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GROUPS WITH NO FREE SUBSEMIGROUPS

P. LONGOBARDI, M. MAJ AND A. H. RHEMTULLA

Abstract. We look at groups which have no (nonabelian) free subsemigroups.

It is known that a finitely generated solvable group with no free subsemigroup is

nilpotent-by-finite. Conversely nilpotent-by-finite groups have no free subsemi-

groups. Torsion-free residually finite- p groups with no free subsemigroups can

have very complicated structure, but with some extra condition on the subsemi-

groups of such a group one obtains satisfactory results. These results are applied

to ordered groups, right-ordered groups, and locally indicable groups.

1. Introduction

Let G be a group, and for any pair (a, b) of elements in G, let S(a, b)

denote the subsemigroup generated by a and b. We investigate properties of

groups G which contain no free subsemigroup on two generators. In other

words, for every pair (a, b) of elements of G, S(a, b) has a relation of the

form

(1) ar'bSi ...ar<bs> = bm'a"> ...bm*ank

where r,, s,, m,-, n, are all nonnegative and rx and mx are positive integers.

We shall call G a group without free subsemigroups if it has no free nonabelian

subsemigroups; thus taking "free" to mean "free nonabelian." Clearly G has

no free subsemigroups if and only if no two generator subgroups of G have

free subsemigroup. For this reason there is no loss of generality in assuming

that G is finitely generated. Our first result is the following.

Theorem 1. Let G be a finitely generated solvable group. Then G has no jree

nonabelian subsemigroups ijand only ijit is nilpotent by finite.

It is well known that S(fl, b) is not a free subsemigroup if (a , b) is a nilpo-

tent group. In [13] Shalev showed that if (fl, b) is nilpotent of class c, then it

satisfies the law uc = vc where the words {«,}, {«,} on letters a, b are defined

as follows: uo = a, vq = b, and for / > 0, m,+i = w,t;, and vi+x = VjUj.

Thus if G = (x, y) is a periodic extension of a locally nilpotent group and

fl, b are elements in G, then (an , b") is nilpotent for some positive integer

n and, hence, satisfies the law uc = vc for some c and (x, y) does not have a

free subsemigroup. The converse is not likely to be true; but with no example

known to substantiate this, we leave it as an open question.
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Question 1. Let G = (x, y) be a group with no free subsemigroups. Is G

a periodic extension of a locally nilpotent group?

Even under additional conditions on a group G with no free subsemigroups,

the structure of G can be quite complicated. Let p be a prime, F the free

group of rank two, and F/R isomorphic to the Gupta-Sidki p-group con-

structed in [7]. Then F/R is an infinite, residually finite p-group. Thus

G = F/R' is a residually torsion-free solvable group. It is also a residu-

ally finite p-group. For all pairs (a, b) of elements in G, there is a rela-

tion of type (1) with j = k = 1. But G is not nilpotent-by-finite. In [5]
Grigorchuk constructed interesting examples of finitely generated torsion-free

groups of subexponential growth which are not nilpotent-by-finite. These groups,

like the group G = F/R' described above, are also abelian-by-periodic.

If (a , b) is a pair of elements in G satisfying a relation of type (1), then we

call j + k the width of the relation and the sum rx-\-\-rj + nx-\-Ynk the

exponent of a or exp(a) in the relation.

Theorem 2. Suppose G is a group and there is a bound N such that for all pairs

(fl, b) of elements in G there is a relation oj the jorm (1) whose width is at

most N. Then G is nilpotent ijit is residually torsion-free nilpotent.

Note that the group G = F/R' quoted above shows that the condition "resid-

ually torsion-free nilpotent" cannot be weakened in Theorem 2. If one looks at

groups G where there is a bound N such that for all ordered pairs (a, b) of

elements of G there is a relation of the form (1) where exp(fl) is at most N,

then one can say more about G as the next result shows.

Theorem 3. Suppose G is a locally indicable group and there is a bound N such

that for all ordered pairs (a, b) of elements of G there is a relation of the jorm

(1) where exp(a) is at most N: Then G is locally nilpotent-by finite.

One place where the knowledge that G has no free subsemigroup has im-

mediate application is when G is an orderable (O) group or a right orderable

(RO) group. We refer the reader to [2] or [4] for basic results and terminology

that we use. Recall that G is orderable if there exists a total order relation > on

G such that for all a, b, h, g in G, a>b implies hag > hbg; equivalently,
if there exists a normal subset P in G such that PP = P, P U P~x = G, and

PnP~x = {e}. G is right orderable if there exists a total order relation > on G

such that for all a, b, g in G, a>b implies ag>bg, equivalently, if there

exists a subset P in G such that PP = P, PuP~x = G, and Pr\P~x = {e}.

We shall show that if G is orderable and has no free subsemigroup on two gen-

erators, then all the convex subgroups are normal in G under any order on G.

And if G is right orderable and has no free subsemigroup on two generators,

then under any right order on G the set of convex subgroups form a series

with torsion-free abelian factors; and, in particular, G is locally indicable. Our

result thus extends the well-known result that nilpotent-by-finite right orderable

groups are locally indicable. It also extends a recent result of Kropholler in

[ 10] that the convex subgroups of a right-ordered supramenable group form a

series with torsion-free abelian factors. This follows since supramenable groups

contain no free semigroups [14, p. 189]. As corollaries of Theorems 2 and 3,

we get
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Theorem 4. Ij G is an O-group and there is a bound N such that jor all pairs

(a, b) oj elements in G there is a relation oj the jorm (1) whose width is at

most N, then G is nilpotent oj class bounded by N.

Theorem 5. Ij G is an RO-group and there is a bound N such that jor all

ordered pairs (a,b) ofi elements oj G there is a relation oj the jorm (1) where

exp(fl) is at most N, then G is locally nilpotent-by finite.

Recently Grigorchuk and Machi showed in [6] that the torsion-free groups

of subexponential growth constructed by Grigorchuk in [5] that we referred to

earlier are also right orderable. Thus a finitely generated R O-group of subex-

ponential growth need not be nilpotent-by-finite. We do not know if a finitely

generated O-group of subexponential growth must be nilpotent.

We thank Dr. Shirvani for pointing out to us that Theorem 1 was proved by

Rosenblatt in [12]. His proof depends heavily on the works of Wolf [15] and

Milnor [11]; our proof is short and direct. For this reason we have included the

proof in this paper. There is a close similarity between our proof of Lemma 4

and that of Lemma 2 by Bass in [1].

2. Proofs

Lemma 1. If G has no free subsemigroups, then fior all a,b in G, (flw) is

finitely generated.

Proof. Consider the semigroup S(b, ba) generated by b and ba. By hypoth-

esis,
bri(ba)s'... br'(ba)si = (ba)m,bn'... (ba)m*bnk,

where r,■■, s,■■, m,■-, n,  are nonnegative integers and rx   and mx   are positive.

Hence

(a-xfxabh(a-x)bh ...ablub-x" = (a-x)abn(a-x)b^ ...ab"v-'b-^

where ku < ■ ■ ■ < kx < 0 and pv < ■ ■ ■ < p2 < 0. Let k = ku, p = pv. If k ^ p,
then bx~f £ (a^b'), which is then finitely generated; and we are done. So assume

k = p. Then a £ (ab , ... , ab ). By replacing b with b~x we similarly get a £

(ab, ... , ab") for some v > 0. Thus (af , ...ab ,a, ab"' , ... , ab") = (a<*>).

The next result appears in [9], but we include the proof here since it is very

short.

Lemma 2. Let G be a finitely generated group. If H < G, G/H is cyclic, and

(flw) is finitely generated jor all a,b in G, then H is finitely generated.

Prooj. For some g £ G we can write G = H(g). Since G is finitely gen-

erated, there exist hx, ... ,hr in H such that G = (hx, ... , hr, g) and H =

(hx, ... , hr)G. For each i= 1, ... , r, (hjg)) is finitely generated, say, (h^) =

(hn ,..., hid{i)). Then H = (hie(l);  1 < i < r,  1 < £(i) < d(i)).

Corollary 3. Let G be a finitely generated group with no jree subsemigroups.

Then jor every positive integer n,   the nth derived subgroup G(n)  is finitely

generated. In particular ij G is solvable, then it is polycyclic.

Prooj. This follows directly from Lemma 1 and Lemma 2.

Lemma 4. Let G = A x T, the split extension oja finitely generated torsion-jree

abelian group A by infinite cyclic group T = (t). If T acts rationally irreducibly

on A and G has no free subsemigroups, then G is abelian-by-finite.
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Proof. Let V = A ®z Q. Then V is an irreducible OJT-module and by Schur's
Lemma, D = End^ V is a division ring of finite dimension over Q. Now the

image of T in End^ V lies in D and generates D. Hence D is an algebraic

number field. As a 73-space, V is one dimensional. Let a be the image of t

in D. Then we can identify V with Q(a) under addition and the action of

t on V being that of multiplication by a. If a is a root of 1, then t" acts

trivially on V and hence the subgroup (A, t") is abelian of finite index in G.

If a is not a root of unity, then D can be embedded in (T so that |q| < 1

(see [8, p. 102]). By taking a power of q,   if necessary, we may assume that

M < i
Take any b ^ e in A and consider the semigroup S(t, tb). By hypothe-

sis there exist positive integers p, q, rx, ... , rp, sx, ... , sp-X ,u2, ... , uq_i,

Vi,... , vg and sp , uq nonnegative such that

tri(tby< ...tr"(tb)s" = (tb)VitU2...(tb)v"tu".

p p 9 q

Note that 5Zr,- + Y,si = _lut + _lvi since G/.4 is infinite. If ft corresponds
i=X (=1 i=2 1=1

to Z> in the isomorphism of V and (2(a).  then the above equality translates

into
j k

ftY^^ftY^1
i=i i=i

where 0 < kx < ■ ■ ■ < ks■;    0 = px < p2 < ■■■ < pk, and j, k are some

positive integers. Since |a| < \ ,     \J2 ± aXi\ < Y^(\)Xl < \. On the other side,
i=i i=i

k k
\YJ±alii\ > 1 - Yj\ ' > 5 > giving a contradiction. Thus G is abelian-by-finite.
i=l i=2

Proof ofi Theorem 1. Let G be a finitely generated solvable group with no free

subsemigroup. We use induction on the solvability length of G to show that G

is nilpotent-by-finite. Clearly there is nothing to prove if G is abelian. Hence,

using induction, we may assume that C7 is abelian-by-nilpotent-by-finite. Taking

a subgroup of finite index in G, if necessary, we may assume that G is abelian-

by-nilpotent. By Corollary 3, we know that G is polycyclic. Thus, again passing

to a subgroup of finite index, if necessary, we may assume that G has a finitely

generated torsion-free normal abelian subgroup A and G/A is torsion-free

nilpotent. Now, there is a central series A = Ao < Ax < ... < As = G from A

to G with infinite cyclic factors. Say Aj = Ai-X(ti), i = 1, ... , s. It suffices

to show that (A, t"') is nilpotent for some n, > 0; for then (A, t"1, ... , t"s)

is nilpotent and of finite index in G,  as is required to show.

In order to show that (A, t"') is nilpotent for some «, > 0, consider

the series 1 = A to < ... < Aim^ = A where Ay are isolated subgroups of

A, normalized by t,, and Ajj+x/Ajj is of minimal rank. Apply Lemma 4

to (Au+X, ti)/Ajj to get [^4,7+1, t"'] < Au for some «, > 0 and all j =
0, ... , m(i). Then (A, t"') is nilpotent of class at most m(i). This completes

the proof.

Proposition 5. Suppose that G is a torsion-free nilpotent group. If there is a

bound N such that for all pairs (a, b) of elements in G there is a relation of
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the form (1) whose width is at most N, then G is nilpotent whose class is

bounded by a function of N.

Proof. Let G he nilpotent of class c. Then y[C/2](G) is abelian, where [c/2]

equals c/2 if c is even and c+l/2 if c is odd. Let A denote the isolator of

7[c/2](G). Then A is also abelian since G is torsion-free. Now, for any a £ A

and g £ G,  consider S(g, a) to obtain the equality

(2) aV...flV> = gm'fl"' ...gmkan«

where j + k < N. We treat A as a Z(g)-module and show that A(g- 1)^ = 0.
If g £ A, then A(g - 1) = 0 and we are done. So assume g £ A. Now the

relation (2) yields
; k

aYrig>1' = aYnigXi
i=X 1=1

j k
where 0 = px < p2 < ■ ■ ■ < pj and 0 <kx < ■■■ < kk. Let J2rtxMi - £«i* ' =

/=1 ;=1

q(x), and let Ax = A®i Q. Treat g as an operator on Ax to get aq(g) = 0.

Since (Ai, g) is also nilpotent of class at most c, (g - l)c annihilates a as

does q(g). Now if (x - l)e divides q(x),  then e < N for we have q(l) =

0,  q'(l) = 0, ... , qe~x(l) = 0 where q(x) = Ec/X"' where t < N,  c, ^ 0.
i=i

Then
/   1      •••       1   v

vx       •■       vt /Cx\        /0\

If e > N, then the only solution to the above system is c, = 0 for all

/ = 1, ... , t since t < N. This, in turn, would imply that q(x) = 0, a
contradiction. Thus a(g - 1)N = 0 for all a £ A, g £ G. Reverting to the

multiplicative notation of the group G,  we have

[A, g,...,g] = l.
y-v-'

N

Since G is torsion-free, it follows from a result of Zelmanov (see [16, p. 166])

that A lies in Cf(N)(G), the f(N)th center of G, where j(N) is a function

of 7Y and independent of the number of generators of G. Thus the nilpotency

class of G is at most [c/2] + j(N) and hence c < 2j(N).

It is worth noting here that the method applied in the proof of Proposition 5

is general enough to be useful in other situations. We mention one such case.

Suppose G is a torsion-free locally solvable group and, for some fixed positive

integer N, (x, y) = ((x) (y))N for all x,y in G. Then G is nilpotent of

class bounded by a function of N.

Prooj oj Theorem 2. Since G is residually torsion-free nilpotent, there exists a

descending central series G = G0 > Gx > •••  where   n G,■ = 1 and G/Gt is
1=1
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torsion-free nilpotent for all i. By Proposition 5, there is some integer j(N)

such that 7f(N)+i(G) C C7, for all /' and hence yf^N)+x(G) = 1.

Lemma 6. Ij A is a Z-torsion-jree _ (g)-module, q(x) £ Z [x] is a polynomial

oj degree N, and jor some a £ A, a(q(g)) = a(g" - 1) = 0 jor some n > 0,

then there exists a positive integer m = m(N), independent of n, such that
a(gm-l) = 0.

Proof. Consider q(x) and x" - 1 as elements of (P [x]. Since x" — 1 =

n^(x),   where 8d(x) are the flth cyclotomic polynomials of degree  y/(d)
d\n

which are irreducible in Q[x], the greatest common divisor (q(x), x" — l) =

6dx(x)... 6dr(x) f°r some dj\n. Now there are only finitely many integers fl",

such that y/(dt) < N. Let d(x) be the product of these 6di(x), and let m be

the least integer such that d(x) divides xm - 1. Then for some positive integer

s, a(s(gm - I)) =0, since A is a Z (g)-module rather than Q (g)-module.

But since A is Z-torsion-free, s(a(gm - 1)) =0 implies a(gm - 1) = 0. This

completes the proof.

Proposition 7. Suppose that G is a torsion-free solvable group. If there exists

a bound N such that for all ordered pairs (a, b) of elements in G there is a

relation of the form (1) in which exp(a) is at most N, then the exponent of

G/Fitt(G) and the nilpotency class of Fitt(G) are bounded by a function oj N.

Prooj. There is no loss of generality in assuming that G is finitely generated

since we shall show that G/Fitt(G) has bounded exponent and the nilpotency

class of Fitt(C7) is bounded. The bound on Fitt(G) is obtained from Propo-

sition 5. By Theorem 1, G is nilpotent-by-finite. Let A be a normal abelian

subgroup of G. Then for any a £ A and g £ G consider the ordered pair

(g, fl) to obtain the equality

(3) a"gSt...ar'g'' = gmian> ...g^a""

j k

where   J2si + _\mt < N-  We consider A  as Z(g)-module and show that
i=i        i=i

a(gm — 1) = 0 for some m = m(N). Equation (3) in additive notation yields

J k

aYr,gl1' = ^Ynigk'

i=i i=i

where 0 = px < p2 < ••• < Pj',   0 < kx < ■■■ < kk, and Pj + kk < N.
j k

Let q(x) = Y,rix>1' ~ J2nix     s0 mat a • Q(g) - 0.  Since  G is nilpotent-
(=i (=i

by-finite,  a(g" - l)c = 0 for some positive integers  n  and c.  If c =  1,

then by Lemma 6, a(gm - 1) = 0 where m depends only on N. If c > 1 ,

then replace a by a(g" - l)c~x to get a(gn - l)c"'(gm - 1) = 0 and hence

a(gm - l)(g" - l)c_l = 0. Use induction on c to get a(gm - l)c = 0.

Let F = Fitt(G'). We show that Gm C F. Since G is nilpotent-by-finite by

Theorem 1, F is finitely generated so that the terms of the upper central series

of F are all finitely generated isolated subgroups of F. Let Z, denote the /'th
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center of F. Then Z,-(gm - l)c< c Z,_i where c, e IN. Thus F lies in some

term of the upper central series of FGm. But if F / FGm , then let B/F be

a nontrivial normal abelian subgroup of FGm/F. Then B c Fitt(G) = F, a

contradiction. Now apply Theorem 2 to F to get a bound on the nilpotency

class of F.

Prooj oj Theorem 3. We assume that G is finitely generated and show that it

is nilpotent-by-finite. Let R be the torsion-free solvable residual of G. Then
OO

R = n Gj where C7/C7, is torsion-free solvable. By Proposition 7, G,C7m/G, is
,=1

nilpotent of class n with n and m depending only on N. Thus G/R is solv-

able and by Corollary 3, R is finitely generated. If R ^ 1, then, by hypothesis,
R/R' is infinite so that G/J is torsion-free solvable where J is the isolator of

R' in R,  and J ^ R, which is a contradiction.

Lemma 8. Let > be a (two-sided) total order on an O-group G. Ij G has no

jree subsemigroups, then the convex subgroups under > are normal in G.

Prooj. Let C be a convex subgroup under >, and suppose that Cs ^ C for

some g £ G. We may assume that Cg _ C since convex subgroups are nested.

Thus there exists a in C such that a8 is not in C. But then ag"+ is not

in C8"  for all n > 0. But (fl<^)  is finitely generated by Lemma 1.   Thus

ag"+ £ (a, a8, ... , a8") for some n , and hence ag"+  £ C8", a contradiction.

Prooj oj Theorem 4. Let > be a total order on G. Let C >-> D be a jump in

the set of convex subgroups of G under >; then D/C is order isomorphic to

a subgroup of the additive group of reals and every g in G induces an order-

preserving automorphism of D/C (see [4, p. 50]). Since the order-preserving

automorphisms of an Archimedean-ordered group form a subgroup of the mul-

tiplicative group of positive reals, it follows that the centralizer Cg(D/C) of

D/C in G contains G' and is an isolated subgroup of G. Let J be the isolator
of G' in G. Then [D, J] C C.

Since we shall show that G is nilpotent of class bounded by TV, independent

of the number of generators of 6, it suffices to assume that G is finitely

generated. Then by Corollary 3, J is also finitely generated. Now order J

by taking the restriction of order > . Then the convex subgroups of J are

C f)J, where C is convex in G under > . This order on / is a G-order in

that the positive cone is invariant under conjugation by elements of G. We use

this order on J and extend it to an order on G by making /^G a convex

jump. Since J is finitely generated, there is Jx < G such that Jx >-> J. (Jx

is simply the largest convex subgroup of G that does not contain the finite set

that generates J.) Similarly Jx is finitely generated by Corollary 3 and there is

a jump J2 >—» Jx.
OO

Continue this process, and let K = n /,-.
i=i

Then J/K is residually torsion-free nilpotent and hence nilpotent by Theo-

rem 2. Thus G/K is soluble and hence nilpotent-by-finite by Theorem 1. But

a nilpotent-by-finite O-group is nilpotent.

Hence G/K is nilpotent and the nilpotency class is bounded by a function

of N as in Proposition 5. Thus K = Jm for some m and Jm = 1.
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Lemma 9. Let > be a right order on an RO-group G, and let P = {g £ G; g >

e}. Ij P has no jree subsemigroup, then the set oj convex subgroups under >

jorm series from {e} to G with torsion-free abelian factors. In particular G is

locally indicable.

Proof. Let a, b be any elements in P. We first show that anb > a for some

positive integer n. If b > a, then anb > b > a for all n > 0, so assume

a > b. By hypothesis

ar>bs> ...ar'bs> = bm> a"1... bmk a"k

for some non-negative integers r,, 5,, ra,, «, where Sj and nk are positive.

If a > anb for all n > 0, then ar,bs' = (ar'b)bs'~x < abs,~x < ••• <

ab < a. Continue in this fashion to get ar,bs' ...ar>bs> < a. On the other

side bmia"1 ...bmk > e so that 6m'a"' ...bmka"k > a"k > a, resulting in a

contradiction. Now a right order > where for each ordered pair (a, b) of

elements in P there exists some n > 0 such that anb > a is called a C-order.

It was shown by Conrad in [3] that if > is a C-order, then the set of con-

vex subgroups of G under > forms a system in Malcev terminology (series

in P. Hall terminology) with torsion-free abelian factors. Thus every nontrivial

finitely generated subgroup of G has an infinite cyclic quotient and G is locally

indicable.

Proof of Theorem 5. This follows from Lemma 3 and Theorem 3.
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