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ON A QUADRATIC-TRIGONOMETRIC FUNCTIONAL EQUATION
AND SOME APPLICATIONS

J. K. CHUNG, B. R. EBANKS, C. T. NG AND P. K. SAHOO

Abstract. Our main goal is to determine the general solution of the functional

equation

Mxy) + f2(xy~l) = h(x) + My) + Mx) f6(y),

fi(txy) = Mtyx)      (; = 1, 2)

where f are complex-valued functions denned on a group. This equation

contains, among others, an equation of H. Swiatak whose general solution was

not known until now and an equation studied by K.S. Lau in connection with

a characterization of Rao's quadratic entropies. Special cases of this equation

also include the Pexider, quadratic, d'Alembert and Wilson equations.

1. Introduction

In connection with the characterization of quadratic entropies of C.R. Rao,

Lau [9] obtained the solution of the functional equation

(1.1) f(^l) + f(^l) = 2f(^) + 2f(^)+Xf(x)f(y)

assuming / to be an even, continuous, nonnegative function defined on the

closed interval [-1, 1], with /(0) = 0 and f(l) = 1 and infinitely differen-
tiable on the open interval ] - 1, 1 [. The constant X in (1.1) is an arbitrary

a priori chosen nonnegative real number. Lau showed that under the above

assumptions the solution of (1.1) is

f(x) = X2, X£[-l,   1].

We have shown elsewhere [3] that to obtain the above solution the assumptions

such as evenness, nonnegativity and the infinite differentiability are redundant.

In the present paper, we solve the generalization

(SEs) f(x + y) + f(x-y) = 2 f(x) + 2 f(y) + k f(2x) f(2y)

of (1.1) on groups, without any regularity assumption about /. This equation

is a special case of the functional equation

(SE) f(x + y) + f(x-y) = 2f(x) + 2 f(y) + g(x) g(y),
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which was introduced by Swiatak [12] as a generalization of the parallelogram

law (for which g = 0). Swiatak found the general solution of (SE) for x, y e

G, an abelian group, where /, g : G -* K, a commutative ring without zero

divisors, under the additional hypothesis that g(e) ^ 0 (where e is the identity

element of G). We remove this additional hypothesis on g to find the general

solution of (SE) on groups, while requiring K to be a field.

The solution of (SE) is found in turn by specializing the general solution of

the more general equation

(1.2) /i(*+y) + /2(*-y) = /3(*) + /4(y) + /5(*)/6(y)

for all x, y £ G and f : G —► K (i = 1, 2, 3, 4, 5, 6), where G is a group
and K is a quadratically closed commutative field with characteristic different

from 2 and 3. Equation (1.2) contains many classical functional equations and

readers should refer to [1, 2, 4, 5, 7, 8, 10, 11 and 14]. We shall not assume G

to be abelian, so we write (1.2) as

(FE) f(xy) + f2(xy~l) = f(x) + f4(y) + f5(x) f6(y)       (x,yeG)

but we will suppose

(FC) fi(txy)=fi(tyx),       i=l,2 (t,x,yeG).

The condition (FC) was first considered by Kannappan in [7] while studying the

cosine functional equation on groups. It is the condition that a function can be

factored through the abelianization of G.
Interchanging y with y~l in (FE) we obtain

fl(xy-1) + f2(xy) = Mx) + My-i) + Mx)f6(y-1).

Adding and subtracting it to and from (FE), we obtain respectively

(1.3) f(xy) + /(xv"1) = p(x) + q(y) + g(x) h(y)

and

(1.4) F(xy) - F(xy~l) = K(y) + H(x) G(y)

where

(15)    /•fW:=-MJ0 + -fc(J0' p(x):=2Mx), q(y) := My) + My~y),
I g(x) := Mx),  h(y) := My) + My-')

and

(F(x):=fi(x)-f2(x), K(y):=My)-My-1),

\H(x):=Mx),  G(y) := My) - My~x).

This paper is organized as follows: In Section 2, we give some terminology

and preliminary results which will be used in solving equations (1.3) and (1.4).

In Section 3, we present the general solution of the equation (1.3). In Section

4, we solve (1.4). Section 5 contains the general solution of (FE). In Section 6,

we determine the general solution of Swiatak's equation; and finally in Section

7, we present the general solution of (SEs).

2. Terminology and some preliminary results

Let G be a group and K be a field. A map y : G —» K is called exponential

if

(2.1) ip(xy) = ip(x)y/(y)       (x,y£G).
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We call 4>: G —> K and i:GxG-»K additive and biadditive, respectively, if

(2.2) <p(xy) = <p(x) + cf>(y)       (x,y£G),

and

(2 3)     A(xy ,z) = A(x,z) + A(y ,z),        A(x, yz) = A(x, y) + A(x, z)

(x,y,z£G).

The diagonal of A , denoted by A2, is defined by

(2.4) A2(x) = A(x,x)       (x£G).

Lemma 2.1. Let i//:G-*C be exponential, ip(x) £ 0, and y/(x) + y/(x)~1 ^ 2.

Then the general solution Q, L : G —> C of

(2.5)
(2(xy) + G(xy-1) = 2e(x) + 2(2(y) + L(x)[^(y) + V/(y)-1-2]       (x,yeG),

where Q satisfies the factorization condition (FC), is given by

(2 6) L(x) = a[^(x) + ^(x)_1-2],

Q(x) = a[y/(x) + ip(x)~i-2] + A2(x)       (x £ G),

w/zere a is a« arbitrary constant, and A2 is the diagonal of an arbitrary biad-
ditive A.

Proof. Replacing y by y_1 in (2.5) we get

(2.7) Q(y) = Q(y~1).

If we interchange x and y in (2.5), and take the condition (FC) and (2.7) into

consideration, we get

(2.8) L(x) My) + ¥(y)'1 ~2] = L(y) [y,(x) + ¥(x)~l - 2].

Since y/(y) + y/(y)~x ^ 2 , we have

(2.9) L(x) = a[ip(x) + y(x)-x -2]

where a is a constant. Substitution of (2.9) into (2.5) yields

G(xy) + Q(xy-') = 2G(x) + 2<2(y) + a[^(x) + ^(x)-1-2][^(y) + ^(y)-1-2],

or

Q(xy) -a[ip(xy) + ip(xy)~x - 2] + Q(xy~l) - a[y/(xy~l) + ^(xy-1)"1 - 2]

= 2 {Q(x) - a [<p(x) + ip(x)~l - 2]} + 2 {Q(y) - a My) + ^(y)"1 - 2]}.

The general solution of this is given by (see [1], Lemma 2)

Q(x) = aMx) + y/(x)-l-2] + A2(x),

where A2 is the diagonal of an arbitrary biadditive function A : G2 -» C.

Along with (2.9) we get the necessary form (2.6). The converse is obvious. This
completes the proof.

We notice that here C may be replaced by any commutative field K, char K

*2.
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Lemma 2.2. Let A2 be the diagonal of a biadditive function A0 : G2 —> C. Then
the general solution f: G —> C of

(2.10) f(xy) + f(xy-l) = 2f(x) + 2f(y) + A20(x)A20(y) (x,yeG)

where f satisfies (FC) is given by

(2.11) /(x) = 3a2<TJ(x)4 + ,42(x),        A20(x) = 6a0(x)2 (x,yeG),

where a is an arbitrary constant, <p : G —> C an arbitrary additive map and A2

the diagonal of an arbitrary biadditive function A : G2 —► C.

Proof. It is easy to check that / given by (2.11) does satisfy (2.10) and (FC).
In order to prove the converse, we define F by

(2.12) F(x,t) = f(xt)-f(x)-f(t).

From (2.10), (FC) and (2.12) we get

F(xy, t)A + F(xy~l, t)

= f(xyt) - f(xy) - 2f(t)+f(xy~lt) - f(xy~l)

(2 13)    = f{Xyt) ~ f{Xy) ~ 2f(t) ~ f{Xty) + 2f{Xt) + 2fiy) + A^xt)A2o{y)

+ f(xy)-2f(x)-2f(y)-A20(x)A20(y)

= 2f(xt) - 2f(x) - 2/(0 + [A20(xt) - A20(x)]A20(y)

= 2F(x,t) + [A20(xt)-A20(x)]A20(y).

Since A20 satisfies (FC) and A20(xt) - A2(x) - A2(t) = A0(x, t) + A0(t, x), we

have

(2.14) F(xy, t) + F(xy~x, t) = 2F(x, t) + [A20(t) + A0(x,t) + A0(t, x)]A20(y).

If A0(x, t) + A0(t, x) ^ 0, then we choose and fix some (gG for which

(2.15) cf>(x) := A0(x , t) + A0(t, x) ? 0.

Since A0 is biadditive and 4>: G —► C is additive, applying Lemma 4 in [ 1 ] to
(2.14), with (2.15), we get

(2.16) A20(y) = 6a[A0(y, t) + A0(t, y)]2 = 6a<f>(y)2

for some constant a. On the other hand, if A0(x, t) + A0(t, x) = 0, then A0

is skew-symmetric. In this case A^(x) = A0(x, x) = 0, and (2.16) holds with

a = 0. Thus (2.16) holds in any case.
Substitution of (2.16) into (2.10) yields

f(xy) + /(xy"1) = 2/(x) + 2/(y) + 36 a2 <p(x)2 cp(y)2,

that is
/(xy) - 3a2 0(xy)4 + f(xy~x) - 3a2 (/.(xy-1)4

= 2 {f{x) - 3a2 0(x)4} + 2 {/(y) - 3a2 </»(y)4}.

This yields (see [1], Lemma 2) f(x) = 3a2tj>(x)4 + A2(x), where A2 is the

diagonal of a biadditive function, as asserted in (2.11).

Notice that here C may be replaced by any commutative field of character-

istic different from 2 and 3.
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Lemma 2.3. Let G be a group and suppose that fx, f2, fi, fa > h > h '■ G -* C
satisfy

(2.17) fi(xy) + fa(xy~x) = Mx) + My) + Mx) My)

and that fx and f2 satisfy (FC). If Mx) = a5 (constant), then fa and fa+a5fa
satisfy (FC). // My) = a6 (constant), then fa and fa + a6f5 satisfy (FC). If fa
is nonconstant, then fa and fa satisfy (FC). If fa is nonconstant, then fa and
fa satisfy (FC).
Proof. It follows from (FC) on fa and fa that

(2.18) fa(txyz) = f(tx(yz)) = f(t(yz)x) = f((ty)zx) = fi(tyxz)

for i = 1,2 and for all t, x, y, z e G. This is a more convenient version of

(FC). If fa(x) = a5, (2.17) yields

/3O) = fa(xy0) + fa(xy~x) - fa(y0) - a5 fa(y0)

and

fa(y) + as fa(y) = fa(x0y) + /2(x0y_1) - /3(x0)

where x0 and y0 are fixed elements of G. By applying (2.18) to the above

expressions, we see that fa and fa + a^fa satisfy (FC):

/s('xy) = /(fxyy0) + fa(txyy~l) - fa(y0) - a5 fa(y0)

= fa(tyxy0) + fa(tyxy~l) - fa(y0) - as fa(y0)

= Mtyx)

and

fa(txy) + a5fa(txy) = fa((x0t)xy) + fa(x0y~xx~xrx) - fa(x0)

= fa(xotyx) + fa(x0x-xy-lrx) - fa(x0)

= fa(tyx) + a5fa(tyx).

The case fa(y) = a6 is similar.
If /s(x) is nonconstant, then there exist elements xx, x2 e G such that

/5(x2) - /s(xi) 7^ 0. Substituting x = xx and x = x2 into (2.17) respectively,

we get from the two resulting equations

f,, _ Mxi) [fijxiy) + Mxxy-1) - Mxx)] - f5(xx) [fx(x2y) + f2(x2y-1) - Mx2)]
Myl Mx2)-Mxx)

and

f, x     Mx2y) + fa(x2y~x) - fa(x2) - fa(xxy) - fa(xxy~x) + fa(xx)
J6{y> fa(x2)-fa(xx)

Thus fa and fa inherit (FC) from fa and fa . The case fa ^ constant is dealt
with in a similar manner. This completes the proof of Lemma 2.3.

Notice that here C may be replaced by any commutative field.

Lemma 2.4. A function cj): G —> C satisfies

(2.19) <f>(xy)-<t>(xy-x) = 2<f>(y) (x,yeG)

and

(2.20) <p(xy) = <j>(yx) (x,yeG)

if and only if it is additive.
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Proof. If 4> is additive, it obviously satisfies (2.19) and (2.20). In order to

prove the converse, we put x = e (the unit element of G) in (2.19) to obtain

(2.21) cf>(y) = -cf>(y-1).

Interchanging x and y in (2.19), we get

4>(yx)-ct>(yx-x) = 2<t>(x).

Adding this last equation to (2.19) and using (2.20) and (2.21), we obtain

2tj)(xy) = 2<p(x) + 2(f>(y) and so </> is additive.

We notice that here C may be replaced by any abelian group which is 2

torsion free.

Lemma 2.5. Let <f> : G -» C be additive. Then the general solution F : G -* C
of the equation

(2.22) F(yz)-F(yz-X) = 4>(z)       (y, z £ G)

is given by

(2.23) F(x) = ^<f>(x) + 6(x)       (xeG)

where 6 : G —> C satisfies

(2.24) d(xy2) = 6(x) (x,yeG).

Proof. Since </> is additive it satisfies 4>(xy)-4>(xy~x) = (j>(y)-<j>(y~x) = 2<f>(y).

Thus (2.22) can be written as

F(yz) - F(yz~x) = I {4>(yz) - <t>(yz~x)}

for all y, z e G. That is, the map 8 : G —> C defined by

(2.25) 9(x) := F(x) - Iflx)

satisfies

(2.26) 6(yz) = 0(yz-x).

From (2.25) we have (2.23), and (2.24) is equivalent to (2.26). This completes

the proof.

Note that C may be replaced by any abelian group with unique divisibility

by 2.

Remark 1. Let H be the subgroup of G generated by G2 = {g2 \ g e G}, then
(2.24) is equivalent to the statement that 9 is constant on each left coset of

H in G. This is because (2.24) implies 6(xy2y2---y2) = 6(x) by induction,

and H = {y\y\ ■ ■ -y2, |y, € G, n £ jV} . Here JV denotes the set of natural

numbers.

Remark 2. If y/x , y/2, ..., y/n are distinct nonzero exponentials, then they are

linearly independent.
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Lemma 2.6. Let f: G —> C be a mapping which satisfies (FC) and

(2.27) f(xy)-f(xy-x) = f(y){ip(x) + <p(x)-x} (x,yeG),

where ^:G-»C is a nonzero exponential. Then f has one of the following
forms:

(2.28) f(x) = a{y/(x)-y/(x)-x}       (x e G),

or

(2.29) fax) = ip0(x) (j>(x), H/(x) = y/(x)~x = ip0(x)       (x e G),

where <f> is an arbitrary additive map and a is an arbitrary constant. The

converse also holds.

Proof. Setting x = e, we obtain

(2.30) f(y) = -f(y~l).

Interchanging x and y in (2.27) and using /(xy) = /(yx) and (2.30), we

obtain

(2.31) f(xy) + f(xy-x) = f(x)My) + ip(y)-x].

The general solution of this equation can be deduced from Lemma 3 in [1] (by

setting g(x) = fax) and p(y) = yt(y) + y/(y)~x ). Hence / necessarily has the
form

(2.32) f(x) = a¥(x) + py/(x)-x, y/(x) £ y/(x)~x,

or for some nonzero exponential y/0 with tp0(y) = y/0(y)~x >

(2.33) f(x) = y/o(x)[cf>(x) + a], 2 y/0(y) = y/(y) + y/(y)~x.

Since / is odd in G and y/(e) = 1, tj>(e) = 0, by putting x = e in (2.32),
(2.33) we get a + fi = 0 and a = 0. Thus (2.32) and (2.33) become (2.28)
and (2.29), respectively. The converse is straightforward, and this completes
the proof of the lemma.

Lemma 2.7 [1, 5]. The general solution f, g : G —» C of

(2.34) f(xy) + f(xy~x) = 2fax) + g(y)       (x, y £ G)

with f satisfying (FC) is given by

(2.35) f(x) = A2(x) + <t>(x) + d,        g(x) = 2A2(x)       (x £ G),

where (f> is an arbitrary additive map, A2 is the diagonal of a symmetric biad-

ditive map and d is an arbitrary constant.

Here again, in Lemmas 2.6 and 2.7, C can be replaced by any quadratically
closed commutative field of characteristic different from 2.

3. Solution of the functional equation (1.3)

Theorem 3.1. Let G be a group. The complete list of functions f, p, q, g, h:
G -> C which satisfy

(3.1) f(xy) + f(xy-x)=p(x) + q(y) + g(x)h(y)
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and with f satisfying (FC) is given by

' f(x) = A2(x) + 4>(x) + d,

(32) <  p(x) = 2A2(x) + 2ct>(x)-2b + 2d,

q(y) = 2A2(y)-ch(y) + 2b,

. g(x) = c,        h(y)   arbitrary,

1 f(x) = A2(x) + <p(x) + d,

, <  p(x) = 2A2(x) + 2(j)(x)-2bg(x)-2a + 2d,

q(y) = 2A2(y) + 2a,

^h(y) = 2b,        g(x)    arbitrary,

' fax) = y [a y/(x) + P (Kx)-1] + A2(x) + <f>(x) + d,

p(x) = 2(y-b)[a y/(x) + p y/(x)~x]

+ 2A2(x) + 2cj)(x)'2a + 2bd + 2d,

q(y) = yS[ip(y) + ip(y)-x-2] + 2A2(y) + 2a,

g(x) = a y/(x) + fi y/(x)~x - S,

, h(y) = y[ip(y) + p(y)-x-2] + 2b,        ip(x) $ y/(x)~x,

' f(x) = y Wo(x) [<b(x) + a] + A2(x) + <f>x(x) + d,

p(x) = 2(y-b) y/0(x) [(f>(x) + a]

+ 2A2(x) + 2(j)X(x)-2a + 2b8 + 2d,

q(y) = 2yd[y/o(y)-l] + 2A2(y) + 2a,

g(x) = i//0(x)[<f)(x) + a]-d,

. h(y) = 2y[y/0(y)- l] + 2b,        y/Q(x) = y/(x) = ip(x)~x £ 1,

f(x)= | ap <f)(x)4 + ay 0(x)3 - lad 4>(x)2 + A2(x) + 4>x(x) + d,

p(x) = 3 a p (f>(x)4 + 2ay </>(x)3 -6(ad + pb) <j>(x)2

^36)     < +2A2(x)-2by<t>(x) + 24)X(x)-2a + 2bd + 2d,

q(y) = 3ai3<t>(y)* + 2A2(y) + 2a,

g(x) = 3 0 4>(x)2 + y <t>(x) - S,

^h(y) = 6a<t>(y)2 + 2b

for all x, y £ G. Here a, p, y, 8, a, b, c, d are arbitrary complex con-

stants, 4> and 0i are arbitrary additive maps, y/ is an abitrary nonzero expo-
nential map, and A2 is the diagonal of a biadditive map.

Proof. It is easy to check that all the systems enumerated above satisfy (3.1)

with / satisfying (FC).
In order to prove the converse, we first set y = e in (3.1) and get

(3.7) p(x) = 2 fax) - b0 g(x) - a0 ,
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and then substituting (3.7) into (3.1), we obtain

(3.8) /(xy) + /(xy-1) = 2/(x) + Q(y) + g(x) H(y),

where

(3.9)
a0:=q(e),       b0:=h(e),        Q(y) := q(y) - a0,       H(y) := h(y) - b0.

Case 1. Suppose g is constant, say g(x) = c. Then (3.8) takes the form

(3.10) /(xy) + /(xy-1) = 2/(x) + Af(y),

where

(3.11) M(y):=Q(y) + cH(y).

Hence from Lemma 2.7, we obtain

(3.12) M(y) = 2^2(y),        fax) = A2(x) + <p(x) + d,

where A2 is the diagonal of a biadditive function, <fi is additive, and J is a

constant. From (3.12), (3.11), (3.9) and (3.7) we get solution (3.2).

Case 2. Suppose h is constant, that is H(y) = 0. Then (3.7) takes the form

(3.13) /(xy) + /(xy-1) = 2/(x) + Q(y).

Once again, we get from Lemma 2.7

(3.14) Q(y) = 2A2(y),        fax) = A2(x) + 0(x) + d.

From (3.14), (3.9), (3.7) and H(y) EOwe get solution (3.3).

Case 3. Suppose g(x) ^ c and H(y) ^ 0.  Then h(y) ^ constant, and by

Lemma 2.3 we conclude that all functions in (3.1) and (3.8) satisfy (FC).
From (3.8) we get

/(xy • z) + /(xy • z-1) = 2/(xy) + Q(z) + g(xy) H(z),

f(xy~x • z) + /(xy-1 • z-1) = 2f(xy~x) + Q(z) + g(xy-x)H(z),

fax • yz) + fax • z~xy-x) = 2/(x) + Q(yz) + g(x) H(yz),

f(x-yz'x) + fax • zy~x) = 2/(x) + Q(yz~x) + g(x)H(yz~x).

Subtracting the sum of the third and fourth equations from the sum of the first

two equations, in view of (3.8) and (FC), we get

2 Q(y) + 2 g(x) H(y) + [g(xy) + g(xy~x)] H(z)

~ [Q(yz) + Q(yz~x) -2Q(z)] - g(x) [H(yz) + H(yz~x)] = 0,

that is,

'g(x)[//(yz) + /f(yz-1)-2/V(y)]

(3.15) | +[(2(yz) + (2(yz-1)-2(2(y)-2(2(z)]

= [g(xy) + g(xy-x)]H(z).

Since g(x) ^ c, there exist two elements xx, x2 £G such that g(xi) / g(x2).

Setting x = Xj, x = x2 in (3.15) respectively we get

g(xx)[H(yz) + H(yz'x) -2H(y)] + [Q(yz) + Q(yz~x) - 2Q(y) - 2Q(z)]

= [g(xxy) + g(xxy~l)]H(z),
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g(x2) [H(yz) + H(yz~x) - 2H(y)] + [Q(yz) + Q(yz~x) - 2Q(y) - 2 Q(z)]

= [g(x2y) + g(x2y-x)]H(z).

From the last two equations we get

(3.16) H(yz) + H(yz~x) - 2H(y) = K(y) H(z),

and

(3.17) Q(yz) + Q(yz~x) -2Q(y) -2Q(z) = L(y)H(z),

where

' K{ x _ g(x\y) + g(xxy~x) - g(x2y) - g(x2y~x)

[y> g(xi)-g(x2)

(3.18) <

u x = g(xi)[g(x2y) + g(x2y~x)] - g(x2)[g(xxy) + g(xxy~1)]

I    [y> g(xx)-g(x2)

The fact that /, p, q, g, h satisfy the factorization condition (FC) means

that the same is true of Q, H, K, L. From here on, it is .implicitly under-

stood that further functions induced will inherit the factorization condition

(FC) without explicit mention.

Substitution of (3.16) and (3.17) into (3.15) yields

g(x) K(y) H(z) + L(y) H(z) = [g(xy) + g(xy~x)] H(z).

Since H(z) ^ 0, this gives

(3.19) g(xy) + g(xy-x) = g(x)K(y) + L(y).

From (3.18) with y = e it is easy to note that K ^ 0.   Further recall that
H ^ 0. Hence applying the Main Theorem in [1] to (3.16), we obtain

(3.20) K(x) = y/(x) + y/(x)-x£2,        H(y) = y [¥(y) + ip(y)-x - 2]

or

(3.21) K(x) = 2,        H(y) = A2o(y)?0,

where y ^ 0 is a constant, \p a nonzero exponential and A2 the diagonal of a

biadditive function.

Subcase 3.1. Suppose K and H are given by (3.20). Then (3.17) yields

(3.22) Q(xy) + Q(xy~x) = 2Q(x) + 2Q(y) + yL(x) My) + v(y)"1 - 2].

This is an equation of the form taken care of in Lemma 2.1, so

(3.23) L(x) = «J[^(x) + ^(x)-'-2],

(3.24) Q(y) = y8[ip(y) + ip(y)-x - 2] + 2A2(y)

where 8 is a constant, and A2 is the diagonal of a biadditive map. Substitution

of (3.20) and (3.23) into (3.19) yields

g(xy) + g(xy~x) = g(x) My) + y/(y)~x] + 8 My) + ip(y)~x - 2],
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that is

G(xy) + G(xy~x) = G(x) P(y),        P(xy) + P(xy-X) = P(x) P(y),

where G(x) := g(x) + 8 ,     P(x) := ip(x) + y/(x)~x . By Lemma 3 in [1] and

Remark 2, we obtain

(3.25) g(x) = ay/(x) + pip(x)-x-8,        y/(x) £ y/(x)-x

or

(3.26) g(x) = ip0(x)[(j)(x) + a]-8,        y/0(x) = y/(x) = y/(x)~x,

where a, P are arbitrary constants, cj) is an arbitrary additive map.

Subcase 3.1.1. Suppose g is given by (3.25). Substitution of (3.20), (3.24) and
(3.25) into (3.8) yields

faxy) + f(xy~x) =2f(x) + y8[ip(y) + <p(y)~l - 2]

+ 2A\y) + y[aip(x) + py(x)~x - 8][y/(y) + ¥(y)~x - 2],

that is

faxy) - y[ay/(xy) + Py/(xy)~x] - A2(xy) + f(xy~x)

- y[aip(xy-x) + py/(xy-x)~x] - A2(xy~x)

= 2{/(x) - y[a¥(x) + Py/(x)~x] - A2(x)}.

This gives (see [1], Lemma 1)

(3.27) fax) = y [a y/(x) + p ip(x)-x] + A2(x) + <j>(x) + d,

where d is a constant, 4> an additive map. From (3.27), (3.25), (3.7), (3.24),
(3.20) and (3.9) we get solution (3.4).

Subcase 3.1.2. Suppose g is given by (3.26). Substitution of (3.20), (3.24) and
(3.26) into (3.8) yields

/(^y)+/(xy-1)=2/(x) + 2y<5[^(y)-l] + 2^2(y)

+ 2y M(x) {<p(x) + a} - 8] M(y) - 1],

that is,

faxy) - y ipo(xy) [<t>(xy) + a] - A2(xy) + f(xy~x)

- 7 Wo(xy~x) [<t>(xy~x) + a]- A2(xy~l)

= 2{/(x) - y ¥o(x) [</>(x) + a]- A2(x)}.

This gives (see [1], Lemma 1) for some additive (j>x

(3.28) fax) = y y/0(x) [<f>(x) + a] + A2(x) + ^x(x) + d.

From (3.28), (3.26), (3.7), (3.24), (3.20) and (3.9) we get solution (3.5).

Subcase 3.2. Suppose K and H are given by (3.21).  Substitution of (3.21)
into (3.17) yields

(3.29) Q(xy) + Q(xy~x) = 2Q(x) + 2Q(y) + L(x) A20(y).
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Interchanging in (3.29) y and y~x, since ^42(y) = A^(y~x), we have Q(y) =

Q(y~x). Thus Q(xy) + Q(xy~x) = Q(yx) + Q(yx'x) follows under (FC), and
from (3.29) we get

L(x)A20(y) = L(y)A20(x).

By (3.21) A20(y) £ 0 and thus we have

(3.30) L(y) = cA20(y).

Hence the equation (3.29) becomes

(3.31) Q(xy) + Q(xy~x) = 2 Q(x) + 2 Q(y) + cA20(x) A20(y).

Subcase 3.2.1. If c ^ 0, then by Lemma 2.2 we get Q(y) = 3 P2 c~x (j>(y)4 +
c~x A\(y) and ^2(x) = 6 p c~x cb(x)2. Defining a := p c~x and A(x) :=

(2c)~x Ax(x), we have

(3.32) A20(x) = 6acf)(x)2

and

(3.33) (2(y) = 3a/J</.(y)4 + 2^2(y),

where a ^ 0 is a constant. Substitution of (3.21), (3.30) and (3.32) into (3.19)
yields (remembering that ac = P)

g(xy) + g(xy-x) = 2g(x) + 6p^(y)2,

or

g(xy) - 3,p4>(xy)2 + g(xy~x) - 3 p 4>(xy~x)2 = 2{g(x) - 3p<b(x)2}.

This gives (see [1], Lemma 1)

(3.34) g(x) = 3 p <P(x)2 + ct>0(x) - 8,

where 8 is an arbitrary constant, </J0 an additive map.
Substitution of (3.21), (3.32), (3.33) and (3.34) into (3.8) yields

faxy) + /(xy"1) = 2/(x) + 3a/J0(y)4 + 2^12(y)

+ 6a {3/J <Kx)2 + <Mx) - <5} 0(y)2 ,

or

faxy) - ± a p 0(xy)4 + 3 a 8 <p(xy)2 - A2(xy)

+ f(xy-x)-^aP(f>(xy-x)4 + 3aS<f>(xy-x)2-A2(xy-x)

= 2{f(x)-^ap(f)(x)4 + 3a8(t>(x)2-A2(x)} + 6a<f>0(x)4>(y)2-

This gives (see [1], Lemma 4, and recall a/0)

(3.35) fax) =\aP <p(x)4 + ay 0(x)3 - 3 a 8 cj)(x)2 + A2(x) + 4>x (x) + d,

(3.36) 4>0(x) = y <t>(x),

where y, 8 are constants, cf>x is additive. From (3.34), (3.35), (3.36), (3.33),
(3.32), (3.21), (3.7) and (3.9) we get solution (3.6).
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Subcase 3.2.2. Finally, suppose c = 0 in (3.30). Then (3.31) yields

(3.37) Q(y) = 2A2(y),

which is a special case of (3.33) with p = 0. Substituting (3.21) along with

L = 0 (from (3.30)) into (3.19), we obtain

g(xy) + g(xy~x) = 2g(x).

Hence (from [1], Lemma 1 again) we have

(3.38) g(x) = 4>(x)-8

for arbitrary constant 8 and arbitrary additive <f>. (Cf. (3.34) with /? = 0.)

Substituting (3.21), (3.37) and (3.38) into (3.8), we get

faxy) + f(xy-x) = 2 fax) + 2 A2(y) + {4>(x) - 8} A20(y),

or

{f(xy)-A2(xy)} + {f(xy-x)-A2(xy-x)} = 2{f(x)-A2(x)} + {4>(x)-8}A20(y)-

Now Lemma 4 in [1] yields (recalling </> ^ 0, since g is nonconstant)

(3.39) fax) = cx(/)(x)3-3a8<t>(x)2+A2(x)+<t>x(x)+d,        A20(y) = 6a<f>(y)2,

where a and d are arbitrary constants, and 4>x is an arbitrary additive map.

From (3.39), (3.38), (3.37), (3.21), (3.7) and (3.9), we get a special case of
solution (3.6), in which /? = 0 and 7=1.

There are no cases left, so the proof is complete.

4. Solution of the functional equation (1.4)

Theorem 4.1. Let G be a group. The maps F, G, H, K :G ->C satisfy

(1.4) F(xy)-F(xy-x) = K(y) + H(x)G(y) (t,x,y£G)

and with F satisfying (FC), if and only if they have one of the forms

' F(x)=X-4>(x) + d(x),

(4.1) J  K(y) = cj>(y)-aG(y),

H(x) = a,

G   arbitrary,

' F(x)=l-cp(x) + e(x),

(4.2) \ K(y) = <t>(y),
H   arbitrary,

.G(y) = 0,

' F(x) = d[a y/(x) - b w(x)~x} + ^(x) + d(x),

(4.3) <   K(y) = -dc[ip(y)-<p(y)-x] + <j>(y),

H(x) = a \p(x) + b y/(x)~x + c,

[ G(y) = d[ip(y) - ip(y)-1],     ip(y) ? <p(yfax,
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( 1 1 C
F(x) = ^<?x(x) + - y/0(x)<p2(x)[2</>2(x) + a] + d(x),

(4.4) J K(y) = tf)X(y)-bii/0(y)4>2(y),

H(x) = y/0(x) [c<j>2(x) + a] + b,

. G(y) = \p0(y) <Pi(y),   ¥o(y) = v(y) = w(y)~l £ i,

' F(x) = ^4>x (xf + b-4>x (x)2 + ^ Mx) + \ 4>i(x) + d(x),

(4.5) i K(y) = aMy)3 + My),

H(x) = 3 a (j>x(x)2 + b (j)X(x) + c,

> G(y) = cj>i(y),    0i^O,

for all x, y £ G. Here a, b, c, d are arbitrary constants in C, <fi, 4>x, <p2 are

additive, y/ is a nonzero exponential and 6 : G —> C is any function satisfying
(FC) and

(4.6) 6(xy2) = d(x),        (x,yeG).

Proof. From (1.4) it follows that

F(xyz) - F(xyz~x) = K(z) + H(xy) G(z),

F(xy~xz) - F(xy~xz~x) = K(z) + H(xy~x) G(z),

F(xyz) - F(xz-Xy~x) = K(yz) + H(x) G(yz),

F(xyz~x) - F(xzy~x) = K(yz~x) + H(x)G(yz~x),

all hold.  Subtracting the sum of the first, second, and fourth equations from

the third equation, and using (FC), we obtain

(4.7)
(?(z)[i/(xy) + f/(xy-1)] + 2/i:(z)-7?(yz) + /v:(yz-1) = //(x)[G(yz)-C?(yz-1)].

We shall consider several cases.

Case 1. Suppose H is constant, say H(x) = a € C. Then (4.7) shows that the

map <f) defined by

(4.8) <f>(x):=aG(x) + K(x),

satisfies

2</»(z)-0(yz) + </»(yz-1) = O.

Thus by Lemmas 2.3 and 2.4, </> is additive, and the general solution of (4.7)

is therefore (cf. (4.8)) given by

H(x) = a,        G   arbitrary,        K(x) = </>(x) - aG(x).

Letting these into (1.4), we have

(4.9) F(xy)-F(xy-X) = <p(y).

Thus, by Lemma 2.5, we have solution (4.1).

Case 2. Suppose H is nonconstant. Now based on whether G is identically

zero or not, we have two subcases.
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Subcase 2.1. Suppose G = 0. Then (4.7) yields

K(yz)-K(yz~x) = 2K(z).

Applying Lemmas 2.3 and 2.4 again, we find that K is additive, say K = <f>.
Since G = 0, H is arbitrary and (1.4) reduces to (4.9) again. This brings us to

the solution (4.2).

Subcase 2.2. Suppose G ^ 0. Putting z = zx such that G(zx) ^ 0 in (4.7), we

obtain

O(zi) <>Ui)

which is an equation of the form of (1.3), with p = 0 and f = g = H.

Examining the forms of solutions provided by Theorem 3.1, we see first of

all that (3.2) can be eliminated, since H is presently nonconstant, while g is

constant in (3.2). From the form of / in (3.3) or the form of g in (3.6), we

have the possibility that

(4.10) H(x) = A2(x) + (j>(x) + c,

where <j> : G —► C is additive, c is a constant, and A2 is the diagonal of a

biadditive A : G2 -* C. Finally, from the forms of g in (3.4) and (3.5), we
get, respectively, the possibilities

(4.11) H(x) = ay/(x) + by/(x)~1+c,        y/(x) £ y/(x)~x,

(4.12) H(x) = y/(x)[<t>(x) + a] + b,        ip(x) = y/(x)~x £ 1,

for some constants a, b, c, additive <f>: G -+ C, and nonzero exponential y/ .
Now we consider the three possibilities (4.10), (4.11), (4.12) for H sepa-

rately.

Subcase 2.2.1. Suppose H is given by (4.10). Then inserting (4.10) into (4.7),
we get

2A2(y)G(z) + 2K(z) - K(yz) + K(yz~x)

= [A2(x) + 4>(x) + c][G(yz)-G(yz-x)-2G(z)].

Since H is nonconstant, it is evident that A2 + cp is also nonconstant, and we

conclude from (4.13) that

(4.14) 2^2(y) G(z) + 2K(z) - K(yz) + K(yz~x) = 0

and that
G(yz)-G(yz-1)-2G(z) = 0.

From the last equation and Lemmas 2.3 and 2.4, we obtain

(4.15) G = h

where 4>x : G —* C is additive. Substituting this into (4.14), we find that

(4.16) K(yz)-K(yz-x) = 2K(z) + 2A2(y)<t>x(z).

Interchanging z and z~x in (4.16) we see that K is odd, that is, K(z~x) =

-K(z). Since K(yz) = K(zy) by Lemma 2.3, we rewrite (4.16) as

K(zy) + K(zy~x) -2K(z) = 2<f>x(z) A2(y).
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Hence we obtain (see [1], Lemma 4)

(4.17) K(x) = aMx)3 + Mx),        A2(y) = 3acf>x(y)\

where <j>2 : G —► C is additive and a £ C is an arbitrary constant. Notice that

to arrive at (4.17) we have used the facts that <j>i(= G) is not identically zero

and K is odd.
Now with (4.17), (4.10) becomes

(4.18) H(y) = 3a4>x(y)2 + <t>(y) + c.

Substituting (4.18), (4.17), (4.15) back into (1.4), we obtain

(4.19) F(xy)-F(xy-x) = a(j>x(y)i + 3a<bx(x)2<i>x(y) + My) + [<t>(x) + c]My)-

Next, we define F0 : G -* C and 8 : G -> C by

(4 20) { F°(X) := \ ^(X)3 + 2 ^X) + 2 [2 ^ + C] ̂ (X)'

1   0(x):=^(x)-Fo(x).

Calculating F0(xy) - F0(xy~x) by using the fact that 4>, t/>x, <p2 are additive,

we get

F0(xy)-F0(xy-l)=a<j)i(y)i + 3a<t>i(x)1<j>i(y)

+ My) + 2 W(x) ̂i 00 + 000 0i (^)l + c 0i O)-

Subtracting this from (4.19), we obtain

(4.21) 8(xy) - 8(xy-x) = \ [<p(x) 0,(y) - <p(y) 4>i(x)].

Since the right side of the last equation is skew-symmetric in x and y , the left

side must be also skew-symmetric. That is,

8(xy) - 8(xy~x) = -[8(yx) - 8(yx~1)],        x, y £ G.

Since 8 inherits (FC) from F , we obtain 20(xy) = 8(xy~x) + 8(yx~x). With

x = sy (s, y £ G), this yields 20(sy2) = 8(s) + 8(s~x). With y = e, the last
equation implies 8(s) = 8(s~x), so that 8 satisfies

8(sy2) = 8(s),       s,y£G.

This is equivalent to 8(xy) - 8(xy~x) = 0, and so (4.21) shows that

4>(x) 4>x(y) = <f>(y)<f>i(x),      x.yeG.

Choosing y0 so that <f>x(y0) ^ 0, we deduce that

(4.22) <t>(x) = b <f>x(x),       xeG,

for some constant b £ C. Thus, by (4.20), (4.22), (4.17), (4.18), (4.15), we
have solution (4.5).

Subcase 2.2.2. Suppose H is given by (4.11). In this case

H(xy) + H(xy~x) = [a y/(x) + b Kx)-1]My) + v(y)-x] + 2c.
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With this, (4.7) can be expressed as

(4.23)
f [a w(x) + b ip(x)'1]{My) + w(y)~l]G(z) - G(yz) + G(yz~1)}

{ = K(yz) - K(yz~x) - 2K(z) + c[G(yz) - G(yz~x) - 2G(z)].

Since H is nonconstant, (4.11) shows that also ay/(x) + by/(x)~x is noncon-

stant, hence both sides of (4.23) must be zero. That is,

(4.24) C7(yz) - G(yz~x) = My) + ip(y)~x]G(z),

and

(4.25) <p(yz)-<t>(yz-x)-2<p(z) = 0,

where <p : G —► C is defined by

(4.26) <p(x):=K(x) + cG(x).

From Lemmas 2.3 and 2.6, we obtain the solution G:G-»C of (4.24) as

(4.27) G(x) = d Mx) - V(x)-1],

for some constant d e C. Also, by Lemmas 2.3 and 2.4, (4.25) implies that <f>
is a additive, and (4.26) yields

(4.28) K(x) = <p(x) - cd[y/(x) - y/(x)~1].

Substituting now (4.11), (4.28) and (4.27) into (1.4), we obtain after simplifi-
cation

(4.29) F(xy) - F(xy~x) = <p(y) + [a y/(x) + b y/(x)~x]dMy) - y/(y)~1].

Furthermore, defining F0 : G —» C by

(4.30) F0(x):=^<t>(x) + d[aip(x)-bip(x)-x],       xeG,

we calculate that

(4.31) F0(xy) - F0(xy-X) = <f>(y) + d[a ip(x) + b ys(x)-x][y/(y) - y/(y)-x].

Therefore, by (4.29) and (4.31), the maps 8 : G -> C defined by

(4.32) 8(x):=F(x)-F0(x),

satisfies again 8(xy) - 8(xy~x) = 0, that is, (4.6). It inherits (FC) from F.

Finally, by (4.32), (4.30), (4.28), (4.11), and (4.27), we have solution (4.3) in
this case.

Subcase 2.2.3. Finally, we consider the case when H is given by (4.12). It is

easy to see that

H(xy) + H(xy~x) = 2 ip(x) >p(y) [tp(x) + a] + 2b,

and (4.7) becomes

(4 33) y(x) [0(x) + a] {2 ¥(y)G(z) - G(yz) + G(yz'x)}

= 0i(yz) - 0i(yz-') -2Atj)X(z),

where <j>x : G —» C is defined by

(4.34) cf)X(x):=K(x) + bG(x).
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As before, (4.33) implies that both sides must be zero, since H and (by (4.12))

also ip[4> + a] must be nonconstant. Thus (4.33) yields

(4.35) G(yz)-G(yz-x) = 2<p(y)G(z),        y,zeG,

and

0iO^)-0i(yz-1) = 2(Mz),      y,zeG,

that is, <f>x is additive. Since y/(x) = y/(x)~x , applying Lemma 2.6 to (4.35),

we obtain

(4.36) G(x) = w(x)Mx),

for some additive cf>2: G -> C. Then (4.34) yields

(4.37) K(x) = 4>x (x) - b ip(x)tf>2(x).

Substituting (4.37), (4.12) and (4.36) back into (1.4), we have in this case

(4.38) F(xy) - F(xy~x) = <t>x(y) + y/(x) y/(y) [<f>(x) + a]<f>2(y).

On the other hand, defining F0 : G -> C by

(4.39) F0(x)-=\<t>i(x) + \¥(x)<p2(x)[\<i>(x) + a],

we calculate that

(4.40)

F0(xy) - F0(xy~x) = My) + v(x) v(y) {My) [-2 M*) + al+2 ^2(x) ^y)}-

Subtracting (4.40) from (4.38), we find that the map 8 : G -» C defined by

(4.41) 8(x) := F(x) - F0(x)

satisfies

8(xy) - 8(xy-x) = \ ip(x) y/(y) [My) V(x) - Mx) 0(y)].

Interchanging x and y, we see that

8(xy) - 8(xy~x) = -[8(yx) - f^yx"1)].

As in the case 2.2.1, this leads to the conclusions that 8 satisfies (4.6) and

inherits (FC) from F and (since y/ <p2 = G ̂  0) that

(4.42) 4>(x) = cMx),        xeG,

for some c £ C. Now, by (4.41), (4.39), (4.42), (4.37), (4.12) and (4.36), we
have solution (4.4). As all systems satisfy (1.4) with F satisfying (FC), the

proof is completed.

Remark 3. A special case of Theorem 4.1 in which K = F is proved in [1].

Remark 4. Let S be the normal subgroup generated by G2 = {g2 \ g £ G}.

Then (4.6) along with (FC) is equivalent to the statement that 8 is constant on

each coset of S in group G.
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5. Solutions of the functional equation (FE)

Using (1.5), (1.6), Theorem 3.1 and Theorem 4.1, the general solution of

(FE) with (FC) can be displayed.

Theorem 5.1. Let G be a group. The complete list of functions fa, fa, fa, fa,
fa, fa : G -» C which satisfy

(FE)      fa(xy) + fa(xy~x) = fa(x) + fa(y) + fa(x) fa(y) (x,yeG)

along with the factorization condition (FC) on fa and fa is the following:

'fa (x) = ±A2(x) + i Mx) + 0(x),

fa(x) = - A2(x) + Mx) - 2 Mx) - 8(x) + d,

(5-1) < fa(x) = A2(x) + Mx)-b + d,

fa(y) = A2(y) - My) + My) -cfa(y) + b,
fa(x) = c,

, fa(y)   arbitrary,

' fa(x)=X-A2(x)+X-Mx) + e(x),

fa(x) = l- A2(x) + h (x) - i Mx) - 6(x) + d,

(5.2) | fa(x) = A2(x) + Mx)-bfa(x)-a + d,

fa(y) = A2(y)-My) + My) + a,

fa(x)   arbitrary,

.fa(y) = b,

■ fa(x) = y[a y/(x) + py/(x)~x] + e [a y/'x) - py/(x)~x]

+ ^A2(x) + ^Mx) + 0(x),

Mx) = y [a y/(x) + Py/(x)~x] - e [a y/(x) - Pw(x)~x]

+ ^A2(x)-l-Mx) + <t>(x)-d(x) + d,

(5.3) \ fa(x) = b[ay/(x) + Py/(x)-x] + A2(x) + 4>(x)-a-b8 + d,

fa(y) = 8y[<p(y) + y,(y)-x] + 8eMy) - y,(y)~x]

+ A2(y) + My)-4>(y) + a,

fa(x) = ay/(x) + py/(x)-x -8,

fa(y) = y [y/(y) + y/(y)~x] + e[y(y) - v(y)~x] - b,

. y/(x) ^ y/(x)~x,
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y 1 c
fa(x) = ^ y/0(x) [ctf>(x) + a] + ^y/0(x) <j>(x) [- <f>(x) + a]

+ ^A2(x)+l-Mx) + 8(x),

fa(x) = | Wo(x) [c(j)(x) + a]- jy/o(x) <f>(x) [| <p(x) + a]

(5,4)     j +^A2(x) + Mx)-^Mx)~e(x) + d    ,

fa(x) = b y/0(x) [c <p(x) + a] + A2(x) + Mx) - a - b 8 + d,

fa(y) = 8 y/0(y) [<p(y) + y] + A2(y) - My) + My) + a,

fs(x) = yi0(x)[c4>(x) + a]-8,

. fe(y) = ¥o(y)[<t>(y) + y]-b,      y/0(y) = y/(y) = y(y)~x $ I,

' fa(x) = 3apct>(x)4 + 2(ay + pe) 0(x)3 + (3a8 + ye) <f>(x)2

1    - 1
+ ^ A2(x) + 8e <f>(x) + - Mx) + #(x),

fa(x) = 3ap4>(x)4 + 2(ay - /ie)0(x)3 + (3a8 - ye)0(x)2

1    -> 1
+ - ^2(x) - 8 e <f>(x) + 4>x (x) --Mx)-8(x) + d,

(5 5)      <
] MX) = 6 a p cf>(x)4 + 4 a y <p(xf + 6 (a 8 - p b) 4>(x)2

+ A2(x) -2by (j>(x) + Mx) - a - b8 + d,

My) = 6aP tj)(y)4 + 4pe 0(y)3 + A2(y) - <j>x(y) + <f>2(y) + a,

fa(x) = 6p<p(x)2 + 2y<t>(x) + 8,

<fa(y) = 6a<t>(y)2 + 2e<f>(y) + b.

Here a, b, c, d, a, p, y, 8, e are arbitrary constants, 4>, M, 02 are ar-

bitrary additive maps, y/ is an arbitrary nonzero exponential, A2 is the diagonal

of an arbitrary biadditive function and 8 is any solution of (4.6).

Proof. From (FE), (FC) and (1.5) by Theorem 3.1, we get (3.2)-(3.6). Substitu-
tion of (3.2)—(3.6), respectively, into (FE) will yield the general solution of (FE)
by Theorem 4.1. Figure 1 illustrates how the solutions (5.1)—(5.5) are obtained

from (3.2)-(3.6). The solution (3.2) when inserted into (FE) yields a special

case of (1.4) after some manipulations and using solution (4.1) of Theorem 4.1,

we get (5.1). In the diagram, this is indicated by a thick solid line joining from

(3.2) to (5.1). The solution (3.3) yields, after some tedious manipulations, (5.2)

and special cases of (5.1), (5.3), (5.4), and (5.5). These special cases are illus-

trated by thin solid lines joining one at a time from (3.3) to (5.1), (5.3), (5.4)
and (5.5). The derivation of other solutions can be traced from the diagram in

a similar manner.
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First, substitution of (1.5) and (3.2) with tf>x in place of 4> into (FE) yields
(after some rearrangement and using properties of ^42(x) and <j>x )

[fi(xy) - \A2(xy)} - [/(xy-1) -l-A2(xy~1)]

= fa(y) + cfa(y)-A2(y) + 4>x(y) + b.

By Theorem 4.1 with (1.5) and (3.2), we get (5.1). (This requires checking all
solutions given in Theorem 4.1.)

Figure 1

Substitution of (1.5) and (3.3) into (FE) yields

[fa(xy) - \A2(xy)] - [fa(xy~x) -X-A2(xy-X)]

= LAO') - A2(y) + 4>(y) -a] + fa(x) [fa(y) - b].
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By Theorem 4.1, (1.5) and (3.3), we get (5.2) and particular cases of (5.3)-(5.5)
and (5.1).

Substitution of (1.5) and (3.4) into (FE) yields

fi(xy) - /i(xy-') + y[a y/(xy~x) + p y/(xy~x)~x] + A2(xy~x) + (t>(xy~x) + d

= (y-b) [a y/(x) + p y/(x)~x] + A2(x) + <p(x) -a + b8 + d + fa(y)

+ [ay,(x) + pyy(x)-x-8]fa(y),

that is,

{/(xy) - l- A2(xy) - 7- [a y/(xy) + p w(xy)~1]}

- {/(xy"1) - \ A2(xy~x) -y-[a ip(xy~x) + p ^(xy"1)"1]}

= My) ~ A2(y) -87- MV) + VOT1] + 4>(y) -a + b8 + 8(y-b)

+ {a ys(x) + p y/(x)~x - 8} {fa(y) - 7- My) + y,(y)~x] + (y - b)}.

By Theorem 4.1, (1.5) and (3.4), we get (5.3) or a particular case of (5.1).

Substitution of (1.5) and (3.5) into (FE) and replacement of </> by ctj) yield

/i(xy)-/i(xy-') + 7v/o(xy-1)[c0(xy-1) + a] + ^2(xy-1) + 01(xy-1) + ^

= (y - b) y/0(x)[c(p(x) + a] + A2(x) + Mx) -a + b8 + d

+ My) + { Vo(x) [c 0(x) + a] - 8} fa(y),

that is,

y l   i
{fa(xy) - j ¥o(xy)[ccf>(xy) + a] --A2(xy)}

-{fa(xy-x)-y-y,0(xy-x)[c<p(xy-x) + a]-l-A2(xy-x)}

= {fa(y) -Sy y/o(y) - A2(y) + 4>x(y) + 8y - a}

+ {y/0(x) [c0(x) + a] - 8} {fa(y) - y y/0(y) + y-b}.

By Theorem 4.1, (1.5) and (3.5), we get (5.4) or a special case of (5.1).

Finally substitution of (1.5) and (3.6) into (FE) yields

fa(xy) -fx(xy~x) + lap4>(xy-x)4 + ay4>(xy~xf - 3a8<t>(xy-x)2

+ A2(xy-x) + Mxy-x) + d

= ^ap<f>(x)4 + ay<z3(x)3 - 3(a8 + pb)<t>(x)2 + A2(x) - yb4>(x)

+ Mx)-a + 8b + d + fa(y) + {3p<f>(x)2 + y<t>(x)-8}fa(y),
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that is,

3 1 ^     3 ■>     1    ■>
fa (xy) --^OLp (j>(xy)4 -^oty <\>(xyy + ^a8 <f>(xyY - ^ Az(xy)

-{Mxy-x)-\oLP<l>(xy-l)*-\o:y<l>(xy-1?

+ la8cp(xy-x)2 -l-A2(xy-x)}

= {fa(y)-\ap4>(y)4-A2(y) + My)-a}

+ {3p 4>(x)2 + y </>(x) - 8} {fa(y) - 3 a<J>(y)2 - b}.

By Theorem 4.1, (1.5) and (3.6), we get either some particular cases of (5.1) or,
more generally,

fa(x)=-AaPcj>(x)4 + \(ay + Pe)<t>(xf-(\a8-l-yt)^(x)2+l-A2(x)

- -e(j)(x) + -Mx) + 9(x),

fa(x) = \aP<p(xY + \(ay- pt)<p(xf -(la8+l-ye)(j>(x)2

+ ^ ^2(x) + -^ 0(x) + (j>x (x) - ^ Mx) - 9(x) + d,

fa(x)=^ap (f>(x)4 + a y </»(x)3 - 3 (a 8 + P b) <b(x)2

+ A2(x)- by cp(x) + Mx) - a + b8 + d,

My) = 1<*P 0OO4 + P * 0OO3 + ̂ 200 + My) - 0.00 + * >

fa(x) = 3p4>(x)2 + y4>(x)-8,

fa(y) = 3a<t>(y)2 + e<t>(y) + b.

This solution becomes (5.5), after replacing a by 2a, /? by 2/J, y by 2y, e

by 2e , and 8 by -8.
Since all the functions of (5.1)—(5.5) satisfy (FE) and (FC) is satisfied by /

and fa , the proof is complete.

Remark 5. In Theorems 3.1, 4.1 and 5.1 the complex field C may be replaced

by any quadratically closed commutative field of characteristic different from 2
and 3.

6. Solution of Swiatak's equation

In this section, we present the general solution of Swiatak's functional equa-
tion

(6.1) faxy) + faxy'') - 2 fax) + 2 fay) + g(x)g(y),

for x, y 6 G, where /, g : G —> K are under (FC), G is an arbitrary group,
and K is a quadratically closed (commutative) field of characteristic different
from 2 and 3.
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Theorem 6.1. The general solution f, g : G —► K of (6.1) where f satisfies

also (FC):

(6.2) fatxy) = fatyx)
for all t, x, y £ G is given by the following list:

(6.3) [f(x)=A2(x)-\c2,

(g(x) = c,

f fax) = A2(x) + c2 Mx) + ^(x)-1 - 2},

\g(x) = c{y/(x) + y/(x)-x-2},        y£l,

(65) [f(x) = A2(x) + ~c2(j)(x)4,

y g(x) = c <p(x)2,

where A2 is the diagonal of an arbitrary biadditive function i:GxG-»K,

c is an arbitrary constant in K, y/ : G —► K is exponential, and (f>: G -* K is

additive.

Proof. It is easily verified that the sets of functions (6.3) - (6.5) satisfy (6.1)

and (6.2). We prove the converse.

Equation (6.1) is a special case of equation (3.1) with

(6.6) p = q = 2f      and       h = g.

Hence we can apply Theorem 3.1. We consider solutions (3.2) - (3.6) one by

one.

First, solution (3.2) together with (6.6) yields immediately

b = 0,        h(y) = g(x) = c,        and       2{<p(x) + d} = -c2.

Thus 0 = 0, d = -\c2, and we have (6.3).
Similarly, (3.3) and (6.6) give

g(x) = h(y) = 2b,        2 62 + a = 0,        and       <p(x) + d = a.

Hence </> = 0, d = -2 b2 , and we again get (6.3) upon setting c = 2b.

Next, (3.4) together with (6.6) yields

b = 0 = a,        y8 = 2ya = 2yP,        0(x) + d = -yS,

y = a = P,        and       2 y = 8.

Therefore we have 0 = 0, d = -y8 , and y = a = P = \8 , whence d = -2y2.

Renaming y as c, we obtain the special case of (6.4) in which y/(x) ^ y/(x)~x

(cf. (3.4)).
Similarly, from (3.5) and (6.6) we get

b = 0 = a,    0 = 0,     y8 = ya,    Mx) + d = -y8,

2y = a,        and       2 y = 8.

Hence (f>x = 0,  a = 8 = 2y , and d = -2y2 , so that we have

f/(x) = 2yV0(x) + ^2(x)-2y2,

\g(x) = 2yy/0(x)-2y.
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Defining c := y, and recalling that y/0(x) = y/(x) = y/(x)~x ^ 1  (cf.  (3.5)),

we again obtain a special case of (6.4). Combining the results of this paragraph

and the preceding one, we now have the complete solution (6.4).

Finally, let us consider (3.6) with (6.6). We find that

pb = 0,        -bytf>(x) - a + b8 = 0,        ay = a8 = 0,

Mx) + d = a,        P = 2a,        and       ycj)(x) - 8 = 2b.

Thus 0i=O, d = a = bS, y<j)(x) = 0, and 8 = -2b follow. If 0 = 0, then
we have fax) — A2(x)-2b2 and g(x) = 2b, which is already included in (6.3).
So we suppose now that 0^0, which means that y = 0. Also aS = 0, and if

a = 0 we revert again to (6.3). Thus we suppose that a ^ 0 and hence 8 = 0.

Therefore also d = a = b = 0, and by virtue of /? = 2a we have

|/(x) = 3a20(x)4 + ^2(x),

\ g(x) = 6a0(x)2 ,

which is (6.5) with c = 6a.
There are no more cases to consider, so the proof of the theorem is finished.

Corollary 6.2. The (Lebesgue) measurable solution f, g : *ft —> C of

(SE) fax + y) + f(x-y) = 2 fax) + 2f(y) + g(x) g(y),

is given by

(6.7) \f(x) = ax2-\c2,

[g(x) = c,

[f(x) = ax2 + c2{ekx + e-Xx-2},

\g(x) = c{eXx + e~Xx -2},

(6.9) (f(x) = ax2 + ±c2x4,

[g(x) = cx2,

for arbitrary complex constants a, c, X.

Proof. Clearly, functions given by (6.7)-(6.9) satisfy (SE).
For the converse, we apply Theorem 6.1 with (G, •) = (5?, +), switching to

additive notation, and consider the solutions (6.3) - (6.5) one at a time.

First, in solution (6.3) / will be measurable if and only if the biadditive

A, after symmetrization, is measurable. But then A must be of the form

A(x,y) = axy for some constant a. (Cf. [2], [13], for instance.) Thus

A2(x) = A(x, x) = ax2 and we have (6.7).

If g is measurable in (6.4), then yi must be measurable (and hence con-

tinuous; see [7], for example). The general nonzero measurable exponential

y/ : 3? -> C is of the form ^(x) = eXx for arbitrary complex X (see [2], [13]).

Now the measurability of / and y/ implies that of A2, hence (6.4) becomes

(6.8).
Finally, if g : R —> C is measurable in (6.5), then so is 0. Since 0 is ad-

ditive, we have 0(x) = bx for some constant b £ C. Again, the measurability
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of / implies that of A2. Renaming cb2 as a new constant c, we have (6.9),

and that completes the proof.

The following corollary is a straightforward consequence of Corollary 6.2.

Corollary 6.3. The general solution f,g : 5R —► 3? o/(6.1), among functions

measurable on 5ft is given by

(6.10) [f(x) = ax2-\c2,

\g(x) = c,

( fax) = ax2 + 2 c2 {cos ax-I},

\ g(x) = 2 c {cos QX - 1} ,

( fax) = ax2 + 2 c2 {cosh ax-I},

\ g(x) = 2 c {cosh ax - 1},

(6.13) j/W=^ + 1L^«,

[g(x) = cx2,

for arbitrary real constants a, c, a.

Remark 8. Solutions (6.11) and (6.12) were omitted in Swiatak [12].

7. Solution of a special case of Swiatak's equation on groups

Next we shall consider the functional equation

(SEs) F(xy) + F(xy~x) = 2F(x) + 2F(y) + XF(x2) F(y2)

for F : G —► K (a commutative field), which is a special case of (FE). (Compare

this with equation (1.1).)
In the following lemma, K* := K \ {0} and char K ^ 2 .

Lemma 7.1. Let A2 be the diagonal of a biadditive function A : G x G —► K and
y/ : G —> K* be exponential. If

(7.1) ^2(x) = a{y/(x) + y/(x)~x -2} + b {y/(x)2 + y/(x)~2 - 2}

for all x £ G, then A2(x) = 0 and one of the following alternatives holds. Either

(7.2) a{y/(x) + y/(x)'x - 2} = b{y/(x)2 + yr(x)'2 - 2} = 0,

or else G has a normal subgroup S of index 3, the polynomial u3 - 1 has three

distinct roots 1, m, ta2 £ K*, y/ is a morphism of G onto {1, co, co2} with

kernel S, and a + b = 0. The converse also holds.

Proof. If a = b = 0, then ^2(x) = 0 and (7.2) is obvious. Henceforth we

assume (a, b) ^ (0, 0). Since the diagonal of any biadditive map satisfies the

parallelogram law, we deduce from (7.1) that

a {y(xy) + y/(xy)~x - 2} + b{y/(xy)2 + y/(xy)~2 - 2}

+ a{y/(xy~x) + y/(xy-x)~x - 2} + b{y/(xy-x)2 + y/(xy-x)~2 - 2}

= 2a Mx) + y/(xfax -2} + 2b Mx)2 + ^(x)~2 - 2}

+ 2a {ys(y) + <p(y)~x -2} +2b {y,(y)2 + <p(y)-2 - 2}
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holds for all x, y € G. Simplifying, using the fact that y/ is exponential, and

multiplying through by y/(x)2 y(y)2 to clear inverses, we get

a Mx)3 y/(y)3 + y/(x) y/(y)} + b{y/(x)4 y/(y)4}

+ a{y/(xf y/(y) + y/(x) y/(y)3} + bMx)4 + y/(y)4}

(7.3) = 2a{ys(x)3 ys(y)2 + y/(x)y/(y)2} + 2b {y/(x)4 y/(y)2 + y,(y)2}

+ 2a{y/(x)2 y/(y)3 + y/(x)2 y/(y) - 2^(x)2 y/(y)2}

+ 2b{¥(x)2 y,(y)4 + y/(x)2 - 2 y,(x)2 y/(y)2}.

Consider (7.3) at y = x. If b ^ 0, then we have a nontrivial polynomial

relation (of degree 8) in ^(x), hence |^(G)| < 8. If Z> = 0, then a ^ 0 by
hypothesis and we have a nontrivial polynomial relation (of degree 6) in ^(x),

and so | ̂ (G)| < 6. In either case, we have

(7.4) \y/(G)\ = m       (finite).

Thus v(G) is a multiplicative subgroup in K* of order m , so

(7.5) y/(x)m = 1       for all x e G.

It is easy to show that p = charK does not divide m. For this purpose, let

p t^ 0. Then the mapping w h-> up is an injective field morphism. Hence up = 1

has u = 1 as the unique solution. If we had m = pq, then it would follow

from um = upq = (uq)p that um = 1 if and only if uq = 1. But the latter

cannot carry m (> q) distinct roots, contrary to (7.4) (see Jacobson [6], p. 95).

Therefore p does not divide m .

Moreover, from (7.1) and (7.5), it follows that

w2^(x,x) = ^2(xm)

= a{y/(x)m + y/(x)~m -2} + b {y/(x)2m + y/(x)-2m - 2}

= 0.

This proves that ^42(x) = 0, since charK does not divide m .
Now (7.1) reduces to

(7.6) a {y/(x) + y/(x)~x -2} + b Mx)2 + ^(x)"2 - 2} = 0.

If a b = 0, then (7.6) implies (7.2). So from this point, we assume that a ^ 0

and b ^ 0. Observe that

y/(x) + y/(x)~x -2 = {y/(x) - I}2 y/(x)~x       for all x e G,

so we have

(7.7) y/(x) + y/(x)~x -2 = 0   if and only if   xeKer^.

From (7.6) we deduce that (since aj^O^b)

(7.8) x £ Ker y/       if and only if      x2 £ Ker y/.

Observe that

M(x) + y/(xfax - 2}2 = Mx2) + ^(x2)-1 - 2} - 4Mx) + ^(x)-1 - 2},

so (7.6) can be put in the form

{y/(x) + y/(xfax - 2} {b (y/(x) + y/(x)~x - 2) + (Ab + a)} = 0.
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Hence y/(x) + y/(x)~x - 2 has at most two distinct values, one of which is 0.

By (7.7) then, y/ has at most three distinct values, one of which is 1. That is,

m = \y/(G)\ <3.
If m = 1, then yt = 1 and (7.2) follows. If m = 2, then (by (7.5))

y(x)2 =1 for all x £ G. That is, x2 £ Kery/ and, by (7.8), x £ Ker^. But
then y/ = 1, contradicting |^(G)| = 2.

Finally, we consider m = 3. Let ^(G) = {1, co, co2}, where these are

the three distinct cube roots of 1. Also, S = Ker y/ is a normal subgroup of

G with index 3. Pick x0 with y/(x0) = co and put x = x0 in (7.6). Then

a (co + co2 - 2) + b(co2 + co - 2) = 0 , which simplifies to (a + b) (-3) = 0. Thus,
since charK does not divide 3, we have a + b = 0.

Conversely, (7.2) together with A = 0 obviously implies (7.1). For the

other part, suppose G has a normal subgroup S of index 3, and that w3 - 1

has distinct roots 1, co, co1 in K*. Then there exists a morphism y/ : G —►

{1, co, co2} with Kery/ = S.lfa + b = 0 and A = 0, then it is easy to verify

that (7.1) holds. This completes the proof of the lemma.

Now we determine the general solution F : G —► K of the equation (SEs).

Theorem 7.2. Let G be a group, K a commutative quadratically closed field of

characteristic different from 2 and 3. Then the general solution F : G -> K of

(SEs) satisfying

(FC) F(txy) = F(tyx) (t,x,y£G)

is given by

(7.9) F(x) = A2(x) (X£G),

if X = 0; and by one of the three forms

(7.10) F(x) = 0 (xgG),

(7.11) F(x) = -2X~X (X£G);

or

(7.12) F(x) = -3A-1^G\S(x) (xeG),

if X ̂  0. Here A2 is the diagonal of an arbitrary biadditive map, Xd '■ G —► K
denotes the characteristic function of the set D cG, and solution (7.12) arises

only if G has a normal subgroup S of index 3 and the polynomial u3 — 1 has

three distinct roots in K.

Proof. If X = 0, then (SEs) reduces to the well known quadratic functional

equation

(7.13) F(xy) + F(xy-x) = 2F(x) + 2F(y) (x,yeG).

Its general solution (see [1], Lemma 2) under the factorization condition (FC)

is given by (7.9) for arbitrary biadditive A : G2 —> K.
Henceforth, we assume that X ̂  0. Now we consider (SEs) as a special case

of (3.1) and apply Theorem 6.1, making special use of the connections

(7.14) f = F,        g(x) = VXF(x2).

We treat solutions (6.3) - (6.5) one by one.
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First, we consider solution (6.3). We have

(7.15) F(x) = f(x) = A2(x)^c2,     and   VXF(x2) = g(x) = c.

So comparison of these two yields A2(x2) - \c2 = c X~^, or, by the morphism

property of A2,

AA2(x)cX-^ + \c2 = c{X~^ + \}.

But this implies that

A2(x) = 0 = c{X~^ + \},

from which we deduce (cf. (7.15)) that F is constant. But it is easy to see that
the only constant solutions of (SEs) are given by (7.10) and (7.11).

Second, consider (6.4). Connection (7.14) yields in particular

(2F(x) = fax) = A\x) + c2 Mx) + ,Kx)-1 - 2},

\ F(x2) = A"i g(x) = cX~i Mx) + y/(x)~x - 2}.

This implies

(7.17) c2 {yy(y)2 + y/(y)~2 - 2} + 4A2(y) = cX~^ {y/(y) + y,(y)-x - 2},

for all y e G. Here we have used the facts that y/(y2) = y/(y)2 and A2(y2) =

A(y2, y2) = 4A(y, y) = 4A2(y). Now we apply Lemma 7.1 to (7.17). Thus we
have

(7.18) ,42(x) = 0

and one of two alternatives. One possibility is

c2MjO2 + v(y)~2 - 2} = cx-i {w(y) + v(y)~x -2} = o,

in which case (7.16) and (7.18) again lead to constant F .

On the other hand, the alternative is that G has a normal subgroup S of

index 3, the polynomial w3 - 1 has three distinct roots 1, co, co2 in K, y/ is

a morphism of G onto {1, co, co2} with kernel S, and cX~? - c2 = 0. This

last equation means that either c = 0 or c = X~$. If c = 0, then (7.16) and
(7.18) again yield constancy of F . So let us explore the option

(7.19) c = X~l.

Since y/ has kernel S, we have y/(y) + y/(y)~x -2 = 0 ifyeS, and y/(y) +

y/(y)-x -2 = co + co2-2 = -3 ify e G \ S. Hence

w(y) + w(y)~l-2 = -3xG\s(y)-

Using this with (7.19) and (7.18) in (7.16), we have

F(y) = -3X-xXGXS(y), yeG,

which is (7.12). It is easily checked that (7.12) satisfies (SEs) by doing a case-

by-case analysis according to the possible locations of x and y with respect to
S.

Finally, consider (6.5). Here (7.14) gives

(7 20) f 2 F(x) = fax) = A2(x) + ^c20(x)4,

1 F(x2) = X-$g(x) = cX-±<p(x)2.
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As before, we have (since 0(x2) = 2 0(x) by (3.8))

(7.21) 4^2(x) + j c20(x)4 = cA-i 0(x)2.

The second term of (7.21) is of degree 4 in x, while the other two terms are of

degree 2. Hence (7.21) implies that

c2 = 0   and   A2(x) = ^cX~'cb(x)2.

Thus, we have c = 0 = A2, and from (7.20) it follows that F = 0 again. This

exhausts all cases and concludes the proof of Theorem 7.2.

We end this section with the following remarks.

Remark 6. If G has no normal subgroup of index 3, or if K does not have three

distinct cube roots of unity, then Theorem 7.2 shows that the only solutions of

(SEs) are the (7.9) quadratic ones, if X = 0, and the two constant solutions

(7.10) and (7.11), if X £ 0. This will be the case, in particular, if G = (5ft", +)
or if K = 5R.

Remark 7. For the general solution of (SEs) on a restricted domain, as in the

original application of Lau [9], see [3].
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