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VERIFIABLE CONDITIONS FOR OPENNESS AND REGULARITY
OF MULTIVALUED MAPPINGS IN BANACH SPACES

A. JOURANI AND L. THIBAULT

Abstract. This paper establishes verifiable conditions in terms of approximate

subdifferentials implying openness and metric regularity of multivalued map-

pings in Banach spaces. The results are then applied to derive Lagrange multi-

pliers for general nonsmooth vector optimization problems.

1. Introduction

It has been observed by Graves [13] and Ljusternik [27] that a C mapping

/ from a Banach space X into a Banach space Y with a surjective derivative

at xo satisfies the distance estimate

dist(x,/-1(y))<adist(y,/(x))

for all x in a neighbourhood of Xo and all y in a neighbourhood of yo ■ This

distance estimate is actually called the metric regularity of / at xo. Another

important condition ensuring the metric regularity of multivalued mappings

with closed and convex graphs has been discovered by Robinson [34] and Urs-

escu [42]. Robinson [35] has also studied the case of the multivalued mapping

F(x) = -f(x) + P where / is a C1 mapping and P is a closed convex cone
in Y.

Since these works, many papers have been devoted to the metric regularity

of multivalued mappings or nonsmooth mappings. The important papers by

Mordukhovich [30-31] have completely solved the problem for X and Y fi-
nite dimensional. Indeed in [30-31], general verifiable necessary and sufficient
conditions are given for any multivalued mapping between finite-dimensional

Banach spaces. Such general verifiable results are not known so far in the

infinite-dimensional setting. In this case most of criteria ensuring the metric

regularity at a given point xo require the verification of the formulated condi-

tions at all points in a neighbourhood of xo and, moreover, they are generally

stated in a complicated way. Note that some criteria (in the nonsmooth and
infinite case) are established by Aubin [1], Aubin and Frankowska [2], Borwein

[3], Borwein and Zhuang [6], Dolecki [8-10], Frankowska [12], Ioffe [14-15,
18], Jourani [19-21], Jourani and Thibault [22-24], Kruger [26], Rockafellar
[37], Penot [33], and references therein.

Received by the editors September 22, 1993.

1991 Mathematics Subject Classification. Primary 54C60, 46A30; Secondary 90C29.
Key words and phrases. Opennes, metric regularity, approximate subdifferential, strongly com-

pactly Lipschitzian mappings, partially compactly epi-Lipschitzian mappings, Lagrange multipliers.

©1995 American Mathematical Society
0002-9947/95 $1.00+ $.25 per page

1255



1256 A. JOURANI AND L. THIBAULT

The aim of this paper is to extend to some large classes of multivalued map-

pings between infinite-dimensional Banach spaces the easily verifiable sufficient

criteria of Ioffe [15] and Mordukhovich [30-31]. More precisely we prove, for

the multivalued mappings F : X _\ Y in these classes and yo £ F(xn), that

the condition

KerD*F(x0,yo) = {0}

ensures the metric regularity of F at (x0,yo) (where D*F(x0,yo) is the

coderivative of F at (x0,yo) (see §2) and KerD*F(xo, yo) = {y* e Y* :

0£D*F(x0,yo)(y*)})-

2. Preliminaries

Throughout the paper X, Y, and Z will be Banach spaces and X*, Y*, and
Z* their topological duals equipped with the weak-star topology w*. (• , •) is

the canonical pairing between two dual spaces, and Bx, B*x, ... are the closed

unit balls of X, X*, ... . d(- , S) is the usual distance function to the set S

d(x, S) = inf ||x - u\\.
u€S

f S
We write x —► xo and x —► xo to express x —► xo with f(x) -» f(xo) and x —>
Xo with x £ S, respectively. We denote by Gr F the graph of a multivalued

mapping F

GrF = {(x,y):y£F(x)}.

"dom" and "int" are the abbreviations for domain and interior. If not specified,

the norm in a product of two Banach spaces is defined in a natural way by

\\(a,b)\\ = ||fl|| + ||6||.
We will use the notation of Ioffe [16-17].
Let / : X —► R U {+00} be a lower semicontinuous function in a neighbour-

hood of xo € X with f(xo) < 00. The approximate subdifferential (see Ioffe

[16-17]), which is an extension to the context of Banach spaces of the concept-

introduced by Mordukhovich [25] for finite-dimensional spaces, is defined by

dAf(xo)=    f]    limsupd-/JC+z.(x)

where

d~f(x) = {x* £ X* : (x*, h) < d~f(x,h),Vh£X},

d~f(x, h) = liminfr1(/(x-l-?M) - f(x)).

t[0

Here, for 5 c X, fs denotes the function defined by

fs(x) = lfix)   ifx€S>
\ +00     otherwise;

^(X) is the family of all finite-dimensional subspaces of X ; and

Iimsupr3_/X+L(x) = {x* £ X* : x* = tu*-limx*, x* £ dfx.+L(xt), x, A x0},

x—*JCn

that is, the set of w*-limits of all such nets.
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The coderivative of a multivalued mapping F : X =} Y at a point (xo, yo)

of its graph GrF is the multivalued mapping D*F(xo, yo) '■ Y* =t X* defined

by
D*F(xo, yo)(y*) = {x* : (*', -V*) £ R+dAd(xo,yo;GrF)}.

In the sequel we will need the following class of mappings between Banach

spaces.

Definition 2.1 [23]. A mapping g : X -» Y is said to be strongly compactly

Lipschitzian (s.c.L.) at a point Xo if there exist a multivalued mapping R :
X =J Comp(T), where Comp(T) denotes the set of all norm compact subsets

of Y, and a function r : X x X —>R+ satisfying:

(i) _mx_XOth_t0r(x,h) = 0;
(ii) there exists a > 0 such that

rx(g(x + th) - g(x)) £ R(h) + \\h\\r(x, th)BY

for all x £ xo + aBx, h £ aBx , and t £]0, a[;
(iii) R(0) = {0} and R is upper semicontinuous.

It can be shown (see [38]) that every strongly compactly Lipschitzian mapping

is locally Lipschitz. If Y is finite dimensional, the concepts coincide.

The following chain rule, involving the yl-approximate subdifferential, has

been recently stated for s.c.L. mappings by Jourani and Thibault [25]. Note

that this chain rule has been stated before by Ioffe [17] for maps with compact

prederivatives.

Theorem 2.2 [25]. Let g : X -* Y be s.c.L. at x0, and let f:Y -*R be locally
Lipschitz at g(xo). Then fog is locally Lipschitz at Xo and

dA(fog)(x0)c       (J       dA(y* o g)(x0).

yedAf(g(xQ))

To close this section, let us give the following result, whose proof is given in

Jourani [21].

Lemma 2.3. Let C be a subset of X containing xq , and let F : X =5 Y be a

pseudo-Lipschitz multivalued mapping at (xo, yo) £ GrF (that is, there exists

r > 0 and kF > 0 such that for all x, x' £ (x0 + rBx), F(x) n (yo + rBY) C

F(x') + kF\\x-x'\\BY). Then

dAd(xo, y0, GrFc) c dA(d( • , F( ■)) + (kF + l)d( • , C))(x0, y0)

c (kF + l)(dA(d(yo,F(xo)) + dAd(xo, C)) x {0}),

where kF is a Lipschitz constant of F at (xq , yo) and

rC, n     / FW   ifx£C,
F  (x) = <t ,

\\+0     otherwise.

3. Partially compactly epi-Lipschitz multivalued mappings:
Examples and properties

We start this section by recalling the following definition which is due to

Borwein and Strojwas [5].
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Definition 3.1. Let S c Y be a set, with y0 e S. S is said to be compactly

epi-Lipschitz at yo if there exist y > 0 and a || ||-compact set H c Y such
that

S n (y0 + yBY) + tyBY c S - tH,    forall/e]0, y[.

Rockafellar [36] introduced the notion of "epi-Lipschitz" set. Later Borwein

[4] considered an intermediate notion of reasonable boundary behavior called

"epi-Lipschitz-like". He has shown that every epi-Lipschitz set is epi-Lipschitz-

like and that every epi-Lipschitz-like set is compactly epi-Lipschitz. Note that

in finite dimension every subset is compactly epi-Lipschitz at all its points.

Using Definition 3.1 as a point of departure, we introduce similar concepts

for multivalued mappings.

Definition 3.2. We will say that a multivalued mapping F : X =i Y is partially

compactly epi-Lipschitz at (xo, yo) £ GrF if there exist y > 0 and two || ||-

compact sets H c X and K c Y such that for all x £ Xo + yBx, y £ (yo +
yBY) n F(x), t £]0, y[, and b £ yBy there exists (h , k) £ H x K satisfying

y + t(b + k) £ F(x + th).

This is equivalent to saying that

(x0 + yBx) x (yo + yBy) n GrF + t({0} x yBy) c GrF - t(H x K),

forall/e]0, y[.

When H = {0} we say that F is uniformly compactly epi-Lipschitz at (xo, Vo) •

With the above notation, this means that for all x € Xo + yBx and t £]0, y[

F(x) n (y0 + yBy) + tyBy c F(x) - tK.

Remarks. (1) It is obvious that F is partially compact epi-Lipschitz at a point
(xo,Vo) whenever GrF is compactly epi-Lipschitz at this point.

(2) The converse does not hold. Indeed, let C be a nonempty subset of

X which is not compactly epi-Lipschitz at Xo £ C. Assume that Y is finite

dimensional, and put F(x) = {0} if x £ C and F(x) = 0 otherwise. One

easily sees that GrF = C x {0} is not compactly epi-Lipschitzian at (xo, 0)

but F is partially compactly epi-Lipschitz at (xo, 0).

The following proposition gives us a classical example of such a class of

multivalued mappings.

Proposition 3.3. Let g : X —» Y be a mapping which is Lipschitz at xq , and let

D c Y be compactly epi-Lipschitz at g(xo) £ D. Then the multivalued mapping

F(x) = -g(x) + D

is uniformly compactly epi-Lipschitz at (xo, 0) and so it is partially compactly

epi-Lipschitz at (xo, 0).

Proof. Since D is compactly epi-Lipschitz at g(xo), there exist y > 0 and a

|| ||-compact set K c Y such that

D n (£(x0) + yBY) + tyBy c D - tK,    for all t e]0, y[.

As g is Lipschitz at xo, there are two real numbers kg > 1 and r > 0 such

that
||^(x) - g(x0)|| < kg\\x - xo||,     for all x £x0 + rBx .
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We may suppose that 2kgy < r. So, let x e x0 + (y/(2kg))Bx, t e]0, y/2[, y £
F(x) n (y/2)BY , and fe 6 tyBy . Then, by the choice of y , y + g(x) £ D f)
(g(x0) +yBy) and so y +g(x) + b £D-tK.   □

In mathematical programming problems one often considers constraints of

the form

gi(x) < 0,    i=l,... ,m,    gj(x) = 0, i = m + 1, ... ,n, and x e C,

where g,>: X —> R is a function and C is a subset of X. This can be written

as g(x) £ D and x £ C where g = (gi, ... , g„) and D = Rm x {0} (W_

being the negative orthant of Rm), or 0 £ G(x) with

ri ,     f -#(*) + £>   ifxeC,
G(x) = i ,

( +0 otherwise.

Since D is compactly epi-Lipschitz at g(x0) £ D, Proposition 3.3 implies that

the multivalued mapping -g(x) + D is uniformly compactly epi-Lipschitz at

(xo, 0). We easily show that G is also uniformly compactly epi-Lipschitz at

(xo, 0). More generally we have

Proposition 3.4. Let F : X =t Y be a multivalued mapping which is uniformly

compactly epi-Lipschitz at (xo, yo) € GrF, and let C be a subset of X con-

taining xo ■ Then the multivalued mapping

c / F(x)   ifx£C,
F  (x) = < .

( +0      otherwise

is uniformly compactly epi-Lipschitz at (xo, yo) ■

In the following proposition we establish the following important property of

partially compactly epi-Lipschitz multivalued mappings.

Proposition 3.5. Let F : X =t Y be a multivalued mapping which is partially

compactly epi-Lipschitz at (x0, yo) £ GrF. Then, for H and K given by Def-
inition 3.2, there are neighbourhoods V and W of xo and yo respectively

and a real number y > 0 such that for each e e]0, 1] there exist vectors

hi, ..., hm £ H and kx, ..., km £ K satisfying

£||xl + ||y*||<3e + y   max   \(x*,h,)\ + y   max   \{y*, kt)\
1=1.m i=l ,...,m

for all x£V ,y£W, and (x*, y") £ dAd(x, y; GrF).

Proof. Let r £]0, 1] be such that for all t e]0, r[

(1) (x0 + 4rBx) x (yo + 4rBY) n GrF + t({0} x rBy) c GrF - t(H x K).

Choose open neighbourhoods V and W of xo and yo , respectively, such that

V c x0 + rBx and W c yo + rBy and such that for all (x, y) 6 V x W,
d(x, y; GrF) < r. Let e £]0, 1]. Choose hx, ... , hm £ H and kx, ... , km £
K such that

m m

H c \J(h, + er2Bx)   and   K c \J(ki + er2BY).
i=\ /=1

For all x e V, y e W, u £ crBx , and t e]0, r[ with x + tu£ V there exists
(p(x, y,u,t),q(x,y,u,t))£ GrF such that

(2) \\p(x,y, u, t)-(x + tu)\\ + \\q(x,y, u, t) -y\\ <d(x + tu,y;GrF) + t2
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and hence p(x, y, u, t) £ x0 + 4rBx and q(x, y,u,t) £ y0 + 4rBY . Let

(x*,y*) £ dAd(x,y;GrF). Fix u £ erBx, L £ F(X) with {u,hx, ... ,
hm} c L, b £ rBy, and M £ 9~(Y) with {b, kx, ... , km} c M. By the
definition of approximate subdifferential we have

x* = w*-limx*    and   y* = w*-limy*

with (x] ,y*)£ d-d{Xj,yj)+LxM( • , • ; GrF)(xj, yf) and (xj, yj) -+(x,y).

Choose t„ I 0, jo, and «0 £ N such that for all j > j0 and n > n0 we
have yj £ W, Xj £ V, and Xj l(,«6 F. For j > j0 and n > n0 take by

(1) fcQ(«,7) e {/?i,... , hm},kf}(nJ) £{kx, ... ,km}, bnJ £Bx,and b'nJ £ By
satisfying

(p(Xj,yj,u, t„), q(Xj,yj,u, t„))

+ tn(ha(n,j) + er2bnj, b + kfi(nJ) + er2b'nJ) eGrF.

Extracting subnets if necessary we may suppose that ha(„j) = hi and k^nj) =

ks for all j > jo and n > no, where I, s £ {I, ... , m}. So for p„j :=

p(Xj ,yj,u,tn) and qnJ := q(xj ,yj,u,t„) we have by (2) and (3)

t~x(d(Xj + t„(u + hi), yj + t„(b + ks); GrF) - d(xj, y}; GrF))

< t~x(d(pnJ + t„h,, qnJ + t„(b + ks); GrF) - d(xj, yj; GrF))

+ t~x(\\xj + t„u-pnJ\\ + \\yj - qnJ\\)

< 2er2 + t~x(d(Xj + t„u, yj; GrF) - d(xj, yj; GrF)) + t„

< 2er2 + er + tn

< 3sr + t„ .

Setting g := d(- , • , GrF) we get

d~g(Xj ,yj)+LxM(xj , yj ; u + hi, b + ks) < 3er,

and hence

(x*, u) + (y*, b) < 3er +    max    |(x* ,h,)\+    max    |(y*, fc,-)|.
J i'=l,..., m i'=l,..., m

It follows that

(x*, u) + (y*, b) < 3er +    max    |(x*,,-)|-l-    max    |(y*,fc,-)|,
i= 1,..., m i= 1,..., m

and hence we may conclude that

e||x*|| + ||y*|| <3e + r-1    max    |(x*, ht)\ + r~x    max    \(y*,kt)\.   □
i=l.m i=l.m

As a consequence of this proposition we have

Corollary 3.6. Let F : X =l Y be a multivalued mapping which is uniformly

compactly epi-Lipschitz at (xq, yo) € GrF. Then, for K given by Definition

3.2, there are neighbourhoods V and W of Xo and yo, respectively, and a real

number y > 0 such that for each s £]0, 1[ there exist vectors kx, ... ,km £ K

satisfying
£||*1 + ||yl < 3e + y   max    \(y*, k,)\

i= 1,..., m

for all x £V, y £ W, and (x*, y*) £ dAd(x, y; GrF).
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In particular if D cz Y is compactly epi-Lipschitz at yo £ D one gets, by

setting F(x) = D, for all x £ X, that

||yl<3e + y   max    \(y*, kt)\
i=l,... ,m

for all y £V and y* £ dAd(y, D).

Remarks. (1) From the second part of this corollary we may say, in particular,

that in dAd(y, D), weak-star and strong convergences to zero are equivalent,

that is,

y*^0  iff  ||y;n-o.
(2) Loewen [28] has shown that in weakly locally compact cones (of reflexive

Banach spaces), weak-star and strong convergences of sequences to zero are

equivalent.

4. Metric regularity

The following notion of metric regularity is now recognized to be a very

important tool in nonsmooth analysis and in optimization theory.

Definition 4.1 [34-35]. One says that a multivalued mapping F : X =S Y is
metrically regular at (xo, yo) £ Gr F if there exist two real numbers a > 0 and

r > 0 such that
d(x,F-x(y))<ad(y,F(x))

for all x £ xo + rBx and y e yo + rBY with d(y, F(x)) < r, where F~x(y) =

{x £ X : y £ F(x)}. Here we adopt the convention d(x, 0) = +00.

Before giving our main result of this section, we recall the following important

lemma whose proof is given in Jourani [19]. Let us note that its proof is along

the lines of those given by Borwein and Zhuang [6], Borwein [3], and Ioffe [14].

Lemma 4.2. Let F : X =l Y be a multivalued mapping of closed graph, and let

(xo, yo) e Gr F. If F is not metrically regular at (xo, yo), then there are s„ I 0

(s„ < I), x„ -» xo, zn -» y0, and y„ -» yo such that for all positive integer n

(x„, z„) £ GrF ,     y„ £ F(x„),

and

pn-yn\\ < \\y - yn\\ + s„(\\x - xn\\ + \\y - zn\\)

for all (x, y) £ GrF .

Theorem 4.3. Let F : X =$ Y be a multivalued mapping whose graph is closed.

Suppose that F is partially compactly epi-Lipschitz at (x0, yo) € GrF. Suppose
also that for all nonzero y* £ Y*

(RC) Ker/rF(x0,y0) = {0}.

Then F is metrically regular at (xq , yo) ■

Proof. Suppose the contrary. Then, by Lemma 4.2, there are s„ \ 0  (s„ < 1),

xn —> xo, z„ —> yo , and y„ —> yo such that for all n

(x„, z„) eGrF,    yn £ F(x„),

and

\\zn -yn\\< \\y -yn\\ + Mil* - *«ll + lb - Ml)
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for all (x, y) £ GrF . Proposition 2.4.3 in Clarke [7] implies that (x„ , zn) is

a local minimum of the function

fn(x, y) = \\y -y„\\ + 2d(x, y; GrF) + sn(\\x -x„\\ + \\y - z„\\).

So (0, 0) £ dAf„(x„ , z„) and hence, by subdifferential calculus rules (see Ioffe

[16-17]),

(0, 0) € {0} x S(yn ,z„) + 2dAd(xn ,zn;GrF)+ sn(Bx x BY),

where S(yn, zn) = {y* £ Y* : \\y*\\ = 1 and (y*, zn - y„) = \\z„-y„\\}. So

there are y* e S(y„ , z„) and (x*, z*) e 2dAd(xn , zn ; GrF) such that

(4) \\yn + z*n\\<sn

and

\\x*J <sn.

As the sequences (x*), (y*), and (z*) are bounded, extracting subnets if nec-

essary, we may assume that x* ^-> 0, z* ^ -y*, and y*^> y*. By the upper

semicontinuity property of the approximate subdifferential we get

(0,-y*)€2&V(xo,y0;GrF).

The theorem will therefore be proved if we show that y* ^ 0 because we

will arrive at a contradiction with (RC). Now, using Proposition 3.5 we get the

existence of y > 0 such that for all e e]0, 1] there exist hx, ... , hm £ X and

kx, ... ,km £Y  (hi, ... ,hm,ki, ... ,km not depending on n) satisfying

elKII + KII <6e + y   max   |(x*, ht)\ + y   max   \(z*,kt)\
i=l ,...,m i=l ,...,m

and hence

elKl + Mil - \\y*n + <\\ < 6e + y . max    |(x* ,ht)\ + y, max    \(z*„ , k,)\.
i=l,... ,m i=l,...,m

Using (4) we have at the limit

1 < 6e + y   max    |(y*, kt)\,
i=X ,...,m

which ensures that y* ^ 0 and the proof is complete.   □

As a consequence of Theorem 4.3 we immediately have the following result

concerning the openness of multivalued mappings.

Corollary 4.4. Let F be as in Theorem 4.3. Then, under the assumptions of this

theorem, the multivalued mapping F is open at a linear rate at (xq , yo); that

is, there are neighbourhoods V and W of x0 and yo, respectively, and two real

numbers s > 0 and b > 0 such that

y + tByC F(x + tbBx)

for all (x,y) £ V x W n GrF and t£]0,s[.

Proof. By Theorem 4.3 there exist a > 0 and r > 0 such that

d(x,F-x(y'))<ad(y',F(x))

for all x £ xo + rBx and y' £ y0 + rBy with d(y', F(x)) < r. So let x £

x0 + rBx,y £ (y0 + (r/2)BY) n F(x),t£]0, r/2[, and y' £ y + tBY .  Then
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y' £ yo + rBy with d(y', F(x)) < r and so, by (5), there exists x' £ F~x(y')

such that
||x-x'|| <2a||y-y'|| < 2at

and hence y' G F(x') c F(x + 2atBx).   D

Corollary 4.5. Let F : X =f Y be a multivalued mapping whose graph is closed,

and let C be a closed subset of X containing xo. Suppose that F is uniformly

compactly epi-Lipschitz andpseudo-Lipschitz at (xo, yo) £ GrF. Suppose also

that for all nonzero y* £ Y*

0 i D*F(x0,yo)(y*) + R+dAd(xo, C).

Then the multivalued mapping Fc : X _\ Y as defined above is metrically

regular at (x0, yo) •

Proof. It suffices to show that the regularity condition (RC) of Theorem 4.3

holds for Fc. Indeed, let (0,y*) G dAd(xo, yo; GrFc). By Lemma 2.3,
there exists k > 0 such that

dAd(x0, y0; GrFc) c k[dAd(x0, y0; GrF) + dAd(x0, C) x {0}].

Therefore
0 g D*F(xq , y0)(y*) + R+dAd(x0, C),

which implies by assumptions that y* = 0. So Proposition 3.4 and Theorem

4.3 complete the proof.   □

5. Application to vector optimization problems

In this section, we consider Lagrange multipliers for vector optimization

problems of the form

minimize       f(x)

(P) subject to      x g C,

OgF(x),

where / : X -> Z is a mapping, Z is a Banach space, F : X =} Y is a
multivalued mapping, and C is a subset of X.

Let P be a closed convex cone of Z with nonempty interior and such that

Fn(-F) = {0}.
Recall that a point xo G C n F ' (0) is a weak Pareto local minimum for

the problem (P) if there exists a neighbourhood V of x0 such that for all
x G VnCr\F~x(0), with x^x0,

f(xQ)-f(x) i int P.

In the sequel we assume that f is strongly compactly Lipschitzian at Xo G

Cnr'(O) and C is closed.
We start this section by recalling the following lemma whose proof is given

in Thibault [40].

Lemma 5.1. Assume that xq is a weak Pareto local minimum for the problem

(P). Then for each element b in f(xo)-intP there exists a continuous seminorm

p on Z which is monotonically increasing on P and such that

l=p(f(xo)-b)<p(f(x)-b)

for all x £ C n F_1 (0) in some neighbourhood of xq .
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Before stating our main result of this section, let us establish the following

lemma which is in the line of Proposition 2.7 in Thibault [41].

Lemma 5.2. Let F : X =} Y bea multivalued mapping which ispseudo-Lipschitz

at (xo, yo) G GrF. Then there exists k > 0 such that

dAd(y0, F( ■ ))(x0) C   (J {x* e X* : (x*, y*) £ kdAd(x0, y0; GrF)}

c   (J {x* g X* : (x*, y') G kdAd(yo; F(x0))} .

y'€B;

Proof. Following Rockafellar [37], F is pseudo-Lipschitz at (xo, yo) iff the

function (x,y) —► d(y,F(x)) is locally Lipschitz at (xo,yo). Let kF be a

Lipschitz constant of this function at (xo, yo) ■ Thus (see Ioffe [17])

dAd(yo,F(-))(x0)=    fl    limsup[de-dx+L(y0,F(-))(x)n(kF + e)Bx],

where for a function / : X -* lu {+oc} , with f(x) < oo , the set d~f(x) is

given by d~f(x) = {x* £ X* : (x*, h) < d~f(x, h) + e.\\h\\, Vh £ X}. So for

x* G dAd(y0, F(-))(x0) and L g &(X) there exist nets x, —> x0, x* ^+ x*,
and e, | 0  (e, < 1) such that

x* G d-dx,+L(y0, F( ■ ))(xt) n (kF + l)Bx.

Using Lemma 1 in Ioffe [15] and Proposition 2.4.3 in Clarke [7] we get for all

e G]0, 1 [ that the function

(6) x -» d(y0, F(x))- (x*, x -x,) + (e + e,)||x -x,-|| + (2/:f + 2)rf(x, x, + L)

attains a local minimum at x,. Choose y, G F(x,) such that

(7) l|yo-y,ll<^(yo,F(x,)) + £2.

Using (6) and (7) we obtain

e2 + llvo - yII - (xf , x - xi) + (e + e,)||x - x,-|| + (2kF + 2)d(x, x, + L)> ||y0 - y,||

for all (x, y) G GrF n (x, + r,/3^) x (y, + rtBy) for some real number r, > 0.

Set /;(x, y) = ||y0 -y|| - (x*, x - x,) + (e + e,)||x - x,|| + (2kF + 2)d(x, x, + L)
and E = GrF n (x, + r,/3x) x (y, + r,-5v). Then

fi(Xi,yi)_    inf   /i(x,y) + e2.
(jc,>>)6£

Applying the Ekeland variational principle [11] to f on E we have the exis-

tence of (xej, yej) in F satisfying

(8) ||*»,,--x,-|| + ||y.,,--y.-||<«

and

fi(xt,i,ye,i) <fi(x,y) + e(\\xeti-x\\ + ||y£,,-y||),    for all (x,y) gF.

Then, by Proposition 2.4.3 in Clarke [7], (x£i,, yej) is a local minimum of the

function

(x, y) -> f(x,y) + e(\\xeJ - x|| + ||y£,, - y||) + 3(kF + l)d(x,y;E).
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So, by subdifferential calculus rules (see Ioffe [16-17])

(xf , 0) G {0} x BY + 3(kF + l)dAd(xe,i ,y,ti\ GrF)

+ (2e + ei)B*x x BY + 2(kF + l)dAd(x£,i, xl + L) x {0}

because dAd(xej, yej', GrF) = dAd(xej, yEj; E). By (7) and (8) we have

xe,i —» *o and y£,, —> yo • So the upper semicontinuity of the approximate sub-

differential and the weak-star compactness of the sets dAd(xej,ye,i', GrF),

Bx, BY , and dAd(xEj , x, + L) imply

(x*, 0) G {0} x By + 3(kF + l)dAd(x0,y0; GrF) + L1 x {0}

for all L £ &(X), where L1 = {x* £ X* : (x*, x) = 0, Vx G L). Thus

(x*,0)G    f|   [{0}xBy + 3(kF+l)dAd(x0,yo;GrF) + L1x{0}]

= {0}xBY + kdAd(x0,yo;GrF)

where k = 3(kF + 1).   □

Now we are in a position to state our main result of this section concerning

Lagrange multipliers of Kuhn-Tucker type for (P).

Theorem 5.3. Suppose F is pseudo-Lipschitz at (xo, 0) and the multivalued
mapping

FC(x) = iHx)   ifXuEC'
[ +0      otherwise

is metrically regular at (xo, 0). // xo G C n F~'(0) is a weak Pareto local

minimum for (P), there exist k > 0, y* £ Y*, and z* e Z*\{0} such that

(z*, z) > 0   for all z£P

and

0 £ dA(z* o f)(xo) + £>*F(x0, 0)(y*) + kdAd(x0, C).

Proof. First note that CnF-'(O) = (Fc)-'(0). By Proposition 2.4.3 in Clarke
[7] and Lemma 5.1, Xo is a local minimum of the function

x^p(f(x)-b) + yd(x,(Fc)-x(0))

for some b £ f(x) - intP and y > 0. Using the metric regularity of Fc we
get that the function

h(x)=p(f(x) - b) + ay(d(0, F(x)) + d(x, C))

attains a local minimum at Xo for some a > 0. Then 0 G dAh(xo) and hence,

by Theorem 2.2 and the subdifferential formula of a sum in Ioffe [16-17], there

exists z* G dAp(f(xo) - b) such that

0 G dA(z* o f)(x0) + aydAd(0, F( ■ ))(x0) + aydAd(x0, C).

Thus, by Lemma 5.2, there exists y* £ Y* satisfying

0 g dA(z* °/)(x0) + {x* g X* : (x*, -y*) £ kdAd(x0, 0; GrF)} + kdAd(x0, C)

for some k > ay .
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The theorem will therefore be proved if we show that z* ^ 0 and (z*, z) >

0, for all z £ P. Indeed, since p is convex, we have for all z g Z

(9) (z*, z - /(x0) + b)< p(z) - p(f(xo) - b).

On the one hand we have

(z*, /(x0) - b) > p(f(x0) -b) = l

and so z* ^ 0. On the other hand, fix z £ P. As /(xo) - b £ intP there

exists t > 0 satisfying /(x0) - b - tz £ int P. So /(xo) - b - tz g P and

/(xo) - b £ f(xo) -b-tz + P and hence by increasing monotonicity of p over
P and by (9) we get

(z*, -tz) < p(f(x0) -b-tz)- p(f(x0) -b)<0.

Therefore (z*, z) > 0 and the proof is complete.   □

By Theorem 5.3 and Corollary 4.5 we have

Corollary 5.4. Suppose F is pseudo-Lipschitz and uniformly compactly epi-

Lipschitz at (xo, 0) and x0 G C n F~'(0) is a weak Pareto local minimum

for (P). Suppose also that for all nonzero y* £ Y*

0 i D*F(x0, 0)(y*) + R+dAd(x0, C).

Then the conclusion of Theorem 5.3 holds.

As a consequence we have the following result which concerns the Lagrange

multipliers of Fritz-John type for (P).

Theorem 5.5. Suppose F is pseudo-Lipschitz and uniformly compactly epi-

Lipschitz at (xo, 0) and Xo £ C n F~x(0) is a weak Pareto local minimum
for (P). Then there are k > 0, y* £ Y*, and z* g Z* such that

(z*,y*)/(0,0),     (z*,z)>0,    forallz£P

and

0 G dA(z* o /)(x0) + D*F(x0, 0)(y*) + kdAd(x0, C).

Proof. Let Fc be as in Theorem 5.3. If Fc is metrically regular at (xo, 0),

then Theorem 5.3 gives us the desired result. If it is not the case, the assumption

of Corollary 4.5 is not satisfied and so there exists a nonzero y* G Y* such that

0 G D*F(x0, 0)(y*) + R+dAd(x0, C).

Thus it suffices to take z* = 0 and the proof is complete.   □

As a particular case of problem (P) we consider the following Pareto mathe-

matical programming problem

minimize       f(x)

(P') subject to       xgC,

g(x) G D

where g : X -+ Y is a strongly compactly Lipschitzian mapping at xo and D

is a closed subset of Y which is compactly epi-Lipschitz at g(xo) £ D.



OPENNES AND REGULARITY OF MULTIVALUED MAPPINGS 1267

Corollary 5.6. Suppose x0 G C nF_1(0) is a weak Pareto local minimum for

(F). Then there are k > 0, y* G kdAd(g(x0), D), and z* £ Z* such that

(z*,y*)/(0,0),     (z*,z)>0   forallz£P

and
0 G dA(z* o /)(x0) + dA(y* o g)(x0) + kdAd(x0, C).

Proof. It suffices to observe, via Theorem 2.2, that for F(x) = -g(x) + D

dAd(0, F(x0)) c |J        [dA(y* o g)(x0) x {y*}]

y*edAd(g(x0),D)

and Theorem 5.5 completes the proof.   □

Remark. Note that our corollary speaks to the following situations:

• D is epi-Lipschitz in the sense of Rockafellar [37] and so in particular

when D is a closed convex cone with nonempty interior, or

• D = Di x {0} with Dx compactly epi-Lipschitz and {0} c Rn .

After we completed this work, we received the paper [32] by Mordukhovich

and Shao which treats characterizations of the metric regularity of multivalued

mappings between Banach spaces admitting equivalent Frechet differentiable

norms.
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