;,, y,2j2) floes «o/ depend on 8 .

Using the expressions for the moments the following result can be derived.

Theorem 2.6. Let X ~ 7VP _ „ (Af, A, B, 8) and E : rxp, C : nxk, F : qxp,
and D : n x £ be constant matrices.  Then EXC and FXD are uncorrelated

if and only if either C'B'BD = 0 or EAA'F' = 0.   Specifically,  XC and
XD are uncorrelated ifif C'B'BD = 0, and EX and FX are uncorrelated iff
EAA'F' = 0.

Proof. Using (2.4) we get

Cov(vec(£XC)', vec(FXD)') = Cov((E ® C) vec(X'), (F ® D') vec(X'))

= (E ® C')^^[(AA') ® (*'*)](*" ® Z>)

= ^M(EAA'F')® (C'B'BD),

and the last expression equals zero iff EAA'F' = 0 or C'B'BD = 0.    □

3. Characterization results

The first theorem in this section shows that matrix variate 0-generalized

normal distribution has maximal entropy in a certain class of distributions. It

is an extension of Theorem 10 of Goodman and Kotz (1973).

Theorem 3.1. Let X : p x n be a random matrix with p.d.fi fi such that

(3.1) r \\AXB + M\\e = c

where A: p xp, B :nx n are nonsingular matrices, M is p xn matrix, c is

a given scalar, and for a p x n matrix Y we define \\Y\\e = Yfi-x ^_"j=i \yij\e ■
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Then the entropy of X, that is, Wx(-lo%f(X)), is maximized iff X = Y a.e.
where

(3.2) Y~NP,„ (-A-XMB~X, (^\ ° A~x, B~x , 0 j .

The maximal entropy is

(3.3) ^ (l + log (^)) - logkp,n(A-x ,B~X, 8).

Prooj. Let g(Y) be the p.d.f. of Y defined by (3.2). Then

W\\AYB + M\\B = j     \\AYB + M\\ekp,n ((^j " A~x , B~x , 0 j

■^{-\\(%f(AYB+Mi}dY-

Let y = (8c/pn)eA-xZB-x -M. Then

nAYB + M\\e = ^J      (2T^1 + ^  '"||Z||eexp{-||Z||0}fl'Z

= ^pn%(\Zx\°) = c.

Next assume that X satisfies (3.1). Then

(3.4) gxi-logfiX))= i     -j(X)logj(X)dX<- [     j(X)logg(X)dX

where equality holds iff j(X) = g(X) almost everywhere in Wxn . Therefore

gx(-logj(X)) < - /     j(X)logg(X)dX
t/RPXi

(3.5)

-^\\AXB + M\\e   dX

= ^-(l+lo%^\-logkp,n(A-i,B-l,6),

and taking j(X) = g(X) in (3.4), (3.5) shows that the maximum entropy is

given by (3.3).   □

For characterizing matrix variate 0-generalized normal distributions which

are invariant under certain transformations, we need the following lemma. Be-

fore we state the lemma we define the sets

3° = {P : P is a p x p permutation matrix},

3? = {P : P is a p x p signed permutation matrix},

& = {G : G is a p x p orthogonal matrix}.
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Lemma 3.1. (a) Let A be a p xp matrix (p > 1). Then jor every P £ 3s there

exists a Q£32 such that PA = AQ iff A = SR where R£32 and S has one
ofi the following structures.

( a   ifi^j,
(3.6) (i)   S = (Sij),  where Su = | fe    J   fijj

(ii)   S = (Sjj),  where S,j = aj,

(a      a      a   b\

-a   'I   '-a   \\ *-*'
-a   -a      a   b)

/   a      0   -a\

(iv)   5=     -a      fl      0     , ifp = 3,

\   0   -fl      fl/

(3.8) (v)   S=(_aa   *), ijp = 2,

™   ^(-l   -bb)'ifP = 2'

(b) Let A be a p x p nonsingular matrix (p > 1). Then jor every P £ 3d

there exists a Q £ 32 such that PA = AQ iff A = SR where R £ 32 and S
has either the structure (i) with a ± b and a ^ -^, or (iii), with ab ^ 0, or

(v) with ab^O.

Prooj. (a) It is easy to see that if the pxp matrix S has the structure described

in (i)-(vi) and P £ 3s , then there exists T £32 such that PS = ST. Hence

if A = SR where R £ 32, then PA = PSR = STR = SRR'TR = AQ with
Q = R' TR £ 32 ; therefore, A satisfies the condition of the theorem.

Conversely, let A be a p x p (p > 1) matrix so that for every P £3° there

exists a Q £ 32 such that PA = AQ. This must be satisfied for each P £ 3s

of the form

r 1    if (i,j) = (k,t) or (i,j) = (l, k),

pu = )  l    if i = j but /' ̂  k, i / I,

I 0   elsewhere,

where 1 < k ^ t < p . Let us denote this P by P(k, £). If the elements in

each column of A are equal, we get the case (ii). If there exists a column of A

which contains at least two different elements, then without loss of generality

we can assume that this is the first column Aw . Assume that the elements of

A^ have k different values, and p, of them are equal to a,   (i= 1,..., k).

Let ^ = {P(k, £) : Akx ̂  Aex}. Let P(k,£) £ %f. Then there exists a
Q £ 32 such that P(k, £)A = AQ or equivalently P(k, £)AQ' = A. Since
Q' £ 32 , that means P(k, £)A must contain a column which differs from the

first column of A by at most a (-1) multiplier. Therefore A must contain a

column A(k, £) or -A(k, I), where A(k, £) = P(k, £)A^ .
1. Assume there exists P(k, £) £%' such that A(k, £) = ±A^ . Fix k and

£.  A(k,£) = AW is not possible since AkX ? AIX . If A(k, £) = -A™ , then
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Akx = —An , and AiX = 0 if /' / k and /' / £ . If p = 2, we get (v) and (vi). If
p = 3, we get (iv). If p > 4, then comparing A(i, y)'s, / 6 {A:, £} ; ;' 0 {A:, 7?}
we see that ±A(i, j)'s are all different from one another and also different

from Aw . So A must contain at least 2(p - 2) + 1 different columns. But

2(p - 2) + 1 > p if p > 4 and A has only p columns which is a contradiction.

2. Assume that if P'k, £) £ %, then A(k, £) ± ±A^ but on the other hand
there exist P'k, £), P(r, s) £%, P(k,£) ^ P(r,s), such that A(k, £) =
_A(r, s). Fix k, £ , r, and 5. Then it is easy to see that A(k, £) / A(r, s). If

A(k, £) = —A(r, s), then either {k, £}f){r, s} = 0 or {k, £}n{r, s} consists

of one element. If {k, £} n {r, s) / 0, e.g. k = r, then A(k, £) = -A(r, s)

implies that A(X) = 0 which is impossible since A^ should contain at least

two different elements.

If {k, £} n {r, s} = 0, then A(k, £) = -A(r,s) implies that AiX = 0 if

/' £ {k, £, r, s}. Moreover, if p = 4, then \Akx\ = \ArX\ must hold because
otherwise considering A(i, j) where i £ {k, £}, j £ {r, s} we would find 4

additional columns of A besides A(X\ which is impossible. If \Akx\ = \Ari\,

we obtain (iii). If p > 5, then considering A(i, j) where /' e {k, £, r, s}

and j: & {k, t, r, s} we see that A must contain at least 4(p - 4) additional

columns. But 1 + 1 4- 4(p - 4) > p if p > 5 and A has p columns which is a

contradiction.

3. Assume that if P(k, £) £ %, then A'k, £) / =b4(1); moreover, if P(r, s)
£ % also holds and P(k, £) ^ P'r, s), then A(k, £) # ±A(r, s). But that
means that each P(k, £) £ % will correspond to a different column of A :

A(k,£).
Now V has £ = PilP-P>)+to<P-n)+-+Pk<p-Pk) elements and it can be seen that

1 + £ > p where equality holds if and only if fc = 2 and px = 1 or pk = 1.
So A^ must contain p - 1 equal elements and one which is different from the

others, say Akx . Then considering A(k, i), i ^ k , shows that A must have

the structure (i).
(b) The result for A nonsingular follows if we consider that the determinant

of the matrix S is 0 in (ii), (iv), and (vi), (b - a)p~x(b + (p - l)a), in (i),

-16fl3ft in (iii) and 2ab in (v).    □

Now, we can prove the characterization result.

Theorem 3.2. Let X ~ Np<n(M, A, B, 0), p > 2, 0^2. Then
(a) jor every P £ 3d , PX w X; that is, PX and X are identically distributed

ij the rows oj M are identical and A = SU where U £ 32 and S has the

structure described by (3.6), (3.7), or (3.8);
(b) jor every R£32, RX « X ij M = 0 and A = SU where

(b^O   iji = j,

or

(3.10) S=(-a   a)    wherea*0ifP = 2>

(c) jor every G £ &, GX « X is impossible; that is, X cannot be lefit-

invariant.



MATRIX VARIATE 0-GENERALIZED NORMAL DISTRIBUTION 1437

Prooj. If X ~ Np n(M, A, B, 8) and C : p xp is nonsingular, then CX ~
NP,„(CM, CA,B',6). So X&CX iff

(3.11) M = CM and there exists V £ 32 such that CA = AV.

Note that 3s c32 c&.
(a) PM = M for every P £ 3s iff the rows of M are identical. Using

Lemma 3.1 we obtain the structure of A .

(b) Here we have a subset of the distributions in (a). It is easy to see that

M = 0 and A = SU where S is given by (3.9) or (3.10) satisfies (3.11). On
the other hand, let R = -Ip . This gives -IPM = M and so M = 0. Now let

R =

V 0 1/
Then there must be a Q £ 32 such that RA = AQ. Hence RS = SuQu'

where uQu' £ 32. However, this is only possible if a = 0 in (3.6), and (3.7),

and |a| = \b\ in (3.8). Taking a = 0 in (3.7) makes \A\ = 0 which is not
allowed. So we are left with (3.9) and (3.10).

(c) Here we must have a subset of the distributions in (b). Let Gef such

that the first row of G is (-4= , -4=, ... , -4=). Then we can see that there is no

R£32 for which GS = SR.   D
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