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STOCHASTIC CONTROL PROBLEMS
AND SPHERICAL FUNCTIONS ON SYMMETRIC SPACES

T. E. DUNCAN AND H. UPMEIER

Abstract. A family of explicitly solvable stochastic control problems is formu-

lated and solved in noncompact symmetric spaces. The symmetric spaces in-

clude all of the classical spaces and four of the exceptional spaces. The stochas-

tic control problems are the control of Brownian motion in these symmetric

spaces by a drift vector field. For each symmetric space a family of stochastic

control problems is formulated by using spherical functions in the cost func-

tionals. These spherical functions are explicitly described and are polynomials

in suitable coordinates. A generalization to abstract root systems is given.

0. Introduction

In the investigation of stochastic optimal control for nonlinear stochastic sys-

tems it is natural to study the optimal control of diffusion processes in a Rieman-

nian manifold. Some sufficient, as well as necessary and sufficient, conditions

have been obtained for the optimal controls for such controlled diffusions. The
first results for these problems are given in [D2, D3]. A natural controlled dif-

fusion in a manifold can be formed from a stochastic differential equation that

is the sum of the formal vectors of a manifold-valued Brownian motion and a

drift vector field that depends on the control. For many reasons it is important

to have examples of such controlled diffusions where the optimal control is ex-

pressed explicitly as a function of the state of the controlled diffusion. However

even in Euclidean space there are only a relatively few examples of controlled
diffusions where the optimal control is expressed explicitly as a function of the

state.
In the more general setting of Riemannian geometry a natural class of (curved)

manifolds are the symmetric spaces which are closely related to the semisim-

ple and reductive Lie groups and arise in many classical situations (e.g. matrix

groups and hyperbolic spaces). By using the additional structure available on

symmetric spaces we are able to construct large families of explicitly solvable

stochastic control problems in symmetric spaces of arbitrary rank.
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The first example of an explicitly solvable stochastic control problem in a

noncompact manifold with nonzero curvature is a controlled diffusion in real

hyperbolic three space [D4]. This example in real hyperbolic three space is gen-

eralized in [D5] to all the hyperbolic spaces, that is, irreducible noncompact

symmetric spaces of rank one, and a countable family of nontrivially distinct

cost functionals for each of these spaces. In all of these examples some spherical
functions, that are polynomials in appropriate variables, are used to define the

cost functions. For rank one symmetric spaces these spherical functions are hy-

pergeometric functions. The stochastic control problem is to control Brownian

motion in a hyperbolic space by a drift vector field so that it remains close to
a fixed point in the space called the origin. The cost functionals are positive,

monotone increasing functions of the distance of the state from the origin and

are quadratic functions of the control.

In this paper a family of stochastic control problems are formulated and

explicitly solved in noncompact symmetric spaces of arbitrary rank that are

formed from semisimple and reductive Lie groups. Specifically all symmetric

cones and (complex) symmetric balls are used. The stochastic control problem

is the natural analogue of the stochastic control problems in the hyperbolic

spaces solved in [D4, D5]. The problem is to control Brownian motion in a

noncompact symmetric space by a drift so that it remains close to the origin.

Spherical functions are used to construct a family of cost functionals. For the

symmetric cones spherical polynomials have been constructed in the statistics
literature (e.g. [M2]). In this paper these spherical polynomials are constructed

more easily from the representation theory of the symmetric cones [U2]. For

symmetric balls not much is known about a general construction of spherical

polynomials [Dl, HI]. In this paper an explicit procedure is given for the

construction of all spherical polynomials in an arbitrary symmetric ball. This

procedure uses the spherical polynomials in symmetric cones. These spherical
polynomials are monotone increasing along rays in a positive Weyl chamber. An

admissible control is required to induce a stochastic differential equation for the

controlled diffusion that has a unique strong solution. The solution of each of

these stochastic control problems is obtained by finding a smooth solution to the

Hamilton-Jacobi or dynamic programming equation for the control problem.

The organization of this paper is as follows. In Sections 2, 3, 4, 7 and 8, we

develop the relevant geometric features for the symmetric cones and symmetric

balls, respectively. We start from one basic fact, namely the Jordan-theoretic

description of these two classes of symmetric spaces and their infinitesimal

isometries [L3, UI, FK], and develop the root decomposition, the structure of

the Laplace operator in radial coordinates, and the basic properties of spher-

ical functions in a coherent way. This makes the paper more self-contained

and underlines the close analogy between (real) symmetric cones and (com-

plex) symmetric balls. (A more comprehensive account of the Jordan-theoretic

description of symmetric spaces, which so far is not readily available in the lit-

erature, can be found in a forthcoming book [FK].) In Sections 5, 6, and 9, these

geometric results are then used in the study of the corresponding stochastic con-

trol problem. Finally, Section 10 indicates how these results can be generalized

to the so-called abstract root systems [Dl], replacing geometric arguments by

combinatorial properties of the spherical polynomials.
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1. Review of stochastic calculus

Stochastic optimal control of a diffusion process in a Riemannian manifold is

based on the stochastic calculus of Brownian motion. This stochastic calculus is
an interplay between the properties of a Brownian motion in a Euclidean space

and the theory of smooth curves in a Riemannian manifold. To make this paper

accessible to an audience including those without a background in probability,

some of the basic concepts and approaches of stochastic calculus and control in

manifolds are briefly reviewed. A Brownian motion in a Riemannian manifold

can be defined in various ways. Assume first that X is a measurable space. Let

B(X) be the Banach algebra of all bounded measurable functions f:X—*C,

endowed with the norm

ll/H := sup |/(x)|.
xex

Let B'(X) be the space of all complex measures p on X such that

IMI := / \p\(dx) < oo.
Jx

Via the natural pairing

(p, f):= / p(dx)f(x),
Jx

B'(X) becomes a (proper) subspace of the topological dual space of B(X).

Let Y be another measurable space. A mapping K: X -> B'(Y), denoted

by xh K(x, dy), is called a measure kernel if, for every measurable subset

B c Y, the mapping

X 3 x »-> / K(x, dy)
Jb

is measurable, and we have

11*11:= sup f \K(x, dy)\ < oo.
xex Jy

K can be identified with a continuous linear operator B(X) <— B(Y), defined

by

(Kf)(x):= J K(x,dy)f(y)

for all / £ B(Y) and x £ X . If L: Y —► B'(Z) is another measure kernel, we
may define

(KL)(x, dz) := j K(x, dy)L(y, dz)

and obtain a measure kernel KL: X —► B'(Z) since we have, by Fubini's The-
orem,

J \(KL)(x,dz)\ < j \K(x,dy)\J \L(y, dz)\

for all x £ X, showing that ||AX|| < ||A:|| ||L||.  As an operator, KL is the
composition of K and L.

Let B[(X) be the subset of B'(X) consisting of all (positive) probability
measures on X; i.e., \p\ = p and ||p|| = 1 for p £ B[(X).
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Put T := {t £ R : t > 0} , and consider a family

(1.1) Kt:X^B'x(X)       (t£T)

of measure kernels satisfying KsKt = Ks+, for all s, t £ T. For any subset

I c T, consider the direct product measurable space

endowed with the cr-algebra of cylinder sets. For / c / c f, we have a

canonical projection pf: Xjr -> Xj. For any finite subset I = {tx < ■ ■ ■ < tn}

of T, there exists a measure kernel K{: X —> B[(Xj) uniquely determined by

the property

Ki I x0, TTBi) :=  /   Kh-t<,(xo, dxx)
\      tei    I       Jbh

■       Kh-tl(xi, dx2) ■ ■ ■       Ktn-t„^(x„-i, dx„)
Jb,2 Jb,„

for all Xo 6 X and all measurable subsets Bj c X (i £ I). Here we put to := 0.

If y d I is another finite subset of T, there is a commuting diagram

X

B'yfXjr)->B\(X{)
Pi

where the horizontal arrow is the direct image map under pf . Thus (Kf) is a

projective system of measure kernels and there exists a measure kernel

(1.2) KT:X^B[(XT)

such that for every finite subset I c T the diagram

X

B\(XT)->B\(Xi)
Pi

commutes. Kj is called the projective limit associated with the semigroup (1.1).

An important class of semigroups of measure kernels comes from elliptic

differential operators. Let I bea locally compact smooth manifold and let

%(X) be the Frechet algebra of all smooth functions /: X -» C, endowed with

the seminorms

|/|d,jc:=sup|(D/)(x)|
x€K

where K c X is compact and D is a differential operator with smooth coeffi-

cients on X.
Let W'(X) be the topological dual space of %?(X), consisting of all distribu-

tions 5 on X with compact support. The natural pairing between B"(X) and

g"(X) is denoted by

(S,f)=: [ S(dx)f(x).
Jx
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If Y is another smooth manifold, a mapping D: X —► £?'(Y), denoted by

x t-> D(x, dy), is called a distribution kernel if for every f £%(Y) the function

(Df)(x):= j D(x,dy)f(y)

is smooth on X, and defines a continuous operator W(X) <— lf()>). If is: T ->

#"(Z) is another distribution kernel, the continuity assumption implies that

(DE)(x, dz) := J D(x, dy)E(y, dz)

defines a distribution kernel DE: X —> %'(Z) corresponding to the composition

of operators. Any differential operator £?(X) <— %(X) is continuous and can

be identified with a distribution kernel

j D(x,dy)f(y):=(Df)(x)
Jx

from X to ^'(X). For each x, D(x, dy) has compact support c {x} .
If D is a second-order differential operator which is strictly elliptic in the

sense of [Y2, p. 419 and p. 426], there exists a fundamental solution which is a

semigroup of measure kernels

exptD:X ^ B[(X)       (t £ T)

(or of operators on B(X)). According to (1.2), we obtain a measure kernel

(1.3) expTD:X-+B'x(XT).

We now consider the important special case X = Rn and the algebra B'(R")

of all bounded complex Borel measures, with convolution

/ (p*u)(dz)f(z)= f   f p(dx)v(dy)f(x + y).
Jr" Jr» Jr»

Every p e B'(Rn) defines a measure kernel p*:Rn -► B'(R"), denoted by

x >-> p*(x, dy), via the formula p*(x, B) := p(B - x) for all Borel subsets
B c R" . The associated convolution operator

(p*f)(x)= f p*(x,dy)f(y)= j p(dy)f(x + y)
Jr" Jr"

commutes with translations, and we have

(1.4) p*v* = (p*u)*

for the product of measure kernels. Now consider a family p, e B[(Rn) of

probability measures, for t £ T :=R+ , satisfying

(1.5) p*pt = ps+t

for all s, t £ T. For each finite subset I = {tx < t2 < ■ ■■ < tn} of T define a
measure pi £ B[(R") by putting

M/(nB<    :=/    toi-htfxi) f       Ht2-h(dx2)
\i€I      ) JB'\ JB,2-Xl

■ j ptn-tn_x(dxn)
•>Bl„-X\--*n-l
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for all Borel measurable subsets fi, c R" (i £ I). Here we put to '■= 0.

If J*" D / is another finite subset of T, the canonical projection gives rise

to the direct image p^y x pf = pi. Thus we obtain a projective system (pj)

of measures and there exists a measure pr £ B[ (R^f) such that

Pt * pj = Pi   (I C T finite).

The measure pr is called is called the projective limit associated with the semi-

group (1.5). According to (1.4), the associated measure kernels

Kt = p*:Rn ^ B\(Rn)

form a semigroup as well, and we have

Ki = p*t    (I c T finite)   and   KT = p%.

An important class of semigroups of measures comes from constant-coefficient

differential operators. Consider the algebra ^(Rn) of all distributions 8 on

R" supported at {0} , with convolution

/ (S*e)(dz)f(z)= [   f S(dx)e(dy)f(x + y)
Jri Jr" Jr"

for all / £ %(Rn). Every 8 £ ^(Rn) defines a distribution kernel 8*: Rn -»

^'(Rn),  denoted by x >-»• 8*(x, dy), via the formula

(1.6) (8*f)(x)= I 8*(x,dy)f(y):= [ 8(dy)f(x + y)
Jr* Jr"

for all / £ W(Rn). We have 8*e* = (8*t>)* for the product of distribution

kernels. Any constant-coefficient differential operator

*=£<«(^)'--G^)"
can be identified with the distribution

/ 8(dx)f(x) = (8f)(0)
Jr"

in ^(R"). By translation invariance, 8 induces a differential operator

(i.7) «r(R") *^-r(R")

with distribution kernel defined by (1.6).
In case 8 is strictly elliptic of second order [H3] there exists a fundamental

solution which is a semigroup of measures

exp(r5e73'1(R'1)       (t£T)

whose associated measure kernels

(exp, 8)* = exp, 8*: R" -» B\ (Rn)    ■

form the fundamental solution of the elliptic operator (1.7). According to (1.3),

we obtain a measure

(1.8) e\pT8 £B'x(RnT).
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Every Riemannian manifold X has a canonical elliptic second-order differ-

ential operator A called the Laplace-Beltrami operator. The associated measure

kernel

(1.9) expTA:X^B[(XT)

(cf. (1.3)) is the transition probability of the Markov process called the Brownian

motion on X. One can show [IW] that, for every x £ X, the probability

measure (expr A)(x, dy) has support on the continuous paths W(T, X) c Xt ■
Thus we have

(1.10) expTA:X^B'x(W(T,X)).

If X = Rn is Euclidean space and

"    d2

,=1 ax'

is the (strictly elliptic) Casimir operator at 0, the Laplace-Beltrami operator is

A = 8* and we have

(expt8)(dx) = (4nt)-n/2e-W2'4tdx

for all t £ T. The associated measure

(1.11) expT8£B[(RnT)

(cf. (1.8)) is called the transition probability of the Brownian motion at 0 £ R" .

One can show [IW] that the probability measure (1.11) has support on the

continuous paths W(T, R") c RT , so that

expT8£B[(W(T,Rn)).

The two concepts (1.10) and (1.11) are related via the geodesic coordinates

(1.12) nx^^x

at any "base point" x e X, assigning to a tangent vector v in a 0-neighborhood

£lx C TXX the geodesic / h-> expx(tv) passing through x in direction v . More

precisely, (exprA)(x, dy) can locally be described as the image measure of

(expT8)(dy) under the local diffeomorphism (1.12). Here 8 is the Casimir
operator on TXX = Rn .

A sample path approach to the construction of a Brownian motion in a Rie-

mannian manifold M can be made using the inverse of the development of

E. Cartan that acts on the family of piecewise smooth curves in the manifold

with the same initial point p . More generally or abstractly the development (of

E. Cartan) and its inverse define a diffeomorphism between the Sobolev space of

absolutely continuous functions in the tangent space TPM starting at the origin

whose derivatives are square integrable and the Sobolev manifold of absolutely

continuous Af-valued functions whose derivatives are square integrable with

respect to the Riemannian metric. Actually this construction of Brownian mo-

tion cannot be extended to all noncompact, complete Riemannian manifolds.

It is necessary to put some conditions on the curvature. The curvature con-

ditions ensure that the Brownian motion does not have a finite escape time.

With this construction of Brownian motion, many of the results for a Brownian
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motion in Euclidean space can be directly translated to the manifold M using

the horizontal lift of Brownian motion to the bundle of orthonormal frames,

O(M).
In analogy with Euclidean space a stochastic optimal control problem in a

Riemannian manifold M is described by the local description of a controlled

diffusion process (that is, a stochastic differential equation) and a cost func-

tional. The problem is to choose a control from some family of admissible

controls that depends on the current positions (or past history) of the process

so that the cost functional is minimized. An important method for the mini-

mization problem is to find a smooth solution of the associated Hamilton-Jacobi

equation and verify that the control obtained by the procedure is admissible.

In the problems considered here the Riemannian manifold is a noncompact

symmetric space. The controlled diffusion is Brownian motion with a control

as the drift vector. The cost functional is the sum of a quadratic function of

the control and a spherical function so it is desired to keep the diffusion close

to the "origin" of the symmetric space. Since the spherical functions and the

controlled diffusions have some group invariance properties the solution of the

control problem is determined from the behavior of the controlled diffusion in

a subspace of the symmetric space.

2. Symmetric spaces and Jordan triples

We now introduce the "phase spaces" for our stochastic control problems, the

symmetric spaces of arbitrary rank (for rank 1, cf. [D4]). The non-Euclidean

symmetric spaces fall into two dual classes, the compact type and the non-

compact type which have a simpler topology (no antipodal points, no closed

geodesies, etc.) but on the other hand exhibit a highly nontrivial (stratified)

boundary structure. It is known [LI] that a Riemannian symmetric space is

algebraically characterized by a ternary product structure (Lie triple system)
[xyz] on its tangent space Z at an arbitrary base point. This triple system is

given by the curvature tensor. More important to us is another ternary product

(Jordan triple system) {xy*z} on Z which is related to the Lie triple via

[xyz] = {xy*z} - {yx*z}.

Thus the Jordan triple allows for the decomposition of [xyz] into "positive"

and "negative" part. The symmetric spaces admitting such a Jordan triple struc-

ture are called symmetric R-spaces [L2]; they include all classical spaces and 4

exceptional types.

We will now indicate how Jordan triple systems can be used to give an explicit

and uniform construction for

(i) the noncompact model of the symmetric fi-space as an unbounded do-

main in Z;
(ii) the semisimple Lie group G (or rather its Lie algebra g) of isometries;

(iii) conical and spherical eigenfunctions of the Laplace-Beltrami operator

A.
A Jordan triple product on Z is a trilinear map

ZxZxZB(x,y,z)^ {xy*z} £ Z

satisfying {xy*z} = {zy*x} (commutativity) and the commutator identity

(2.1) [uOv*, xOy*] = {uv*x}Uy* - xU{yu*v}*
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for the linear endomorphisms (xDy*)z := {xy*z} on Z . We assume in ad-

dition that the bilinear form (x, y) >-► trace xUy* is symmetric and positive

definite.
We denote vector fields on Z by the symbol f(z)f^ where z £ Z is a

"variable" and f:Z^>Z is smooth. The commutator is

(2.2) \A(z)^-,f2(z)^-\=(dA(z)f2(z)-df2(z)fl(z))^-
az az] az

where df is the derivative.

For example, every linear endomorphism M: Z -» Z gives rise to a vector

field Mzf^ and we have

Af.z— , M2z—   = [Mi, M2]z—.
oz oz] az

In particular, we have the linear vector fields {xy*z}£^ (x, y £ Z fixed) which,

by (2.1) and (2.2), form a Lie algebra 1° . Moreover, the "Jordan triple identity"

(2.2) implies that the "constant" vector fields

and the "quadratic" vector fields

r^{{xaT}A:fl€Z}

give rise to a Lie algebra

i = i1ei°er1

which, by [L2, Theorem 1], is semisimple. Let L he the corresponding center-

free connected lie group. Then the normalizer P of l1 is a parabolic subgroup

and L/P is a compact symmetric f?-space.

We are interested in the noncompact dual space of L/P which can always be
be realized as a symmetric domain (either bounded or unbounded) in Z . Re-
alized as a bounded domain Q, a transitive (reductive) Lie group of isometries

has a Lie algebra 9 with Cartan decomposition n = 1 © p where

(2.3) l=/({ab*z}-{ba*z})-^:a,b£z\

and

(2.4) p=\(a-{za-z})fz:a£Zy

More appropriate for our purposes is the unbounded realization n as a "Siegel

domain". In order to construct n, we need the notion of the Cayley transfor-

mation [KW, L3] associated with an element e £ Z satisfying the "tripotent"

condition {ee*e} = e . The Cayley transform is the analytic automorphism

ge = exp (^(e + {ze*z})—)

of L/P. Note that its defining vector field belongs to 1 but not to g. Although

the open dense subset Z c L/P is not invariant under ge, one can show that

n := ge(Q) is still a domain in Z .
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Assume in the following that the tripotent e is maximal; i.e., ede* is in-

vertible. Then there is a Peirce decomposition

(2.5) Z=X®U®V

where

(2.6) X := {x £ Z: {ee*x} = x = {ex*e}}

is a "formally real" Jordan algebra with unit element e and product x °y :=

{xe*y},

(2.7) U := {i £ Z: {ee*Q = { = -{e?e}}

and

(2.8) V:={z£Z:{ee*z} = ^}.

The interior of the set of squares in X is a cone A (cf. [BK]) and the unbounded

model of the symmetric f?-space is the Siegel domain

(2.9) n:={x + Z + v£Z:2x-<&(v,v)£A}.

Here we put Q>(vx, v2) := 2{vxv2e} .

In the following sections we will present a detailed (stochastic) analysis on n,

separating the three cases (i) Z = X, (ii) Z = X®U, and (iii) Z = X® U® V .
In case (i), the domain (2.9) is the cone A itself. In case (ii), we obtain a

symmetric tube domain A x U. In case (iii), we obtain the (proper) Siegel

domains.
In the irreducible case, the resulting symmetric spaces correspond to the root

systems (cf. [LI]):

(i) Ar_x ,

(ii) Cr or Dr,

(iii) Br or BCr.

It follows that our analysis covers all classical spaces and 4 exceptional spaces

(of dimensions 16, 26 -l-1, 32, and 54). The remaining 13 exceptional spaces

with root systems G2; F4 ; £6; E-i; Es and dimensions 8, 14; 28, 40, 52, 64,
112; 42, 78; 70, 133; 128, 248 are not accessible to a purely Jordan algebraic
treatment.

3. Symmetric cones

Every (formally real) Jordan algebra X with product xoy defines a (positive-

definite) Jordan triple product

(3.1) {xy*x} = 2(x oy)ox - y o(x ox)

for which the unit element e is a tripotent. The corresponding Cayley transform

ge(z) = exp (^(e + 22)^J (2) = (e + z)o(e- z)"1

(cf. [L3, UI]) maps £1 onto the symmetric cone

(3.2) A = {x2: x e X invertible}

associated with X. This cone is homogeneous under its (reductive) linear au-

tomorphism group

(3.3) G° = GL(A):={P£GL(X): PA = A}
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and

(3.4) K° = 0(A) := {P £ GL(A) : Pe = e}

is a maximal compact subgroup, whose elements are the Jordan algebra auto-

morphisms of X.

3.5. Example. For K = R, C  or H  (quaternions), the self adjoint  r x r-

matrices
XK = {x£Krxr:x = x*}

form a Jordan algebra with unit e = 1 (identity matrix) under the commutator

product
xy + yx

xoy:=—Y~-

This corresponding Jordan triple product (3.1) is

{xy*z} = -Axy*z + zy*x)

and (3.2) is the matrix cone

Ak = {x = x* £ Krxr: x positive definite}.

Putting Pgx := gxg*, we have

GL(AK) = {Pg: g£ GL(r, K) (invertible)}

and
<9(AK) = {Pg:g£ U(r, K) (unitary)}.

For r = 3 and K = O (octonions), one obtains the "exceptional" cone Aq in

a similar way.

3.6. Example. For 1 + n > 3, the Euclidean space I = l1'"=lxl" of all

vectors (xo, xx, ... , xn) = (xo, x') has the Jordan product

(x0, x') o (y0, y') := (x0y0 + x' • y', x0y' + y0x')

with the unit element e = (1, 0, ... , 0). The associated symmetric cone is the

forward light cone

Ai,« := {(*o,*i, ... ,x„):x0> (xf + ■ ■■ + x2)1/2}.

In this case  GL(Ax>n) = 0(1, n)   is the (two-component) "orthochronous"

Lorentz group, and

0(AliB) = {(J    °py.P£0(n)Y

In order to determine the (reductive) Lie algebra a0 associated with A, we

apply the (adjoint) Cayley transformation and obtain for all x £ X and M e f°

(cf. (2.4))

Ad(ge) ((x - {zx'z})^ = 2{xe*z}-^

and Ad(ge)M = M.   Identifying linear vector fields with the corresponding

endomorphisms, it follows that g° has a Cartan decomposition

(3.7) 0o = [°©p0,
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where 1° is the Lie algebra of (3.4) and p° consists of all multiplication operators

(3.8) Mxz := x o z = {xe*z}

with x 6 X. One can show that

9° = 0[(A) := {M £ gl(X): exp(tm)A = A W e R}

is the Lie algebra of GL(A). From now on we consider only irreducible cones.

Consider a complete system ex, ... ,er of minimal disjoint idempotents of X.

The cardinality r of such a "frame" is an important invariant of X called its

rank. By [L3] there is a Peirce decomposition

(3.9) X=    £   XU
l<i<j<r

into mutually orthogonal "eigenspaces"

Xij := jx £ X: ek ox = Sik + jkx, VI < k < r\ .

We have XH = Rei (I < i < r) and

(3.10) a := dimRXu       (I < i < j < r)

is an invariant of X called the characteristic multiplicity of X. We put Xjt :=

Xij . One can show that

(3.11) o:= i^/,Afe, : tx, ... ,tr£R>

is a maximal abelian subspace of p° . Let

M*(Me.) := 8tj    (Kronecker symbol)

denote the dual basis of linear forms on o.

3.12. Example. The matrix cones have the canonical frame

f° \
0

o
et := 1 <- i

0

0
V 0/

for I < i < r, and for i < j the Peirce space Xjj consist of all selfadjoint

matrices with zero coefficients except in the (1, 7')th place and (j, i)th place.

In particular a = dim Xjj = dimR K.

3.13. Example. For the forward light cone A|,„ we have r = 2 and any pair

of orthogonal vectors ex, e2 of norm l/\/2 constitutes a frame. The Peirce

space Xx2 is the orthogonal complement of ex and e2, and a = n — 1.

3.14. Proposition. There is a real root decomposition

(3.15) 0°=    E   9?;em
l<i,j<r
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with respect to a, where

is the root space of

(3.16) l-(M*ej-Ml)

and

m := {M £ 1° : Mex = ■ ■ ■ = Mer = 0}.

Proof. As a consequence of (2.1), we have

xDy* = Mxoy + [Mx , My] £ g°

for all x,y £ X. In particular, g°; c 0° . Since

[ejOe*, xUe*] = {ete*x}Ue* - xDe{e*e}* = -^xUe*

and

[ejDe*, xDe*] = {eje*x}De* - xDe{e*e}* = -^xDe*

and [ekDes, xDe*] = 0 whenever k ^ i, j, 0°; is a root space for (3.16).

Now let Af e 0° be arbitrary. Then we have Afe, = Y,k=ixj W1^n xj e ^jk >

as follows from the Peirce composition rules [L3, Theorem 3.14] applied to

derivations and multiplication operators, respectively. Put

Then

Bej = xj + 2j2 Xj/2 = Mej
k*j

for all j , showing that Af - B £ m.    Q.E.D.

4. Conical and spherical functions on A

Endow A with the unique G°-invariant Riemannian structure such that the

basis (3.11) of o c p° « ^(A) (tangent space) becomes orthonormal. Consider
the mapping q>: a^> A defined by

(4.1) tp(tx ,...,tr):= exp \J2tiMei J (e) = Ye''ei-

Let N° be the connected Lie subgroup with Lie algebra

i<j

Then we have the (direct) Iwasawa decomposition [HI, FK]

(4.2) A = N° • tp(a).
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Let 3(A) denote the algebra of all (scalar) differential operators D on A

which are invariant under GL(A); that is, they satisfy

(4.3) (g*D)f:=D(fog)og-l=Df

for all / £ W°°(A) and g £ GL(A). For example the Laplace-Beltrami operator

A0 of A belongs to 2(A).
By [HI, Theorem II.3.6], every D £ 3(A) has an NQ-radialpart DN which

is a differential operator on o satisfying

(4.4) (Df)o(p = DN(fotp)

for all A*0-invariant functions / £ W°°(A).

4.5.   Proposition.  A0 has the N°-radial part

*-x:(£-5<»-'-<).
Proof. For any D £ 3(A), D^ is a constant coefficient differential operator

of the form

(4.6) *■»-'(&-*•••.&-*)

where q is any symmetric (i.e., Weyl group invariant) polynomial, and

p0 = |(2/-r-i)

are the coefficients of the half-sum of positive roots

(4.7) / = | E ^K ~ O = \ E<2' - r ~ Wt,
i<j i

(cf. Proposition 3.14). By [HI, Proposition II.3.8], A0 corresponds to the poly-

nomial

(4.8) q(sx,...,sr):=Y(sf-(Pi)2)
i

so that

< = E (!-><)- Q'E'D-
The Peirce decomposition (3.9) enables us to construct A"0-invariant "coni-

cal" eigenfunctions A0 in an explicit way.

We first introduce the minors of an irreducible Jordan algebra X with respect

to a frame {ex, ... ,er} of idempotents. The determinant of X is the unique
irreducible polynomial Nr of degree r on X which satisfies the invariance

property

Nr(Px) = Nr(x)Nr(Pe)

for all P £ GL(A) and x £ X and is normalized by putting Nr(e) := 1 . For

example, we have Nr(x) = Det(x) for selfadjoint matrices x over R or C,

and
N2(Xq , . . . , X„) = Xq — X[  — • • • — X„

in case of the light cone.
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For each k > 1, the Jordan subalgebra

(4-9) Xk:=    £    01,

with unit element ex'-\-\-ek has its own determinant Nk: Xk —► R of degree

k. Via the orthogonal projection X —* Xk we may define Nk on X. The

polynomials Nx, ... , Nr are called the minors of X. They are strictly positive

on A.
For real or complex matrices, the kth minor is given by

N'(xn    ■■■    *irV=Det(*n    •••    xlk\
\xrX xrr) \xkx Xkk J

whereas the light cone has

Nx(xo, xx, ... , x„) = —-—

for ex:=({,{-,0,...,0) and e2 = ({, -1, 0,..., 0).

4.10.   Proposition. For each a = (ax, ... , ar) £ C, the smooth function

(4.11) Na(x) :=Nx(x)a>-aiN2(x)ai-ai---Nr(x)a'

on A is a N°-invariant eigenfunction of A0, with eigenvalue

r

(4.12) xo = £a.(Qi + '|(,+ 1_2;)).

(=1

Proof. It was shown in [U2] that the minors Nx, ... , Nr are A*°-invariant.

Since

(Na o (p)(tx ,... ,tr) = (^i)ai-«2(^,+?2)a2-a3 . . . ,etl+.-+tr)a,

_ „t{a\+t20C2-\-\-t,ar

every D £ 3(A) with radial part (4.6) satisfies

DNa = q(ax - p° , ... , ar - p°r)Na.

For the polynomial (4.7), we obtain

A°7VQ = £>? _ 2aip°i)Na.   Q.E.D.
i

The functions (4.9) are called conical functions on A. Put

Rr := {a £ Rr : ax > a2 > ■ ■ ■ > ar}

and
Nr := Rr n Nr.

The elements a = (ax, ... , ar) £ W are called partitions of \a\ := ax-\-\-ar.

For each a £ W, Na is a polynomial of degree \a\ on X called the conical

polynomial of type a .
We now pass to the maximal compact subgroup K° = 0(A) of GL(A). Let

(4.13) a° :=J5>Jl/e, :*!<•..<*, 1
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denote the "Weyl chamber". Then there is a Cartan decomposition [HI]

(4.14) A = K°-<p(a°+).

By [HI, Theorem II.3.6], every D £ 3(A) has a K°-radial part DK which is
a differential operator on a°+ satisfying

(4.15) (Df)o<p = DK(fo<p)

for all 7Tv°-invariant functions / e ^°°(A).

4.16.   Proposition.  A0 has the K°-radial part

Prao/. The positive roots (3.16) induce the "density function"

8(tx ,...,tr):= Hsinh0 fe-^) = II (\(e''' -e''>~(',+'y)/2Y = const •coan

where

a(r_l)/2

(4.18) co = Y[(e'<-e''),        % =   J]^'
i'<7 \ i       /

By [HI, p. 335] we have

ao       ! V^  a a. d l    sr^ d     a    a

~ ^ \dti + n dtt + woTi) ai,

4.19.    Corollary.

Proof. Putting x, = e'1 we have by (4.18)

(0 = l[(xj-xi),     n = (xx---xr)-^-^2
i<j

and (4.17) implies

^    ^_     /     \dtt    +\dti)     \dxt + TtO~Xi + UdXij) dXi
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By integrating over the compact Lie group K° we obtain a smooth K°-invariant

function

(4.20) K*(x) := f  Na(sx)ds
Jk°

on A, called the spherical function of type a £ C. In case a £ W, K®

is a polynomial on X called the spherical polynomial of type a. Applying
Proposition 4.9, we obtain

A%° = *X°

for every a £ C .

4.21. Proposition. For a £ W, the spherical polynomial K® has a finite ex-
pansion

Ka (E Wi) = E W(*i »•••»*')
\i=\ )        pew

where cp > 0 and q@ is the monomial symmetric function.

Proof. Given s £ K° and I < r, consider the expansion

(4.22) N, (s • E xteA = E M*K' ' ■ ■ X?
V   1=1     /     fi

where p £W (not necessarily nonincreasing). Define

\p\ :=px+--- + pr

and

l(p) := card{/': pi ^ 0}.

If \p\ ^ I, then b/j(s) = 0 since A7/ is homogeneous of degree /. Thus we

may assume \p\ = I and therefore l(p) < I. Now assume l(p) < I. Put
/ := {i: pi > 0}. Then for every choice of x, (i e I) we have

N, (s • E^i) = *x, I Pi U • E^'J ) = °

since

rank Pt I s • ̂  x,e, J < rank5 • ̂  x,e,
V       /€/ / 16/

= rank ^ x,e, = card(7) < /.

iei

Here P/: X —► X, is the orthogonal projection (which may decrease the rank)

and Nxt is the determinant of the Jordan algebra X/ of rank /, defined in

(4.9). It follows that b^s) = 0 whenever l(p) < I. Thus (4.22) simplifies to

(4-23) TV, (s • £x,e,) = £ bj(s) JJx,
V      ;=1 / / 16/
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where I runs over all subsets of {I, ... , r} having / elements. Since TV/ > 0

on the closure A, we have

b,(s) = N,(s •"£?•) >0

for every s £ K° . Taking powers and products, (4.23) implies

Na Is • J2 Xid) = E 6* W • • •x"
\     1=1       /        pen'

\n\ = \a\

where bp(s) > 0 for all s £ K° . Applying (4.20), this implies

(4.24) K°(J2x'e)=   E   M*K'•••*?'

where

bM= I  bn(s)ds>0.
Jk°

For every permutation a £ &r there exists an element s £ K° such that

sei = eglQ       (l<i<r).

Putting a • p := (paW, ... , pa{r), (4.24) implies ba.p = bp since K° is K°-
invariant. Since

qp(xx, ... , xr) = 2_^xx' ■ ■■ xr'

f

where p runs over all distinct permutations of /J , the assertion follows.   Q.E.D.

5. Stochastic control theory on symmetric cones: Conical functions

To commence the study of stochastic control problems in noncompact sym-

metric spaces of arbitrary rank, a symmetric cone is considered where the cost

functional is N0-invariant. Since the A*°-radial part of the Laplace-Beltrami

operator is a constant coefficient differential operator and the controlled diffu-

sion can be projected to a Euclidean space, the analysis of the control problem

is quite straightforward. However this problem serves to introduce some of the

notions in an elementary context.

A stochastic control problem is formulated in a symmetric cone using the

A*°-invariance and a conical polynomial A^ . The stochastic control problem is

the control of a Brownian motion in a symmetric cone A so that the controlled

diffusion remains close to the base point of A. Using the A*°-invariance of

the cost functional to be introduced and the Iwasawa decomposition of the Lie

group we can use the coordinates t = (tx, ... , tr) for the Cartan subalgebra,

a.

The controlled diffusion in the symmetric cone has the infinitesimal generator

jA° + (u(s,t),Vt).
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Since the A^-invariance of the control problem is exploited, it suffices to con-

sider the controlled diffusion projected to the abelian subgroup or equivalently

the Cartan subalgebra o. The infinitesimal generator for the controlled diffusion

projected to a is

(5.1) ^A°N + (u(s,t),Vt)

where A°N is the A*0-radial part of the Laplace-Beltrami operator A0, t =

(ti, ... , tr), Vt = (-§f, ... , -§f) is the gradient, and s £ R+ . Suppose that

(X(s), s £ [0, T]) is the controlled diffusion in o with infinitesimal genera-

tor (5.1) where the dependence of X on u has been suppressed. The cost

functional for the stochastic control problem is

(5.2) 4(U,a) = Ex(o) I  (Nao<p)(X(s)) + (U(s), U(s))ds
Jo

where Na is the A*0-invariant polynomial eigenfunction of A0 for the partition

a.

Since the infinitesimal generator of (X(s), s £ [0, T]) is (5.1), the family of

stochastic differential equations that (X(s), 5 £ [0, T]) satisfies is

(5.3) dXk(s)= \~(2k-r-l) + Uk(s,X(s))] ds + dBk(s)

for k = 1,2, ... , r, X(0) £ a, and (Bx (s), ... , Br(s), s > 0) is a standard

r-dimensional Brownian motion.
To describe the family of admissible controls it suffices to give the require-

ments in terms of (X(s), s £ [0, T]) by the A*°-invariance of (5.1). An ad-

missible control at time s is a Borel measurable function of X(s) so that the

family of stochastic differential equations (5.3) has one and only one strong

solution.
It is elementary to verify that the stochastic control problem (5.1, 5.2) is well

posed; that is, there is at least one control law (e.g. U = 0) that gives a finite

value to (5.2).
The solution of the stochastic control problem is given now.

5.4. Theorem. The stochastic control problem described by (5.1, 5.2) has an

optimal control given by

(5.5) W(s,t) = -£p-V-,{Nao9)(t)

where s £ [0, T], t = (tx, ... , tr),Vt is the t-gradient, and g is the unique

positive solution of the scalar Riccati differential equation

(5-6) Ts +2L*2s-x*2 + 1 = 0'   g{T) = 0'

where

X° = 5>?-2a,p?)   and   pf = J(2i-r - 1).
i=i

Proof. A verification theorem [FR, p. 134] is applied to the smooth solution of
the Hamilton-Jacobi equation

(5-?) 0=lF+miP     ̂  + t,^JJT + (ffa Of ){t) + ±vj     .
L 7=1 ; 7=1
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The family of controls obtained by the minimization in (5.6) is

(5.8) Byco--'*^

for j =1,2, ... ,r.
Assume a solution W of (5.7) as

(5.9) W(s,t) = g(s)(Naotp)(t).

Substituting (5.9) into (5.7) it follows that

0 = g'Na otp + -x°Na otp- ^g2Na otp + Naotp

(5.10) ,     L ,  , N
= Naotp[g'+i-Xlg-^g2 + iy

If g in (5.10) satisfies (5.6) then (5.9) is a smooth solution of (5.7) that sat-

isfies the boundary condition W(s, t) = 0 for (s, t) £ {T} x a. The family

of controls (5.5) is an admissible (optimal) control if the family of stochas-

tic differential equations (5.3) with these controls has one and only one strong

solution on [0, T].
Since the coefficients of the family of stochastic differential equations (5.3)

with the controls (5.8) are locally smooth in a, a unique strong solution can be

constructed at least locally. Thus it suffices to verify that there is no escape of

the process in [0, T]. Define the random times

s = (inf{s£[0,T]:Xl(s) = +oo},

\ +oo   if the above set is empty

for i = l,2.r. It is easy to verify by contradiction that

P(Si < oo for some i = 1, 2, ... , r) = 0

by comparing (5.3) to Brownian motion with no drift term. Thus (5.5) is an
admissible optimal control.    Q.E.D.

6. Stochastic control theory on symmetric cones:
Spherical functions

A stochastic control problem is described in a symmetric cone using a K°-

invariance and a spherical polynomial K®. The stochastic control problem is

the control of a Brownian motion in a symmetric cone A by a drift vector field

so that this controlled diffusion remains close to the base point of A.

The controlled diffusion in the symmetric cone A has the infinitesimal gen-

erator

(6.1) ±A° + {u(s,t),Vt)

where A0 is the Laplace-Beltrami operator on A, t = (tx, ... , tr) is the coor-

dinator in a%, and 5 € R+ . Since the 7if °-invariance of the control problem is

exploited, it suffices to consider the controlled diffusion projected to the positive

Weyl chamber a° with the infinitesimal generator

(6.2) ^AK + (u(s,t),V,).
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Let (X(s), s > 0) be the controlled diffusion in the positive Weyl chamber

whose infinitesimal generator is (6.2). The dependence on u has been sup-

pressed. This controlled diffusion is the projection to the positive Weyl cham-
ber by a suitable A"°-invariance. The cost functional for the stochastic optimal

control problem is

(6.3)

4(U, a) = Ex(o) f (K°°tp)(X(s)) + (A°(X(s))U(s,X(s)),U(s,X(s)))ds
Jo

where K® is the spherical polynomial (4.24) for the partition a, A°(t) :=

diag(fx(t),...,fr(t)),

/l(°-35^)[^of)w]a'

and

for i = 1, 2,..., r. It is clear that

YjiKl(x) = Kl(x).
i=i

Since the infinitesimal generator of (X(s) ,£€[0,7*]) is (6.2), the family of

stochastic differential equations that (X(s), s £ [0, 7*]) satisfies is

dXk(s) =   - -r(r — 1) + tV-.„ , .-„ , ..
^    4 2J-;l-exp(Xj(s)-Xk(s))

(6.4) }*K

+Uk(s,X(s))  ds + dBk(s)

for k = l,2,...,r,X(0) = (Xx(0), ... , Xr(0)), Xx(0) > X2(0) > ••• >
Xr(0), X(s) £ a+ , and (Si (5), ... , Br(s); 5 > 0) is a standard r-dimensional
Brownian motion.

Let (Z(s) £ A, s £ [0, 7*]) be the controlled diffusion with infinitesimal gen-

erator (6.1) where the dependence on the control law [/(•) has been suppressed

for notational simplicity. An admissible control at time s is a Borel measurable
function of Z(s) such that the stochastic differential equation whose generator

is (6.1) has one and only one strong solution. By the A^-invariance of the cost

functional it suffices to consider controls at time s that are Borel measurable

functions of X(s) that satisfy (6.4) so that this family of stochastic differential
equations has one and only one strong solution.

Initially it is necessary to verify that the stochastic control problem (6.2, 6.3)

is well posed, specifically that there is at least one control law that gives a finite

value to J°(U) in (6.3).

6.5. Lemma. Let (X(s), s e [0, T]) be the diffusion process in the positive

Weyl chamber with the infinitesimal generator \AK , that is, the unique strong

solution o/"(6.4) with U(t) = 0. Then

T

(6.6) Exm j (Klotp)(X(s))dx<<x>.
Jo
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Proof. The existence and the uniqueness of a strong solution of (6.4) with

U(s) = 0 follows immediately when it is verified that (X(s) ,£€[0,7*]) does

not hit the walls of the positive Weyl chamber. Since this verification follows

by using a comparison theorem for stochastic differential equations [IW, p. 352]

in a simpler manner than in the proof of Theorem 9.7, it is omitted here.

Let R be the Riemann curvature tensor of A. The Ricci tensor field S is
defined as

n

S(X,Y) = Y/R(V.,Y,Vi,X)
i=i

where X, Y £ 7>A, dim A = n, and (Vx, ... ,Vn) is an orthonormal basis

of TXM. S(-, •) is symmetric. Let p be defined as p(X) = S(X, X) where

\X\ = 1 . Since A is a Riemannian homogeneous space, it suffices to compute
the Riemannian curvature and the Ricci curvature at one point. It follows that

there is a b < 0 such that (n - l)b < p(X) for a unit vector X e TXA and

x e A. Define the real-valued process (R(s), s € [0, 7*]) as

R(s) = d(e,X(s))

where e is the base point of A, d(-, •) is the distance function on A, and

(X(s), £ e [0, 7*]) is the process given in the statement of the lemma. Let

(Yb(s), £ e [0, 7*]) be the standard Brownian motion in the real hyperbolic

space 1HI"(R) with the negative sectional curvature b. It follows [IW, p. 380]

that
P(Yb(s)>R(s);s£[0,T]) = l.

Thus is suffices to verify

Ex(o) I  (K°ao(p)(Yb(s))ds<oc.
Jo

This verification is easily made [D5, Lemma].   Q.E.D.

The solution of the stochastic control problem (6.1, 6.3) is given now.

6.7. Theorem. The stochastic control problem described by (6.1, 6.3) has an

optimal control U* given by

(6.8) [/*(£, 0 = -i^-A-l(t)Vt(K° o tp)(t)

where £€[0,7*], t = (tx, ... , tr),Vt is the t-gradient, and g is the unique

positive solution of the scalar Riccati differential equation

(6.9) d£ + ^xog_^g2+l=0f    g(T) = 0,

where xt Is the eigenvalue (4.12).

Proof. It is well known (e.g. [FR]) that the Hamilton-Jacobi or dynamic pro-

gramming equation for a stochastic optimal control problem of diffusion type

is

(6.10) 0 = ^+min[Av(s)W + L(s,x,v)]
as      ueu

where Av is the infinitesimal generator of the diffusion using the control v and

L is the integrand of the cost functional. To apply a verification theorem [FR,
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p. 139] to the problem here it is required that the solution W of (6.10) with

the boundary condition W(s, y) for (s, y) £ {7*}xA is %?x'2[(0, 7)xA] and

continuous on [0, T]x A.

To apply the Hamilton-Jacobi equation to (6.1, 6.3) it is important to use

the fact that the integrand of the cost functional as a function of the state is

7*v°-invariant so that the Hamilton-Jacobi equation (6.10) can be reduced to the

radial part of (6.10) as

(6.11) 0=^ + min   {AlW + j^v^ + ^otp^D + j^fv2   .

L '=' J '=1

It is clear that the family of controls obtained by the minimization in (6.11) is

(6.12) Uj{Sjt) = _______

for j =1,2, ... ,r.
Assume a solution W of (6.11) as

(6.13) W(s,t) = (K°a°<p)(t)g(s).

Substituting (6.13) into (6.11) it follows that

0 = g'K* o tp + \xlgK o tp - -g2Kl otp + Klotp
(6.14) ,        - . v

= Klo9<^g> + \xlg-\g2+iy

If g in (6.14) satisfies (6.9) then (6.13) is a smooth solution of (6.11) that
satisfies the boundary condition W(s, t) = 0 for (s,t) e {T} x a\. The

family of controls (6.12) is an admissible (optimal) control if the family of

stochastic differential equations (6.4) with these controls has one and only one

strong solution in [0, T].
Since the coefficients of the family of stochastic differential equations (6.4)

with the controls (6.12) are locally in a°+, a unique strong solution can be
constructed at least locally.

Let (X(s), £ e [0, 7*]) be the solution of the family of stochastic differ-

ential equations (6.4) with the family of controls (6.12). There is no finite

escape time by the methods in the proof of Lemma 6.5. If it is assumed that

(X(s), £ e [0, 7*]) does not hit the walls of the positive Weyl chamber then the

local smoothness of the coefficients of the stochastic differential equations for

(X(s), s £ [0, T]) can be used to construct a unique strong global solution (e.g.

[IW, p. 164]).
Now it is verified that (X(s), s e [0, 7*]) does not hit the walls of the Weyl

chamber. It suffices to consider one wall of the Weyl chamber because the

intersection of the walls of the Weyl chamber can be treated in a similar fashion.

Choose two positive constants K » c > 0 and define Tk(c, K) c 0° for

k = {I, ... , r- 1} as

(6 15) r*(C' K^ = */: K>h -rc>-->tk+2-(r-k+ l)otk+x

>tk> rfc_! -kc> ■••> tr-X -2c> tr> -K}.
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To investigate the process (X(s),s e [0, 7*]) in a neighborhood of

{t: tk = tk+x} f)Tk(c, K) it suffices to consider the stochastic differential equa-
tion for

(6.16) Yk(s) = Xk(s) - Xk+X(s)

for £ e [0, T] and show that (Yk(s), s £ [0, 7*]) does not hit zero. The

stochastic differential equation for (Yk(s), s e [0, 7*]) is

(6.17)

dYk(s)=    2^l-exp(Xj(s)-Xk(s))

a   y—^ 1

~2.^+il-exp(Xj(s)-Xk+x(s))

+ Uk(s,X(s))-Uk+x(s,X(s))   ds + dBk(s)-dBk+x(s).

It is assumed that (X(s), s e [0, 7*]) is localized to Tk(c, K).
Let (Z(s), £ e [0, 7*]) be the so-called two-dimensional Bessel process that

is the unique strong solution of the stochastic differential equation

(6.18) dZ(s) = -^--ds + V2dB(s)
Z(s)

where (B(s), £ > 0) is a real-valued standard Brownian motion.

It is convenient to regroup the drift terms in (6.17) as

a   k(S)~  [l - exp(Xk+x(s) - Xk(s))

(6'19) -T-lvai\    v     ,„+h(s,X(s))]ds
1 - exp(Xk(s) - Xk+X(s)) "]

+ V2dB(s)

where

sup \h(s, x)| < Af < oo.
(s,x)£[0,T]xrk(c,K)

By the expansion of the exponential function there is a 8 > 0 such that for

xe(0,r5]

(6.20) _„+     >/l_ _>/?_> i.
1 - e~x     1 - ex     x

Localizing {X(s), £ € [0, 7*]} to {t: tk - tk+x < 8} n Tk(c, K) the stochastic
differential equations (6.4) and (6.17) can be compared [IW, p. 352].

Choosing sequences c„ J. 0 and Kn | +oo and applying the above construc-

tion to Tn(c„ , Kn) it follows that

(6 2D P{Xl{s) > Xl{S) > '" > Xk{s) = Xk+l{s) > '" > Xr{s)

{ '    ' for some £€[0, 7*]) = 0.

This completes the proof of the theorem.   Q.E.D.
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7. Symmetric tube and siegel domains

Every Jordan *-algebra Z with product z ow , unit element e, and involu-

tion z* defines a Jordan triple product

(7.1) {zw*z} = 2(z ow*) o z-w* o(z o z)

for which e is a tripotent. The corresponding Cayley transform

ge(z) = exp (^(e + z2)-qA (z) = (e + z)o(e- z)"1

maps fl onto the symmetric tube domain

(7.2) n = {z£Z:z + z*£ A} = AxU,

where A is the symmetric cone of the formally real Jordan algebra

X:={x£Z:x* = x},

and

C/:=tfeZ:<r = -a
Of particular importance is the case U = iX; i.e., Z is the complexification
of a formally real Jordan algebra X endowed with the complexified Jordan

product and the involution

(x + iy)* := x - iy       (x, y e X).

In this case n = A x iX is a complex hermitian symmetric space. A basic

example is Siegel's (right) half-space, corresponding to the cone AR of posi-
tive definite symmetric matrices (cf. Example 3.5). In order to determine the

(semisimple) Lie algebra 0 associated with n, we apply the (adjoint) Cayley

transformation and obtain for all x € X, £ e U, and Af e 1° (cf. (3.7)).

Ad(ge) ((x-{zx*z})^=2{xe*z}^-z,

Ad(&) (tf - {ztTz} - 2{{;e*z})f-^ _ 24JL ,

Ad(ge) (({ - {z£*z} + 2{ie*z})^j = 2{z?z}-jL

and

Ad(&,)Af = Af.

It follows that 0 has a Cartan decomposition

(7.3) 8 = I©p,

where

[=r0©{(£ + {z<rz})^:£e£/}

consists of all vector fields vanishing at e , and

P = P0©{(£-{z<Tz})^:£€c/}

is the tangent space at e .



1108 T. E. DUNCAN AND H. UPMEIER

Denoting by G the connected Lie subgroup of L with Lie algebra 0, I be-

comes the Lie algebra of the maximal compact subgroup

(7.4) K = {g£G:g(e) = e}

(which contains nonlinear transformations if U ^ {0}). In the complex case,

G is the identity component of the biholomorphic automorphism group of n

[L3, UI]. The Lie algebra 0l(A) has a representation

0[(A) 3 M >-> M £ fl[(Z)

such that ___ _

Mzx + (Mzx)* = M(zx + z\)

for all Af e 0r(A). It follows that Af leaves II invariant. The domain n is

also invariant under the translations t^(z) := z + £ parametrized by £ e U .

The vector field

Zd-z={eez}o-ze»   C0

induces a gradation

(7.5) 0 = 01©0°©0-1,

where

&x:=Ia£q:    z—,A   =Xa\.

We have

0l = {^GC7}'        2°-{mzIz:M£B1W),

and

Now fix a frame ex, ... , er of the Jordan algebra X, and consider the Peirce

decomposition (3.9) of X . Similarly, we have

(7-6) U=    £     0C/O-

where

UU = {i£U; {eke*kZ} = ^±^^,  VI < k < r} .

The invariants

(7.7) c := dimR t/„        (l</<r)

and

(7.8) a := dimK C/,7       (1 < / < j < r)

are independent of the frame and are called the characteristic multiplicities of

U. One can show [NI] that, for irreducible symmetric spaces, (7.8) agrees with

(3.10). The subspace a c p° c p defined in (3.11) is still maximal abelian

in p.
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7.9.   Proposition. There is a real root decomposition

(7.10) 0 = ESi7eE0O'eE0Ol0m'

with respect to a, where 0°   and m are as in Proposition 3.14, and

is the root space of

(7.11) 1_{M*+Ml),

whereas

is the root space of

(7.12) -i(Af* + Af*).

Proof. For £ € Uu , (2.1), (2.2), and (7.6) imply

'ie,e*z\—  M = \e,e*t\\— = 4 + ̂ c-{eke zidz,idz\     ik   Qidz 2      Sz

and

= ({eke*{z£*z}}-2{{eke*zK*z})-?z-

= -{z{ee*k^z}l = -d^{zCz}§-2.

This proves (7.11) and (7.12), and shows that q±1 is the direct sum of g^1 .

Applying Proposition 3.14, the direct decomposition (7.10) follows.   Q.E.D.

We now treat the general case of a (positive definite) Jordan triple Z with

a Peirce decomposition Z = X © U © V with respect to a maximal tripotent e

(the unit element of X). The corresponding Cayley transform

ge(zx, z2) = exp (^(e + {ze*z})—\ (z,, z2)

= ((e + zx) o (e - zxyl, V2z2 o (e - zx)~l)

(cf. [L3, UI]) maps fl onto the symmetric Siegel domain

(7.13) Il = {x + Z + v:2x-®(v,v)£A}

associated with the cone A of X and the hermitian form q>(t>i, v2) := 2
{vxv2e} . In case U = iX and V is complex, n becomes an hermitian sym-

metric space.
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7.14.   Example. Let r < R be integers and consider the matrix space

Z = rKR = rKr ® rK(*-r>

over K = R, C or EI (quaternions), endowed with the Jordan triple product

{zt<7*z} := zw*z.

Writing the elements of Z as z = (zx, z2) with zx of size r x r and z2 of

size rx(R-r) ,we obtain a tripotent e = (1, 0), and the associated symmetric
Siegel domain

n = {(z, ,z2)£Z:zx + z\- z2z*2 £ AK}

belongs to the symmetric matrix cone AK (cf. (3.5)) and the hermitian form

0(Z2, w2) := z2w2 . For example if r = 1, we obtain

(7.15) n = {(z0, zx, ... , z„) eK1+" :zo + ~z0> z{zx + ■ ■ ■ + z„z„}.

For K = C, we obtain complex hermitian spaces in this way.   For example,

(7.15) is holomorphically equivalent to the unit ball in C1+" . In order to deter-

mine the (semisimple) Lie algebra 0 associated with n we apply the (adjoint)

Cayley transformation and obtain for all x e X, £ e U, n £ V, and Af € 1°

Ad(ge) ((x - {zx*z})-^j = 2{xe*z}^-z ,

Ad(&) ((<* - {z?z} - 2{Ze*z})^ = 2t;f-z ,

Ad(ge) ((£ - {zt?z} + 2{ie*z})A) = W*}jfi

Ad(ge) ((t, - {zn*z} - 2{ne*z] + 2{en*z})j-^

= y/2(n + 2{er,*z})^,

Ad(&) ((,, - {zn*z} + 2{ne*z} - 2{en*z})^j

= V2({zn*z} + 2{ne*z})f-z

and

Ad(ge)M = M.

It follows that 0 has a Cartan decomposition

(7.16) 0 = [ + P,

where

[ = r°©{(«* + {z<rz})^ :<*€[/}

© |(i, + 2{en*z} - {zn*z} - 2{ne*z})^-: n e f}
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consists of all vector fields vanishing at (e, 0), and

,-•.{«-«•»»£:<**}

©|(^ + 2{e?7*z}-r-{z?7*z}-r-2{^*z}) —: n £ v\

is the tangent space at (e, 0). Denoting by G the connected Lie subgroup

of L with Lie algebra 0, I becomes the Lie algebra of the maximal compact

subgroup

(7.17) K = {g£Gg(e,0) = (e,0)}.

In the complex case, G is the identity component of the biholomorphic auto-

morphism group of n. The Lie algebra 0l(A) has a representation

fll(A) 3P^P£ flI(Z)

such that

(7.18) Af zi + (Mzx)* - ®(Mz2, z2) - 0(z2 , Mz2) = M(zx + z\ - 0(z2, z2))

for all Af e gl(A). The domain n is invariant under the "pseudotranslations"

(7.19) t{;„(z,,z2):= ^Zx+Z + <t>(z2,n) + ^—,z2 + n\

parametrized by (£, n) € U ® V. The vector field

r    *  , 9 9       z2   d
{ee*z}— = zx-— + -T^— € g

az azx      2 az2

induces a gradation

(7.20) g = g'©g1/2©g°©g-1/2©0-1

into the A-eigenspaces 0A of ad({ee*z}-j^). We have

B1'2 = {(!/ + 2{zn*e}jz-: n e V J ,    0° = {a7z^ : Af e fl'(A) J ,

q-'I2 = {({zn*z} + 2{ze*n})f-z: n £V},

and

Now fix a frame ex, ... , er of the Jordan algebra X and consider the Peirce

decompositions (3.9) and (7.6) of X and U, respectively. Similarly, we have

(7.21) V = _®VJ

7=1

where

Vj = {/? e V: {eke*kn} = d-fn, V 1 < k < rj .
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The invariant

(7.22) b:=dimMVj       (I < j < r)

is independent of the frame and is called the characteristic multiplicity of V.

For example, in the matrix space Z = rKR, Vj consists of all r x (R - r)

matrices v with nonzero entries only in the j th row. The subspace a c p° C p

defined in (3.11) is still maximal abelian in p .

7.23.   Proposition. There is a real root decomposition

(7.24) '"; '
eE*/      ®_Zsijl®m,

7 i<j

with respect to a, where g^1, g°- and m are as in Propositions 7.9 fl«fl" 3.14,

and

9y2:_{(T1 + 2{et]*z})£-:r1£Vj}

is the root space of

(7.25) ijM*.

whereas

g71/2 := {({zn*z} + 2{ne*z})j-z: r, £ P}-J

is the root space of

(7.26) -\m%.

Proof. For n £ V},, (2.1), (2.2), and (7.21) imply

{eke*z}^-z,(r1 + 2{en*z})^-

= ({eke*n} + 2({eke*{en*z}} - {en*{eke*z}}))-^

= ({eke*n} + 2{e{eke*n}*z})j-z

= df(, + 2erfz})l

since {ekn*e} = 0. Similarly,

{eke*z}j-z,({zn*z} + 2{ne*z})j-z

= ({eke*{zr,*z}} + 2{eke*{ne*z}})£z-

= ({{eke*z}r,*z}-{r,e*{eke*z}})£z-

= -({z{eke*n}*z} + 2{{eke*n}e*z})^

= -Sf({zn*z} + 2{r,e*z})jz-.
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This proves (7.25) and (7.26), and shows that g±ll2 is the direct sum of

gf^2. Applying Propositions 7.9 and 3.14, the direct decomposition (7.24)

follows.   Q.E.D.

8. Conical and spherical functions on n

We will now construct conical and spherical Laplace eigenfunctions for the

symmetric tube and Siegel domains n discussed is Section 7. Endow n with
the unique G-invariant Riemannian structure such that the basis (3.11) of o c

p° C p « Te(U) (tangent space) becomes orthonormal.

Let N he the connected Lie subgroup with Lie algebra

n = 01©01/2©no = 5>!,©£0f©£0<>.
i<j j i<j

(For tube domains, the 01/2-part is missing.) Then there is a (direct) Iwasawa

decomposition [HI]

(8.1) H = N-tp(a)

where tp is defined in (4.1).
Let 3(H) denote the algebra of all (scalar) differential operators 3 on

n which are invariant under G, i.e., satisfy (4.3) for all / e W°°(H) and

g £ G. For example, the Laplace-Beltrami operator A of n belongs to 3(H).

By [HI, Theorem II.3.6], every D e 3(H) has an N-radial part DN, which
is a differential operator on o satisfying (4.4) for all  A-invariant functions

8.2.   Proposition.  A has the N-radial part

*-E(£-(«-»+~§)&).
Proof. For any D € 3(H), DN is a constant-coefficient differential operator

of the form

(8.3) DN = q^-px,...,-^--pry

where q is any even symmetric (i.e., Weyl group invariant) polynomial, and

a..    ,.     c     b
P' = 2{l~l) + 2 + 4

are the coefficients of the half-sum of positive roots

^ = fE[lK-0 + iK+o] + |E< + |E^
(8.4) i<J

(cf. Propositions 7.9 and 7.23). By [HI, Proposition II.3.8], A corresponds to

the polynomial

(8-5) q(si,...,sr) = J2(sf-pf)
i
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so that

8.6.   Proposition. For each a e C, the smooth function

(8.7) Na{x + z + v) = Na(x_^jA\

on n is an A'-invariant eigenfunction of A, with eigenvalue

(8.8) Xa = ^^[0^-0(1-I)-c-b^j.

Proof. The group N is generated by A0 and the pseudo-translations (7.19).

Since the expression 2x - <J>(v , v) is invariant under pseudo-translations and

satisfies (7.18) for all P £ N° it follows that (8.7) is A-invariant. Since

(Naotp)(tx,...,tr) = e'^+-+t'a',

every D £ 3(H) given by (8.3) satisfies

DNa = q(ax - px, ... ,ar- pr)Na.

For the polynomial (8.5), we obtain

A/VQ = J2(a2 - 2aiPi)Na.    Q.E.D.
1

We now pass to the maximal compact subgroup K of G. Let

(8.9) a+ := j £ t,Me, 0 < *, < • • • < tr 1

denote the "Weyl chamber". Then there is a Cartan decomposition

(8.10) H = Ktp(a+),

where tp is given by (4.1). By [HI, Theorem II.3.6], every D £ 3(H) has a
K-radial part Dr which is a differential operator on a+ satisfying (4.15) for

all /^-invariant functions / e W°°(n).

8.11.    Proposition.  A has the K-radial part

* = E (J£ + ("othw + *cotn (I)) £)
(8.12) '='

Esinn((j) 9
£. cosh(?;) -cosh(/,-) <?/,■'

Proof. The positive roots (3.16), (7.11), and (7.25) induce the density function

8(tx ,...,tr):= nsinhC(0)sinhfc (|) J] sinh' (^) sinh0 (^)

= nsinhC(0)sinhfc (|) J] [sinh2 (|) - sinh2 (£)]"

= const- &>a7T,
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where

--=n(-«2(|)-sinh2(|)),

(8.13)
n= nsinhc(0)sinhM^J.

By [HI, p. 335] we have

. 1^3.0 I    ^ d     a    9

^ = s\aTiSaTi = a^\aTi(0n9Ti

- V (—   -—   ——\ —
~ ^\9ti + ndU + codti) 9ti

= *F   —- +ccoth(/,-) + 6coth ( % ) + «E—,,f" ^'' . „. ) ^-.
*-? \ 9ti v V2 /       ^T cosh(r;-) - cosh(f,) J df,

Q.E.D.
Now consider the mapping ip: a+ —► A c n defined by

(8.14) H'l .•••>0 = Esinh2 (f)*'-
i=i ^   '

8.15. Corollary.

| a^x,(x, + 1)  9
•^   x, - x,   <9x,'

Proc/. Putting x, = sinh2(^) we have by (8.13)

co = Y[(Xj - Xi),        n = Y[(Xi(Xi + l))c'2xf/2

i<j i

and (8.12) implies

sr^fd2xi     (dxi\2 ( d       1 dn      a 9co\\   d

^^=lry-dJ+y-dTi)   {aYi + na^i + ^dx-i))dx-i

— (        1        /,        x I 9       c   l + 2x,= E^' +5+ ̂ 1+*')^ +235(1+35)

2x,       ^-f Xj -Xj J J 9xj •*<•••

8.16. Theorem. For eac/z a e Nr, f/jere exists a spherical function Ka on H

with eigenvalue

(8.17) ^a = ^a, (ai + a(r-i) + c+-A
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which satisfies

(8.18) KaOtpoy-^Y.eZrf.
fi<a

Here fl  runs over all partitions dominated by a and the coefficients &  are
nonnegative.

Proof. By Corollaries 4.19 and 8.15 we have

<ptAK = D2+(l-^(r-l))E

and

ip,AK = D2 + Dx + X+b2 + C9e+(l+c+b^jE,

where

1=1 ' ifr      J

!=i i=i

The commutator identities [de, Dm] = mDm_x and [de, E] = de imply

(8.19) w*AK = T+l-[de,T} + ^de,

where

T:=9tAK+(l(r-l) + c+^E.

Since K® is homogeneous of degree |a| := ax-\-\-ar, we have TK° = xaK® ,

where

Xa = Xa+  (f('"-1)+C+2)|a|

= 22a> ( ai +a(r-i) + c+ -J .

On the other hand, [Y1 ] implies

with a-Ei := (ax, ... , o,-_i, a,- 1, a,-+i, ... , ar) and "binomial" coefficients

<8-2i» (A)i0-
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Assuming that Xa is the A-eigenalue of Ka , we obtain from (8.19)

Xa_^KP = Xa(Kao^o¥-1)

P

= (AKa) otpoip-1 = AK(Ka otpo y/~l)

= (y/.AK)(Ka otpoip-') = Y,4(y/,AK)Kl
fi

= _2cPAT +W -\Tde + b-de)K»
fi       V J

= E <£ (xtf + \ E (/ J (xfi - Xfi-„ +1) *}_.,) •

Equating coefficients of 7^2 , and ft < a fixed, we obtain

ix* - x,)4 = \ E (fi+fi *) (**« - ̂  +1) <£♦*.

Since (8.20) implies Xa > Xp and Xp+e, > Xp > we may solve for <:£ inductively,

starting with ca := 1, and obtain nonnegative coefficients.   Q.E.D.

8.22.   Corollary. The spherical function Ka on H has a finite expansion

(8.23) (Kaotpoy/^)(x) = Yjapaqp(x)

P<a

in terms of the monomial symmetric functions, with nonnegative coefficients at >
0.

Proof. Apply Theorem 8.16 and Proposition 4.21.   Q.E.D.

9. Stochastic control theory on symmetric tube or Siegel domains:
Spherical functions

A stochastic control problem is formulated in a symmetric tube or Siegel

domain n using a AMnvariance and a spherical polynomial Ka . The stochastic

control problem is the control of a Brownian motion in II by a drift vector field

so that this controlled diffusion remains close to the base point e of n. Using
the /"v-invariance we may use the coordinates t = (tx, ... , tr) for the positive
Weyl chamber (8.9).

The controlled diffusion in n has the infinitesimal generator

(9.1) ±A+(u(s,t),Vt)

where A is the Laplace-Beltrami operator, t = (tx, ... , tr), and s £ R+ . Since

the AMnvariance of the control problem is exploited, it suffices to consider
the controlled diffusion projected to the positive Weyl chamber o+ with the
infinitesimal generator

(9.2) ±AK + (u(s,t),Vt).
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Let (X(s), £ > 0) be the controlled diffusion with the infinitesimal generator

(9.2) where the dependence on the control u has been suppressed.  The cost

functional for this stochastic control problem is

(9.3) Ja(u) = Ex{0) j (Ka o y/)(X(s)) + (A(X(s))U(s, X(s)), U(s, X(s))) ds
Jo

where Ka  is the spherical polynomial (8.23) for the partition a,  A(t) :=

diag(fx(t),...,f(t)),

m = ̂ mWK»°*){t)"\>
and

tKa I EXjej J = Xi-jj-E JJ^c»a^ '■■■'Xr)

for i = 1,2, ... , r. Itis clear that

r

Ka ° y/ = E <K°> ° V +oK*
1=1

where oKa is a constant.

Since the infinitesimal generator of (X(s) ,£€[0,7*]) is (9.2), the family of

stochastic differential equations that (X(s), s e [0, 7*]) satisfies is

(9.4)

dXk(s) =    °- coth(Xk(s)) + b- coth (Z^

+ % E      w rTff^w rni + ̂  X^   ds = dBk(s)
2 *-f cosh(Xfc(5)) - cosh(^(5))

for k = l,2,...,r, X(0) = (Xx(0), ... , Xr(0)), Xx(0) > X2(0) >
> Xr(0) > 0, X(t) £ a+, and (Bx(s), ... , Br(s); £ > 0) is a standard r-

dimensional Brownian motion.
Let (Z(s) € fl, £ € [0, T]) he the controlled diffusion with the infinitesi-

mal generator (9.1) where the dependence on the control law U(-) has been

suppressed for notational simplicity. An admissible control at time £ is a

Borel measurable function of Z(s) such that the stochastic differential equa-

tion whose generator is (9.1) has one and only one strong solution. By the

7*v-invariance of the cost functional it suffices to consider controls at time £

that are Borel measureable functions of X(s) that satisfy (9.4) so that this

family of stochastic differential equations has one and only one strong solution.

Initially it is necessary to verify that the stochastic control problem (9.1, 9.3)
is well posed, specifically that there is at least one control that gives a finite

value to Ja(U) in (9.3). The verifcation of the following lemma is the same as

the verification of Lemma 6.5.

9.5.   Lemma. Let (X(s), £ € [0, 7*]) be the diffusion process in a+  with the

infinitesimal generator ^AK, that is, the unique strong solution of (9.4) with
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U(t) = 0. Then

(9.6) Ex(o) I (Ka o ip)(X(s)) ds < oo.
Jo

The solution of the stochastic control problem (9.1, 9.3) is given now.

9.7. Theorem. The stochastic control problem described by (9.1, 9.3) has an

optimal control U* given by

(9.8) U*(s, t) = -^-A~l(t)Vt(Ka o V)(t)

where s £ [0, T], t = (tx, ... , tr), V( is the t-gradient, and g is the unique

positive solution of the scalar Riccati differential equation

(9-9) di + \Xa8-\g2+l = Q'    S(T) = 0,

and Xa is the eigenvalue (8.17).

Proof. In analogy with the proof of Theorem 6.7, a smooth solution is found

for the Hamilton-Jacobi equation for the stochastic optimal control problem of
diffusion type. Since the integrand of the cost functional as a function of the

state is /^-invariant, the Hamilton-Jacobi equation can be reduced to the radial

part of (9.1) as

,„ ... n     9W        .      1 .        v^    9W     ,,,        ...     v^ r   i
(9.10) 0= —+min   -AK + £t,y—+ (tfao^)(/) + £./>2   .

|_ 7=1 ; 7=1

It is clear that the family of controls obtained by the minimization in (9.1) is

for j =1,2, ... ,r.
Assume a solution W of (9.10) as

(9.12) W(s, t) = g(s) _UKa o ip)(t) + h(s).

i

Substituting (9.12) into (9.10) it follows that

0 = g' J2 iKa o w + h! + -xag (E iK* ° V + oKa)

(9.13) +_tKaoW + 0Ka-^g2^2iKaoW

=  ^ tKa oip(g'+ -Xag - -^g2 + 1J + h' + ^XagoKa + 0Ka.

If g satisfies (9.9) and h satisfies

(9.14) h' + ^x*goKa + 0Ka = 0,    h(T) = 0,

then (9.12) is a smooth solution of (9.10) that satisfies the boundary condition

W(s, t) = 0 for (s, t) £ {T}xa+. The family of controls (9.11) is an admissi-
ble (optimal) control if the family of stochastic differential equations (9.4) with

the controls has one and only one strong solution in [0, T].
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Let (X(s), £ € [0, 7*]) be the solution of the family of stochastic differ-

ential equations (9.4) with the family of controls (9.11). There is no finite

escape time by the methods in the proof of Lemma 6.5. If it is assumed that

(X(s), s £ [0, 7*]) does not hit the walls of the positive Weyl chamber then the

local smoothness of the coefficients of the stochastic differential equations for

(X(s), £ e [0, 7*]) can be used to construct a unique strong global solution (e.g.

[IW, p. 164]).
Now it is necessary to verify that (X(s), s e [0, 7*]) does not hit the walls

of the positive Weyl chamber. Initially a subset of a wall away from the origin

is investigated. In fact it suffices to consider the process (Xr_i(s) - Xr(s), s £

[0, 7*]) away from the origin because a similar verification is made for the

other walls of the Weyl chamber. Choose two positive constants K > c > 0

and define Tr-i(c, K) as

(9.15)        Tr-i(c, K) = {t: K > tx - rc> ■■■> t,-2 - 3c> tr-X > tr > c}.

By localization by a stopping time it is assumed that (X(s), s e [0, T])  is

restricted to Tr_i(c, K).

Let Yr-X(s) be defined as

Yr_x(s) = Xr.i(s) - Xr(s)

for £€[0,7*]. The stochastic differential equation for (yr_i(£), £ e [0, 7*]) is

la sinh(Xr_x(s))

r~11 ;      [2cosh(Xr_!(£))-cosh(Xr(£))

-I     Myf^(Xr{SL    fv+h(s,X(s))]ds
2 cosh(Xr(£)) - COSh(Xr_!(£))

+ dBr_x(s)-dBr(s)

where

sup \h(s, x)| < Af < oo.
(s,x)€[0,T]xrr_l(c,K)

It easily follows from Taylor's formula that there is a 8 > 0 such that if 0 <

tr- i - tr < 8 then

(9 17) asinh(fr_1) + sinh(7r)     M>       1

2cosh(/r_1) - cosh(/r) ~ tr-X - tr'

Now localize (X(s), £ € [0, T]) to rr_,(c, K)n{t: tr-X-tr < 8}. Apply a com-

parison theorem [IW, p. 352] for the solutions of scalar stochastic differential

equations to the above localization of (9.16) and the so-called two-dimensional

Bessel stochastic differential equation

dZ(s) = -i- ds + V2dB(s).
Z(s)

Choosing sequences c„ j 0 and K„ | +00 and applying the above construc-
tion to rr_i(c„, K„) it follows that

(9.18) P(Xx(s) >X2(s) >■■■> Xr-X(s) = Xr(s) > 0 for some £€[0, T]) = 0.

Now the behavior of (X(s) ,£€[0,7*]) is investigated near the origin. For

this analysis it is more convenient to the coordinates x = (xx, ... , xr) instead
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of t = (tx, ... , tr) where x, = sinh2(/,/2). Since the radial part of the Laplace-

Beltrami operator has been expressed in these coordinates by the chain rule, the

family of stochastic differential equations for

(9.19) 7,(£) = sinh2^

for £€[0, T] is

n i1/2
dYk(s)=   ^Yk(s)(l + Yk(s))w0       dBk(s)

(9.20) +   ^ + b + c) + ^(l+c+^JYk(s)

for k = 1,2, ... , r.
Choose two positive numbers K » c > 0 and define Ar(c, K) as

(9.21) Ar(c, K) = {x: K > x, - rc> ••• > xr_i - 2c> xr}.

Assume that (Y(s), s e [0, T]) and (Z(s),£€[0,7*]) are two pathwise solu-
tions of the family of stochastic differential equations (9.20) that are localized

to Ar(c, K). It is elementary to verify that

(9.22)

Qy(l+y)vo)     _Qz(i + z)vo)   "  <2\y-z\ll2 + 2\y-z\:=p(\y-z\).

For x = (xi, ... , xr) and k £ {I, ... , r} define a and bk as

(I V/2
(9.23) o(xk)= ^-xk(l+xk)v0)      ,

(9.24)

bk(s,x) = \(l+b + c) + \{l+c+b-yk + a-_Xfk^f-U*k(s,¥-x(x)).

Following a construction for a scalar stochastic differential equation [IW,

p. 168] let 1 > ax > a2 > ■ ■ ■ > an > ■ ■ ■ > 0 be defined by

/   p~2(u)du=l,     j   p~2(u)du = 2, ... ,      /   p~2(u)du = n, ... ,
J a\ J a2 J^n

where p is given by (9.22). Clearly a„ [ 0. Let (y/n , n e N) be a sequence of

continuous functions such that the support of y/„ is contained in (a„, an-X),

2o~l(u) /""-'
0 < Vn(u) <   y   { '    and    /       tp„(u)du=l.

n Ja„

Define
r\x\ ry

<Pn(x)        dy      y/n(u)du,       xeR1.
Jo Jo

Then tp„ e C2(R'), \tp'n\ < 1, and <p„(x) T |x| as n -► oo .
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Fix n £ N and apply Ito's formula to tpn(Yk(s)-Zk(s)) for k = 1, 2, ... , r
and add these r equations to obtain

r

_<Pn(Yk(s)-Zk(S))
k=l

= E f <Pn(Yk(u) ~ Zk(u))(o(Yk(u)) - a(Zk(u)) dBk(u)
(9.25) k~l

1   r    fs
+ oE /   <P'n(Yk(u) ~ Zk(u))(bk(u, Y(u))-bk(u, Z(u)))du.

2kTxJo

+ \ E T 9n(Yk(u) - Zk(u))(o(Yk(u)) - o(Zk(u)))2 du.

Since the expectation of each of the stochastic integrals in (9.25) is zero, it

follows that

r

E   _Vn(Yk(s)-Zk(s))
-k=l

= zZE ['<(*"(«) ~ Zk(u))(bk(u, Y(u)) - bk(u, Z(u)))du
(9-26) £r;   Jo

+ \_E fS<Pn(Yk(u) - Zk(u))(o(Yk(u)) - a(Zk(u)))2du
2fc=1       J°

= Ix(n) + I2(n).

On Ar(c, K) the drift terms (bx, ... , br) are smooth so that

|/i(«)|< TE f\bk(u, Y(u))-bk(u,Z(u))\du

(9-27) V
< y~E / k\Y(u)-z(u)\du

k~X    Jo

and by the construction of tpn

|/2(«)|<^E f Elp-2(\Yk(u)-Zk(u)\)p2(\Yk(u)-Zk(u)\)du
(9.28) 2k=iJo     n

<rS-.
n

By passing to the limit we have

(9.29) E\Y(s)-Z(s)\<  [ rK\Y(u)-Z(u)\du
Jo

so Y(s) = Z(s) a.s. Choose e > 0 such that br(s, x) > 0 for x € Ar(c, I) n

{x: |xr| < e} and let

r_£ = inf{£:yr(£) = -e}.



STOCHASTIC CONTROL PROBLEMS 1123

Let S < 7*_£ be such that Yr(S) < 0 with positive probability. The stochastic

differential equation for (Yr(s), £ e [0, 7*]) implies that the map £ •-► Yr(s) on

(S, 7*_e)l{yr(5)<o} is increasing which is impossible. Thus

P(7*_e < 7*) = 0

and

P(Yx(s) >      > y_,(£) > Yr(s) > 0,        £ e [0, T]) = 1.

Now it is shown that (Yr_x(s), s £ [0, 7*]) does not hit the origin. From this

verification it easily follows from the previous results that (Yk(s), s £ [0, 7*])

does not hit the origin for k £ {1, ... , r—2} . Consider the following stochastic

differential equation:

(l~ ~ \1/2
dYr-x(s)= UYr-X(s)(l + Yr„x(s))\J0)     dBr_x(s)

(9-30) Vi /

+  ^(l+b + c) + ^(l+c + ^jYr_x(s)   ds.

By a test for explosions of a one-dimensional diffusion process (e.g., [IW, p. 362])

it follows that

(9.31) Px(infYr_x(s)>0) = l
\s<e I

where e is the explostion time. Choose two positive constants K » c > 0 and

define Ar_i(c, K) as

(9.32) Ar_i(c, K) = {x: K > xx - rc> ••• > xr_2 - 3c > xr_! > xr > 0}.

There is an e > 0 such that on Ar_>(c, K) n {x: 0 < x < e} the sum of the
last two terms in the drift of the stochastic differential equation for (y_i(£),

£ € [0, 7*]) is positive. This solution can be localized to Ar_i(c, K) n

{x: 0 < x < e} and the stochastic differential equation for (Yr-X (s), £ € [0, 7*])

can be compared with (9.20). Let cn J. 0 and K„ ] +00 and apply the above

techniques to Ar-X(c„,K„) to verify that

(9.33) P(Yx(s) > Y2(s) > ••• > yr_i(£) > Yr(s),s £ [0, 7*]) = 1.

This completes the proof.   Q.E.D.

10. Generalization to abstract root systems

In this section we indicate how the previous results can be generalized, in
a somewhat less geometric way, to root systems with "arbitrary" multiplicities

(cf. [Dl]). Consider Euclidean space Rr with coordinates t = (tx, ... , tr) and

consider the "abstract" Weyl chambers (compare with (4.13) and (8.9))

(10.1) a% :={t£Rr:tx >■•■ > tr}

and

(10.2) a+ :={t£Rr:tx > ■■■>tr>0},

respectively. Consider a density function W(t), the associated volume element

dV(t):=W(t)dtx---dtr
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and the "Laplace-Beltrami operator"

(10.3) A=-Y-l-W-l-v       ' w Z-j dtj     dtt

The density function is specified by

(10.4) W°=    n    sinha(^-^
l<i<j<r

and

(10.5) ^ = nsinhc(?,)sinh6(|)     ]J    sinh" (^) sinh" (^) ,
i=l ^     ' l<i<j<r V / V /

respectively. Here a, b, c are arbitrary positive constants. Note that for certain

integer values of a, b, and c, we obtain the density functions associated with

a symmetric cone or a symmetric domain, respectively (cf. Sections 4 and 8).

We now pass to "algebraic" coordinates xx, ... , xr by putting

(10.6) Xi := exp(ti),        (xx, ... , xr) = tp(tx, ... , tr)

for (10.1) and

(10.7) x, :=sinh2 (^) ,        (xx, ... , xr) = ip(tx, ... , tr)

for (10.2).  Then in both cases the Weyl chamber corresponds to Xi > x2 >

• ■ • > xr > 0. Modifying the proofs of Corollaries 4.19 and 8.15 we obtain

10.8.   Proposition. In terms of the algebraic coordinates, the operators (10.3)

have the form

do.,,  4._t*£+.E^&+i:(i-5<'-«>)*&
1=1       i      i^j j i=i

and

a      v^    /        ,x 92        v^x,-(x,-+l)  9
A=E^+i)^+.E-i-zV^

(10.10) '"
^fl+b + c     / b\    \   d

+ ̂ {-^ + {l+c+2)V9x-r

For every partition a = (ax, ... , ar) of integers ax > a2 > ■ ■ ■ > ar > 0, let

(10.11) K2(x)=Sa(x,£)/Sa(l','^

denote the "Jack polynomial" (cf. [SI]) for the parameter 2/a, normalized by

*°(1,...,1)=1.

It is known [SI, Theorem 3.1] that A°/\~° = xX where
r

(10.12) ;f° = 5>1-(<*,- +|(r+1-2/)).
i=i

If a is an integer coming from a symmetric cone A (cf. Section 3), K® is (the

restriction of) a spherical function on A.
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10.13.   Lemma. There is an expansion

Kl(x) = _4qp(x)
P<a

where /? runs over all partitions < a in the (reverse) lexicographic order, the qp

are the symmetric monomial functions [M1 ] and the coefficients c£ (depending
on a) are nonnegative.

Proof. Apply [M2, Theorem 6.3] and observe that the coefficients w(T) com-

puted in [M2, (45)] involve only products and quotients of "generalized hook-

lengths", which are certainly positive.   Q.E.D.

Fix a partition a and let K°(x) be the polynomial (10.11) associated with

a which is homogeneous of degree \a\. Using the definition of the monomial
symmetric functions we have

K°a(x) = _aaUK---xr>

where / = (ix, ... , ir) and aa(f) = aa(j) from the definition of the monomial

symmetric functions if y is a distinct permutation of /. For j e {1, ... , r}

define aJa([) as

(10.14) ai(f) = ±-aa(L)
\a\

and

(10.15) jK0a(x) = ,£ai(L)xx,,---xr'

where the sum is over distinct r-tuples such that aJa(f) ^ 0. Clearly

(10.16) 4°w = EA°(4
7=1

The cost functional for the stochastic control problem is
T" f

(10.17) J°(U) = EX{0) f  (K°a o 9)(X(s)) + _fj(X(s))U2(s)ds
Jo 7=1

where

(10'18) m'iKimWK°°'p)l')1\-
The process (X(s) ,£€[0,7*]) is the controlled diffusion in the "Weyl cham-

ber" {(ti, ... , tr): h > t2 > ■ ■ • > tr} . The infinitesimal generator of (X(s), £ e

[0, 71) is

^ + 5>(^4

(10-19)    --\±{m-^-<+«i

+ Ew^,o^.
k=\ K
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The associated family of stochastic differential equations is

i*M- [-?(r-')+fx;.-exp(*,w-*tW)

+ Uk(s,X(s))   ds + dBk(s)

for k = l,2,...,r,X(0) = (Xx(0), ... , Xr(0)), Xx(0) > X2(0) > ■■■ >
Xr(0), and (Bx(s), ... , Br(s); £ > 0) is a standard r-dimensional Brownian

motion.

An admissible control at time £ is a Borel measurable function of X(s) so

that (10.20) with this control has one and only one strong solution.

It follows in analogy with Lemma 6.5 that J®(0) < oo .
The solution of the stochastic optimal control problem (10.17, 10.19) is given

now.

10.21. Theorem. Assume that a> I. The stochastic control problem described

by (10.17, 10.19) has an optimal control that is

flO 22) U*(s   t) = f   ~JK°(VW   1 g(s\
1 ' uj(s>1)     [2Dj(K*otp)(t)\8KS)

where j e {I, ... , r},s e [0, T], t = (tx,... ,tr), Dj = -^, and g is the

unique positive solution of

^f + ̂ «V-^2 + l=0,    g(T) = 0,

where Xa 's me eigenvalue of K® for A0 given by (10.12).

The proof of this result is not given because it follows closely the proof of

Theorem 6.7. Basically it is required to verify that the optimally controlled

diffusion does not hit the walls of the "Weyl chamber". Since it is assumed that

a > 1, the inequality (6.20) is satisfied.
In order to study the operator A, note that Proposition 10.8 implies

A = A°+(c + \ + \(r-l)\E

(10.23)
+ ![$,,A°+(c + |+.|(r-l))s]+|ft,

where

is the Euler operator,

i=iOXi

and [A, B] := AB - BA is the commutator. This follows as in the proof of

Theorem 8.16.   As shown in [Dl], the operator A has eigenfunctions of the
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form

(10.24) Ka(x) = _a£K°fi(x)
P<a

(called "generalized Jacobi polynomials"). Here a = (ax, ... , ar) is a partition

and the coefficients at depend on a, b, and c. By [Yl], we have

(10-25) W2 = E(a!j^.

where a — e,- := (ax, ... , a,_i, a,- - 1, a,+i, ... , ar) and

\a - Zi)

are the generalized binomial coefficients.   Since (10.25) implies that 9e de-

creases the "symmetric degree" of a partition, it follows from (10.23) that

AA'q = XaKQ,

where

(10.26)    Xa = Xa + (Z(r ~ 1) + c + 2) M = Ea«- (Q< + a(r - ') + c + 2) •

10.27.   Proposition. There is an expansion

(10.28) Ka = J2cfiaQp(x)
P<a

where the coefficients ct are nonnegative.

Proof. As in the proof of Theorem 8.16, we obtain a recursion formula

H -(Xa-Xfi) = _ ct+£' (P + *) • (xfi+ei ~Xp + \)

for the coefficients ci of (10.24), starting with c% := 1 . Clearly, (10.26) implies

L

Xa - Xp > 0   and   xp+e, ~Xp+2^°-

Therefore cf > 0 for all /J < a. Now apply Lemma 10.13.   Q.E.D.

Fix a partition and let Ka(x) be the polynomial (10.28). Using the definition

of the monomial symmetric functions we have
_

Ka(x) = _aa(i)x'll---x'r'

where i = (/■, ... , ir) and the sum is over distinct /--tuples such that aJa(i) ^ 0.

For j £ {I, ... , r} define aJa([) as

(10-29) aid) = =±-aa(i)
2^t=i '*

and

(10-30) jK«(x) = _ai(i)x\l--'xr',
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where the sum is over distinct r-tuples such that aJa(i) ̂  0. Clearly
r

(10.31) Ka(x) = YtjKa(x) + 0Ka,

7=1

where oKa is the constant term in Ka .

The cost functional for the stochastic control problem is

(10.32) Ja(U) = Ex(o)f  (Kaoy)(X(s)) + J2fjiX(s))U2(s)ds
J° 7=1

where

(10'33) ^ = -KjmWK"-^t
The process (X(s),£€[0,7*]) is the controlled diffusion in the "Weyl cham-

ber" {(tx, ... , tr): tx > t2 > ••• > tr > 0}.   The infinitesimal generator of

(X(£),£€[0,7*])   is

1 .     \-^    /      n 9
-A + ^Uj(s,t) —
1       7=1 J

Al92      \c      . b      . tk]   d
= T,2^+   2C°th^+2COth2 \oTk

(10.34) k=l       k

a s-^ sinh(^) d

2 *-" cosh(^) - cosh(ryt) oik'

+E»^,o^.
k=\        k

The associated family of stochastic differential equations is

(10.35)

dXk(s) =    b- coth %& + C- cothXk(s)

+ ^T ufVf^Xk{SLV ,  ^  = Uk(5,X(s))     ds + dBk(S)
2^cosh(Ar7-(£))-cosh(Arfe(£))        kK       v " kK '

for k = l,2,...,r,X(0) = (Xx(0), ... , Xr(0)), Xx(0) > X2(0) > ••• >
Xr(0) > 0, and (Bx(s), ... , Br(s); s > 0) is a standard r-dimensional Brown-

ian motion.
An admissible control at time £ is a Borel measurable function of X(s) so

that (10.35) with this control has one and only one strong solution.

It follows in analogy with Lemma 9.5 that Ja(0) < oo .

The solution of the stochastic optimal control problem (10.32, 10.34) is given

now.

10.36. Theorem. Assume that a>\. The stochastic control problem described

by (10.32, 10.34) has an optimal control that is

<la37» ^"•"-[^Tr",)]""
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where j £ {I, ... , r}, s £ [0, T], t = (tx, ... , tr), Dj = ^-, and g is the

unique positive solution of

^ + ^xag-\g2 + i = o,   g(T) = o,

where xa is the eigenvalue of Ka for A given by (10.26).

The proof of this result is not given because it follows closely the proof of

Theorem 9.7. Basically it is required to verify that the optimally controlled

diffusion does not hit the walls {/, = f,-_i} for i = 1, ... , r of the "Weyl
chamber". Since it is assumed that a > 1, the inequality (9.17) is satisfied. The

behavior of this diffusion near the origin follows as in the proof of Theorem

9.7.
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