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NORM ESTIMATES FOR RADIALLY SYMMETRIC SOLUTIONS
OF SEMILINEAR ELLIPTIC EQUATIONS

RYUJI KAJIKIYA

Abstract. The semilinear elliptic equation Am + f(u) = 0 in R" with the

condition lim^^oo u(x) = 0 is studied, where n > 2 and f(u) has a su-

perlinear and subcritical growth at u = ±oo. For example, the functions

/(«) = IuI'-'k -w(l<p<ooif« = 2, 1 < p < (n + 2)/(n - 2) if
n > 3) and f(u) = u log |u| are treated. The L2 and Hl norm estimates

Cx(k + \)"l2 < \\u\\0 < \\u\\Hi < C2{k + l)"/2 are established for any ra-
dially symmetric solution u which has exactly k > 0 zeros in the interval

0 < |jc | < oo . Here Cx,  C2 > 0 are independent of u and k .

1. Introduction

In this paper we give the L2(R") and HX(R") norm estimates for radially

symmetric solutions of the semilinear elliptic problem

(1.1) Au + f(u) = 0,        x£Rn,

(1.2) lim u(x) = 0,

where n > 2 and f(u) is a continuous function. We are interested in the

power nonlinearity fau) = \u\p~xu-u and the logarithmic nonlinearity f(u) =
u log | u\. The solution of the problem (1.1)-(1.2) is considered as a bound state

of the nonlinear Schrodinger equation

(1-3) -i^ = Av + g(v),

or a standing wave solution of the nonlinear Klein-Gordon equation

/,  ^ d2v       a 2
(1.4) -Q-j- = Av - mlv + g(v).

Here g(v) is a continuous function from C to C satisfying

(1.5) g(reie) = ewg(r)    (r,8eR),        g(R) C R.

In equation (1.3) or (1.4), the solution v of the form v(x, t) = eatw(x) is

called a bound state or a standing wave solution if w ^ 0 is a square integrable
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real-valued function. Then equation (1.3) is reduced to the semilinear elliptic

equation

(1.6) Aw + g(w)-Xw = 0,

which becomes equation (1.1) by setting f(w) = g(w) -Xw . Equation (1.4) is

also rewritten as equation (1.6) in which X is replaced by X2 — m2 . Condition

(1.2) is caused by w £ L2(R"). In equation (1.6) with a special type of the non-

linear term g(w) = |iy|''_1u; or w log |u;|, we employ the the change of variable

w(x) = A1/(p_1)u(\/Ax) or w(x) = exu(x), respectively. Then equation (1.6) is

transformed into the equation

(1.7) Au + \u\p~xu-u = 0,

or

(1.8) Au + ulo%\u\ = 0.

It has been proved by many authors [1, 2, 4, 7, 8, 10] that under suit-

able assumptions on f(u), for example, f(u) = \u\p~xu - u with 1 < p <

(n + 2)/(n - 2) or fau) = wlog|w|, equation (1.1)—(1.2) has infinitely many
radially symmetric solutions. More precisely, (see Grillakis [2] and Kajikiya

[7]) equation (1.1)—(1.2) possesses a sequence {uk}f=Q C C2(R")nHx(Rn) of

radially symmetric solutions such that uk has exactly k zeros in the interval

0 < |x| < oo and

lim ||Wfc||#i = lim L(uk) = +oo.
k—>oo k—>oo

Here HX(R") and |HI#> denote the usual L2 Sobolev space of the first order

and the corresponding norm, respectively. The functional L(u) stands for the

Lagrangian of (1.1), i.e.,

(1.9) L(u)= j   (Uvu\2-F(u)\dx,        where   F(u) = f"f(s)ds.

The above result raises a question: What is the relation between the Sobolev

norm or the Lagrangian of radially symmetric solutions and the number of

their zeros ? The purpose of this paper is to solve the question. Our answer

is as follows. Any radially symmetric solution u of (1.7) or (1.8) with (1.2) is

estimated as

(1.10) Ci(k+l)n'2<\\u\\L2<\\u\\w <C2(k+l)n'2,

(1.11) C3(k + I)" < L(u) < C4(k + l)n ,

provided that u has exactly k(> 0) zeros in the interval 0 < |x| < oo . Here

||w||i,2 denotes the L2-norm of u. Each C, is a positive constant independent

of u and k. It will be proved later that any radially symmetric solution of

(1.7) or (1.8) with (1.2) has at most a finite number of zeros.

To obtain the estimates (1.10) and (1.11), this paper is organized into six

sections. In Section 2, we impose several assumptions on the nonlinear term

f(u) and state our theorem strictly. In Section 3, we prepare some technical

lemmas which will play an important role in the subsequent sections. In Section

4, we investigate the various properties of radially symmetric solutions. In

Section 5, we give the lower estimate for the Sobolev norms of solutions via
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the number of zeros. In Section 6, we prove the upper estimate for the Sobolev

norms of solutions.

2. Main result

In this section, we state the main result. In order to discuss radially symmetric

solutions u = u(r), r = |x|, we convert (1.1)—(1.2) to the singular boundary

value problem for the ordinary differential equation

(2.1) u"+n-—[-u' + f(u) = 0,        r>0,

(2.2) w'(0) = 0,     limu(r) = 0.
r—>oo

In the following, we impose several assumptions on the function f(s).

(fl) Suppose that f(s) is continuous and that there exists a unique local
solution to any initial value problem for equation (2.1).

It is well-known that assumption (fl) is fulfilled if f(s) is locally Lipschitz

continuous. The function fau) = wlog|w| in (1.8) is not locally Lipschitz
continuous, however, condition (fl) is satisfied. This has been proved in [7,

Appendix]. Next, we impose conditions on the sign of fas) and on the behavior
of f(s) as s-tO.

(f2)     There exist positive constants a and b such that

/(s)>0,     s£(-b,0)U(a,oo),        f(s)<0,     s £ (-oo, -b) U (0, a).

(f3)     There exists a constant q > 1 such that

^ i- f(S) r, .• Sf(s)
-oo < hmsup, .    .   < 0   and    hmsup   L, ,   <oo,

-    ,_0    \s\"-xs s^o     F(s)

where    F(s) = /  f(r)dr.
Jo

The following assumptions imply that fas) has a superlinear and subcritical
growth order in the neighborhood of s = ±oo .

(f4) lim  ^1 = oo.
j-»±oo     5

0<liminf^§^ <limsupi§^<oo if« = 2,
*-±oo   F(S) s^±oo    F(s)

0<liminf^<limsup^<-^       if/i>3.
s^±oo F(s)       j-,±oo   F(s)      n-2

It is easy to check that all of the conditions (f 1 )-(f5) are satisfied by the

functions, for example, fas) = \s\p~xs - s, fas) = \s\p~xs - |s|'-l.s, where
l<^r<p<oo if « = 2 and 1 < q < p < (n + 2)/(n -2) if n > 3, and
fas) = s log \s\. Before stating the main theorem, we present our earlier result
which guarantees the existence of solutions.

Theorem 0 ([7, Theorem 4]). Suppose that assumptions (fl), (f2), (f4) and (f5)

hold. Then there exist sequences {maJ£10 and {v*}£=0 of solutions to (2.1)-

(2.2) such that uk and vk have exactly k(> 0) zeros in (0, oo) and uk(0) >
0>v*(0).
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For any solution u of (2.1 )-(2.2), it will be proved later on that Vw e L2(R")

and F(u) £ LX(R") and moreover that u has at most a finite number of zeros

in (0, oo). Therefore the main result below makes sense.

Theorem 1. Under assumptions (fl)-(f 5), there exist positive constants C, (1 <

i < 4) such that

Cx(k + I)"'2 < \\Vu\\L2 < C2(k + l)n'2,        C3(k + l)"< L(u) < C4(k + l)n

for any solution u of (2.l)-(2.2) which has exactly k(> 0) zeros. Here L(u)

is defined by (1.9). Moreover, if fau) = \u\p~xu - u, where 1 < p < oo when
n = 2 and 1 < p < (n + 2)/(n - 2) when n>3,orif f(u) = u log \u\, then we
obtain the estimate

Q(k + I)"'2 < \\u\\L2 < \\u\\w < C6(k + I)"/2.

Here C5 and C^ are also positive constants independent of u and k.

From the above result we see that the ff'-norm of solution grows like k"l2

as k —> oo . The growth rate n/2 depends only on the dimension n , does not

on the growth order of f(u) as u —► ±oo.

On the other hand, in [5, 6] we have studied equation (2.1) in the unit ball:

(2.3) u" + ?—[-u' + f(u) = 0,        0<r<l,

(2.4) m'(0) = u(1) = 0,

where f(u) behaves like \u\p~xu as u —» ±oo and 1 < p < oo for n = 2 and

I < p < (n + 2)/(n -2) for «>3. Then we have obtained the estimate

Cx(k + i)("+i)/G>-i) < \\u\\w < C2(k+ 1)Cp+D/(p-D

for any solution u of (2.3)-(2.4) with k zeros in (0, 1). Here \\u\\Hi denotes

the //'-norm of u on the unit ball and Cx and C2 are independent of u and

k. In this case, the growth rate (p + l)/(p — 1) depends only on the growth

order of f(u), does not on the dimension n .

3. Preliminary lemmas

From here to the end of the paper, we always suppose that all of assumptions

(fl) through (f5) hold. In this section, we prepare some technical but crucial

lemmas. Let F(s) be defined in assumption (f3), that is,

F(s)= ff(r)dr.
Jo

Definition 3.1. By assumptions (f2) and (f4) the function F(s) has exactly two

zeros except for s = 0. We denote these zeros by -B and A . That is,

-B < -b < 0 < a < A       and       F(A) = F(-B) = 0.

From the above definition it follows that

(3.1) F(A) = F(-B) = F(0) = 0,

F(s)<0       for   s£(-B,A)\{0},
(3.2)

F(s) >0       for   s£(-oc,-B)V(A,oc).
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In what follows, we present three lemmas which will be used in Sections 5

and 6.

Lemma 3.2. For any Ai in (A, oo) and any —Bx in (-oo, -B) there exists a

constant 0O e (0, 1) such that

F(s) < 2F(8s) < 2F(s)   when  8s £ (-oo, -BX]U[AX, oo) and 8£(80, 1).

Proof. We show that there exists a positive constant C depending only on Ax

and Bx such that

(3.3) (l + Clogd)F(s)<F(8s)

provided that 8 £(0, 1) and 8s £ (-oo, -Bx] U [Ax, oo).
By assumption (f5) together with (3.2) there exists a constant C > 0 such

that sfas) < CF(s) for j £ (-oo, -Bx] U [Ax, oo). Let 8 £ (0, 1) and
ds > Ax > 0. Then we have

F(s) = F(8s) + f f(r)dr < F(8s) + C [ ^-dr.
Jes Jes   r

Since F(r) is strictly increasing in (a, oo) by (f2), the last integral is estimated

as

r^^<-F(5)l0grJ.
Jes   r

Therefore we obtain

F(s)<F(8s)-C(log8)F(s).

The same argument as above is also valid for 8s £ (-oo, -Bx]. Thus we have

(3.3). In the inequality (3.3) we choose 0O to be sufficiently closed to 1 such

that -1/2 < Clog0O < 0. Then we obtain the first inequality of the lemma.
The second one follows from the monotonicity of F(s). Hence the proof is
complete.

Lemma 3.3. Let Ax £ (A, oo) and -Bx £ (-oo, -B). Then there exist positive

constants Cx, C2 and p such that

1 < p < oo    when   n = 2, 1 <p <-=    when   n > 3,
n — 2

(3.4) sfas) < CxF(s) < C2\s\p+X   for   s £ (-oo, -Bx] U [Ax, oo).

Proof. We choose a suitable constant p > 1 by (f5) such that

hm sup ~hr <P + l<oo if n = 2,
s^±oc    F(S)

i-          sf(s)            ,        2/i .-    ^ ,
hm sup -^-r+f < p + 1 <-^       if n > 3.
s^±oo  F(s) n-2

In other words, there exists an R > 0 such that

sF'(s)     sfas) ,    , . ̂  _
F(s)       F(s)

Solving the differential inequality, we obtain (3.4) for |s| > R. For s in

[-/?, -Bx] U [Ax, R], we use F(s) > 0 to get (3.4). This completes the proof.

In Section 5, we use a nonlinear variant of Priifer transformation to estimate

the Sobolev norms of solutions. To do so, we need the next lemma.
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Lemma 3.4. Let -bx and ax be fixed in (-B, -b) and in (a, A), respectively.

Then there exist two continuous functions g(s) and h(s) satisfying the following

conditions.

(i) fas) = g(s) - h(s) for s £ R, fas) = g(s) for s £ (-00, -bx] U
[ax, 00).

(ii) It holds that sg(s), G(s), H(s) > 0 for any s ^0, where

G(s) = f g(r)dr   and   H(s) = f h(r)dr.
Jo Jo

(iii) The function f(s)/g(s) is bounded above.

(iv)      ^H(s)>h(s)^-   for   s£R.
*■ g(s)

Proof. By assumption (f3) there exist positive constants C, 8 and r such that

C\F(s)\ > \sf(s)\   and   F(s) < -8\s\q+x    for   5 £ (-r, r).

Since \F(s)\ = -F(s) > 0 for s £ [-bx, ai]\{0} by (3.2), the above inequality

gives a constant Co such that

(3.5) C0\F(s)\ > \sf(s)\   for   se[-bx,ax]

and

(3.6) CQ\F(s)\ > \s\q+x   for   s£[-bx,ax].

We now choose p so large that

(3.7) p>2q-l    and   ^ > max {f(ax)a;q,  \f(-bx)\b;q , 2} .

We moreover define a, b > 0 by

(3.8) a = /(a,)V    and    b =-fa-b^b;".

Then we define the function g(s) by

(fas), s £ (-00, -bx]\J[ax, 00),

h\S\"-lS,     S£[-bx,0],

a\s\"-xs,    s£[0,ax].

We set h(s) = g(s)-f(s). Then it is clear that g and h are continuous and

satisfy condition (i). From the definition of g(s) it follows that sg(s), G(s) > 0

for 5 # 0. Noting that H(s) = G(s) - F(s) and F(s) < 0 for 5 e (0, ax], we

see that H(s) > 0 for s £ (0, ax]. Since H'(s) = h(s) = 0 (s > ax), it holds

that H(s) = H(ax) > 0 for s > ax . Thus we have that H(s) > 0 for 5 > 0.

The same argument implies that H(s) > 0 for 5 < 0 as well.

We prove assertion (iii). From the definition of g(s) it follows that f(s)/g(s)

< 0 for s £ (0, a) and f(s)/g(s) = 1 for 5 e [ax, 00). Since g(s) > 0 on

[a, ax], the function f(s)/g(s) is bounded above on (0, 00). The boundedness

above on (-00, 0) follows from the same argument as above.

We show assertion (iv). Since H(s) > 0, h(s) = 0 for s £ (-00, -&i] U

[ax, 00), the inequality (iv) holds for s in these intervals. Let 5 £ (0, ax).

Then we use (3.9) to rewrite inequality (iv) as

^(as"+1 - (p+ l)F(s)) > 55"+' - sfas).
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We note that \F(s)\ = -F(s) > 0. Therefore

(3.10) (p+l)\F(s)\>as"+x -2sf(s)   for   s£(0,ax).

To show this, it is sufficient to prove the inequalities

(3.11) ^\F(s)\>as><+x

and

(3.12) fi+l\F(s)\>2\sf(s)\

for 5 £ (0, ax). The above inequality (3.12) follows readily from (3.5) and

(3.7). We show (3.11). It follows from (3.7) and (3.8) that

as^+x < a<"V+1 = f(ax)a-qsq+x < ^J-sq+x   for   s£(0,ax).
2Co

This together with (3.6) yields (3.11). Therefore we obtain (3.10) and inequality
(iv) for 5 > 0. The same method as above remains valid for s < 0. The proof

is thereby complete.

4. Property of solutions

In this section, we investigate the property of solutions in detail. We first

consider the initial value problem for (2.1) at r = 0,

(4.1) u" + ^—-[-u' + f(u) = 0,        r>0,

(4.2) w'(0) = 0,        u(0)=X.

Definition 4.1.   We denote the solution of (4.1)-(4.2) by u(r, X).

We prove the global existence of the solution u(r, X) and the continuous

dependence on the initial data X.

Lemma 4.2. (i) For any X £ R, the solution u(r, X) can be extended to r = oo.
Moreover, we have for any A > 0,

sup{|«(r, X)\ + \u'(r, X)\ + \u"(r,X)\ : 0 < r < oo,    \X\ < A} < oo.

(ii) The solution depends continuously on X. More precisely, for any Ao € R

and R>0, the solution u(-, X) converges to u(-, Xo) in C2[0, R] as X —► Ao.

Proof. This lemma has been proved in our earlier paper [7, Lemma 3.1]; how-

ever, for the sake of completeness we give the proof in the following. Let A > 0

be given and X satisfy |A| < A. The local solution u(r) = u(r, X) of (4.1)-(4.2)

is uniquely defined because of assumption (fl). We define the energy function

E(r) by

(4.3) E(r) = E(r, X) = \u'(r,X)2 + F(u(r, X)),

F(s)= fSf(r)dr.
Jo

From an easy computation it follows that

(4.4) £'(,-) = _^llM'(,.)2<0)
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which implies that E(r) is decreasing. Moreover, if u(r) is not a stationary

solution, then the zeros of u'(r) are isolated and therefore E(r) is strictly
decreasing. Hence we have

Iru'(r)2 + F(u(r)) = E(r) < E(0) < max F(X).
2 |A|<A

Noting that lim^±00 F(s) = oo by (f4), we have a constant CA > 0 such that

(4.5) \u(r,X)\,     \u'(r,X)\<CA       for   r>0   and   |A|<A,

which implies that u can be extended to r = oo .

We show u" to be bounded. Equation (4.1) is rewritten as

(4.6) (rn-xu')' = -r"-xf(u).

Integrating this relation over [0, r], we get

(4.7) r"-lu'(r) = - f f(u(s))s"-xds,
Jo

which together with (4.5) implies

(4.8) \u'(r)\ <— r,        where   Cx = max \f(s)\.
n \s\<c„

Using this inequality in (4.1), we obtain

\u"(r)\ < —Vl + \f(u)\ < ?—^Ci + Cx

for r > 0 and \X\ < A. This inequality and (4.5) prove assertion (i).

We prove assertion (ii). Let R > 0 and Ao £ R be given. Let {A,} be a

sequence converging to Ao. We write w,-(r) = u(r, A,) for / > 0. Instead of

showing the convergence of {«,} to uq in C2[0, R], we will prove the equiv-

alent statement: For any subsequence {vj} of {«,}, there exists a subsequence

{wk} of {Vj} such that wk converges to uq in C2[0,R].
Let {vj} be any subsequence of {w,}. Applying Ascoli-Arzela's theorem

together with assertion (i), we choose a subsequence {wk} of {vj} such that

wk converges to a certain limit w0 in Cl[0,R]. We now recall that wk

satisfies (4.7), that is,

(4.9) r"-xw'k(r) = - f f(wk(s))s"-xds.
Jo

Letting k —> oo, we have

(4.10) r"-lw'0(r) = - f faw0(s))s"-xds,
Jo

which implies that w0 £ C2(0,R] and w0 satisfies (4.1). Since w0(0) =
lim^^oo w'k(0) = 0 and u;0(0) = linik^^ Wyt(O) = A0, it follows from (fl) that

w0(r) = u0(r). We prove that w'k' converges uniformly to u'0' = w0'. The

identities (4.9) and (4.10) yield

-K(r) - w0(r)\ < n~x maxR\f(wk(s)) - f(w0(s))\.



NORM ESTIMATES FOR SOLUTIONS OF ELLIPTIC EQUATIONS 1171

Therefore (l/r)w'k(r) converges uniformly on [0, R], so does the right-hand

side of
n - 1

w'k' =-—w'k - f(wk(r)).

Thus wk converges to w0 = Uq in C2[0, R] and this completes the proof.
The next lemma gives us information about zeros, zero derivatives and local

extrema of solutions.

Lemma 4.3. Let u satisfy (4.1) on [0, oo) and be not a stationary solution.

Then we have:
(i) If u'(r0) = 0 for some r0) then u"(r0) ^ 0 and u(r) has a strict local

maximum or minimum at rQ.

(ii) // u(r) has a local maximum (or minimum) at r0, then u(r) < m(/vj)

(or  u(r) > u(r0)) for all r £ (ro, oo).

(iii) // u(rx) = u(r2) = 0 and u(r) > 0 (or < 0) for r £ (rx, r2) with some

rx,r2, then there exists a unique £, £(rx, r2) such that u'(£) = 0. Furthermore,

it holds that u(£) > A (or u(£) < -B) and that u'(r) > 0 (or < 0) for
r £ [rx, £) and u'(r) < 0 (or >0)for r £ (£,, r2].

Proof. If u'(r0) = u"(r0) = 0 for some r0 > 0, then f(u(r0)) = 0 by (4.1),
hence u(r) = u(ro) is a stationary solution. This contradicts the assumption of

the lemma. Therefore we have assertion (i).

To prove (ii), it is sufficient to show that

u(r)^u(r0)   for   r£(r0,oo)       if   u'(r0) = 0.

Since E(r) is strictly decreasing and u'(ro) = 0, we have F(u(ro)) = E(ro) >

E(r) > F(u(r)) for r > r0 . Hence u(r0) ^ u(r).

We prove (iii). Let u(rx) = u(r2) = 0 and u(r) > 0 for r £ (rx, r2). By

Rolle's theorem there exists a point £ £ (rx, r2) such that u'(£) = 0. On the

other hand, since u(r) has only simple zeros and E(r) is strictly decreasing,

we have

E(r) > E(r2) = l-u'(r2)2 > 0       for   r £ (r,, r2).

Then it follows that 0 < E(S,) = F(u(£)). Therefore our assumption u(r) >

0 implies that w(£) > A. We substitute r = t, into (4.1) to get u"(£) =
-f(u(£)) < 0 since u(£) > A. Hence we obtain the fact that w"(cj) < 0 if

u'(£) = 0 at some £ £ (rx, r2). This fact proves the uniqueness of zeros of u'
and moreover that u'(r) > 0 for r £ [rx, £) and u'(r) < 0 for r £ (£,, r2]. The

proof is thereby complete.

In the following lemma, we investigate the asymptotic behavior of solutions

to (2.1)—(2.2) as r —► oo and proves the decay of the energy. Moreover we

show that Vw £ L2(Rn) and F(u) £ Lx(Rn), therefore the Lagrangian L(u) is

well-defined and Theorem 1 makes sense.

Lemma 4.4. Let u ^ 0 be a solution o/(4.1) on [0, oo) which converges to 0

as r —> oo. Denote by E(r) the energy associated with u. Then the following

assertions hold :

(i)   u has at most a finite number of zeros in [0, co).

(ii) limr_oo u'(r) = lim^oo u"(r) = limr_oo E(r) = 0 and E(r) > 0 for

r>0.
(iii)   Vu£L2(Rn)   and   ufau), F(u)£Lx(Rn).
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(iv)   supr>0 \u'(r)\rn~x < oo and lim^oo .E(r)/-" = 0.

Proof. Assertion (i) readily follows from Lemma 4.3 (iii) since u(r) tends to

0 as r-> oo. We prove assertion (ii). Since F(s) is bounded below, so is

E(r). Recall that E(r) is strictly decreasing, hence it has a certain limit Ex,

as r —> oo . Then we have

-u'(r)2 = E(r)~ F(u(r))—► £«,       as   r-»oo,

which implies that E^ > 0 and lirnr_oo |w'(r)| = \/2E^>. If E^ > 0, then

limr_00 u'(r) = \f2Eoo or -y/2~E^. But this contradicts the boundedness of

u(r). Thus it follows that £00 = 0 and lim^oo u'(r) = 0. Moreover it holds

that E(r) > 0 for r > 0 since E(r) is strictly decreasing. Letting r —► 00 in

(4.1), we see that limr_00 u"(r) = 0.

We prove assertion (iii). By assertion (i) there exists a constant R > 0 such

that

(A) 0<u(r)<a       (r > R),

or

(B) -b < u(r) < 0       (r > R).

We deal with case (A) only. However case (B) can be treated in the same way.

Assertion (ii) means

(4.11) E(r)=l-u'(r)2 + F(u(r))>0.

Since F(u(r)) < 0 in case (A), it holds that u'(r)2 > 0, and so u'(r) < 0 for

r>R.

On the other hand, we rewrite (4.1) as

(rn-lu')' = -r"-lf(u).

The right-hand side is positive because of (A). Therefore r"~lu'(r) (< 0) is

increasing and \u'(r)\rn~x is decreasing in [R, 00). Hence we have

(4.12) \u'(r)\r"-x <C0 = \u'(R)\Rn-x       for   r > R.

This inequality gives

f u'(r)2r"-xdr < C0 f \u'(r)\dr = -C0 / u'(r)dr < C0u(R).
Jr Jr Jr

Letting 5 —> 00, we deduce that

/"OO

/    u'(r)2r"-xdr<C0u(R)< 00.
Jr

Thus we obtain Vw e L2(Rn).
We show that uf(u) £ LX(R"). Multiplying (4.1) by u(r)rn~x and integrat-

ing it over [R, r], we obtain

- [' uf(u)s"-xds = - f \u'\2s"-xds + u'(r)u(r)rn-x-u'(R)u(R)R"-x
Jr Jr

< -u'(R)u(R)R"-x.
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Here we have used that u'(r) < 0 and u(r) > 0 for r > R in case (A). Since

\uf(u)\ = -ufau) for 0 < u < a, we have
/•oo

/    \uf(u)\s"-xds < \u'(R)u(R)\R"-x.
Jr

We show that F(u) £ Lx(Rn). Note that F(u) < 0 for r > R in case (A).

Then (4.11) implies

\F(u(r))\ = -F(u(r)) < ^u'(r)2   for   r > R.

Hence the assertion F(u) £ Lx follows from Vu £ L2 .

Finally, we prove assertion (iv). From (4.12) it follows that supf>0 \u'(r)\rn~x

< oo. We show that limr_ooE(r)rn = 0. Since F(u(r)) < 0 Tor r > R,

we have that 0 < E(r) < u'(r)2/2. Therefore it is sufficient to prove that

lim^oo u'(r)2rn = 0. If n > 3, it follows from (4.12) that

u'(r)2rn < C02 r-<"-2) -^ 0       as   r -► oo.

Let n = 2. We want to show that u'(r)2rn = (u'(r)r)2 tends to 0 as r —► oo .

Recall that \u'(r)\r is decreasing in [R, oo), which has been proved in the

previous statement to (4.12) with n = 2. Therefore we set 8 = lim,--.,*, \u'(r)\r.

If 8 > 0, then -u'(r) = \u'(r)\ > 8/r for r > R. Integrating both sides, we

obtain

-u(r) + u(R) > 8log(r/R)—> oo       as   /-->oo,

which contradicts that limr^oo u(r) = 0. Hence lim,--^ u'(r)r = 0. This

completes the proof.

Definition 4.5. We denote by S the set of all solutions u ^ 0 of (2.1)-(2.2),
that is,

S = {u£ C2[0, oo): u(r) £ 0 satisfies (2.1) and (2.2)}.

Moreover we define

S+ = {ueS: u(0) > 0},        S~ = {u e S : u(0) < 0},

Sk = {u £ S : u has exactly k zeros in [0, oo) },

S£ = Sk n S+   and   Sk =Skn S~   for   k > 0.

We note that Sk   and Sk   are nonempty by Theorem 0.   Lemma 4.4 (i)

implies that S = \Jk=osk and s± = UZoSk ■
Combining Lemmas 4.3 and 4.4, we see the outline of the graph of solutions

to (2.1)—(2.2) in the following lemma.

Lemma 4.6. Let u £ Sk . If k = 0, hence u is a positive solution, then u'(r) < 0

for r £ (0, oo). If k > I and {ri}ki=x (0 < rx < r2 < ■■■ < rk) denote

the zeros of u, then u! has exactly k + 1 zeros {^}f=0 in [0, oo) such that

0 = to < rx < tx < ■ ■ ■ < rk < tk and

u'(r) < 0   for   r£ (t2i, t2i+x),        u'(r) > 0   for   r£ (t2i+x, t2i+2),

(-l)ku'(r)<0   for   r£(tk,oo),

u(t2i) > A   and   u(t2j+x) <-B  for   i > 0.
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The same result as above holds also for u £ Sk after exchanging u'(r) < 0 for

u'(r) > 0 and replacing the last two inequalities by u(t2i) < -B and u(t2i+x) >

A.

Proof. Let u £ S£ . Hence u(r) is a positive solution of (4.1) which tends to 0

as r —► oo . If u' (0) > 0, then Lemma 4.3 (ii) implies that u(r) > u(0) > 0 for

all r > 0. This contradicts that lim,--^ u(r) = 0. Hence u"(0) < 0, and so

u'(r) < 0 for r > 0 sufficiently small. If u'(T) = 0 at some first T £ (0, oo),

then u(r) has a local minimum at r = T. In fact, since u'(r) < 0 for r < T

and u'(T) = 0, it holds that u"(T) > 0, and therefore u"(T) > 0 by Lemma
4.3 (i). Then it follows from Lemma 4.3 (ii) that u(r) > u(T) > 0 for r > T,
which contradicts that lirn^oo u(r) = 0. Consequently, we see that u'(r) < 0

for all r > 0. For u £ Sk also, the above discussion together with Lemma 4.3

proves Lemma 4.6.

We have already proved in Lemma 4.2 that for each A, the energy E(r, X)

is decreasing in r and bounded below since u(r, A) and u'(r,X) are also

bounded. Therefore E(r, X) has a limit as r —► oo.

Lemma 4.7. There exist constants A, and 73, such that At> A, 73* > 73 and

lim£(r,A)<0      for any   X £ (-B,, A*) \ {0}.
r—*oo

Proof.  For Xe(-B,A)\ {0}, we have

E(r,X)<E(0, X) = F(X)<0       for r > 0.

Hence, for such A the assertion holds. Let X = A and consider the energy

E(r, A). Since u(r, A) is not a stationary solution, the corresponding energy

is strictly decreasing. Hence we get

£(1, A) <E(0, A) = F(A) = 0.

Using Lemma 4.2 (ii), we find a constant A* ( > A ) such that E(l, A) < 0 for

X £ [A, At], therefore lim^ooE(r, A) < 0 . The existence of /3* is proved in

the same way as above.

The next result is a direct consequence of Lemma 4.4 (ii) and Lemma 4.7.

Lemma 4.8. It holds that

u(0)>A*   for   u£S+       and      u(0) <-Bt   for   u£S~.

We need the lemma below in Definition 4.11 later on.

Lemma 4.9. For any X > A (or A < -B ) there exists an r > 0 such that

u(r,X) = A (or u(r, X) = -B).

Proof. We first set eo = inf{/(5) : s > A}, which is positive because of (f2) and

(f4). Let A > A and u(r) denote u(r, X). We next write C = sup{\u'(r)\ : r >

0} by Lemma 4.2. In contradiction to the assertion of the lemma, suppose that

u(r) > A for all r > 0. Then (4.1) implies

u" =-u' - f(u) <-C - eo < --^       for r large enough,

which implies that limr_00 u'(r) = -oo . This contradicts the boundedness of

u'(r) and the proof is complete.
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Definition 4.10. Let A* and 73, be determined by Lemma 4.7. We define

positive constants Ax, Bx, do and 8 in the following way. First, we fix

Ax and Bx such that -B„ < -Bx < -B and A < Ax < A*. Secondly,
the constant do £ (0, 1) is determined by Lemma 3.2. Lastly, we define the

constant 8 £ (0, 1) such that max(Ai / A*, Bx/B*, 60) < 8 < 1 . Therefore the
conclusions of Lemmas 3.2 and 3.3 hold.

We recall that equation (4.1) has a singularity at r = 0. To estimate the

integral of u'(r)2r"~x over [0, oo), we divide the interval [0, oo) into a small

neighborhood of r = 0 and the other interval. To this end, we introduce the

notation t(X). Then the interval [0, t(X)) means the small neighborhood of
r = 0.

Definition 4.11.   For any A e (-oo, -t3»] U [A*, oo) we define t(X) by

t(X) = min{r > 0 : u(r, X) = 8X}.

The set on the right-hand side is nonempty. Indeed, if X > A,, then the

definition of 8 implies that 8X > Ax > A, hence u(0,X) = X > 8X > A.
Therefore Lemma 4.9 implies that the set is nonempty, and so t(X) is well-

defined. From the definition of t(X) it follows that

(4.13) X>u(r, X)>8X>AX       when   A > A*   and   r£[0,t(X)],

(4.14) A< u(r, X) < 8X< -Bx       when   A <-t3,   and   r£[0,t(X)].

In the two lemmas below, we present a few estimates for t(X), which will be

useful for proving Lemma 4.14 later on and computing the integral of u'(r)2rn~~x

over [0, t(X)].

Lemma 4.12. We replace 8 by a constant slightly less than I, if necessary. Then
it holds that 0 < t(X) < 1 for X £ (-oo, -73,] U [A*, oo).

Proof. We rewrite (4.1) as

(r"-xu')' = -r"-xf(u).

Integrating both sides twice, we have

u(0)-u(r)= /"-L f f(u(r))r"-xdrds.
Jo 6      Jo

Let u = u(r, X) and substitute r = t(X). Then we get

(4.15) (l-8)X= -L. /  f(u)r"-xdrds.
Jo     s      Jo

On the other hand, by assumption (f4) we have a constant R > 0 such that

fas) > 2ns for s>R. Let X> A, and 8 £ (1/2, 1). If A > 2/?, then (4.13)
implies that R<8X< u(r) < A for r £ (0, t(X)), and so (4.15) yields

r'W   i     rs
(l-8)X>2n —-x\  u(x)xn~xdzds > 8Xt(X)2,

Jo    s     Jo

hence,

'(A)2<(l-6>)/0< 1.
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If A, < X < 2R, then Ax < 8X < u(r) < 2R for r £ (0, t(X)). We now set

fa = min{/(^) : Ax < s < 2R} > 0, and hence (4.15) implies

rt(X)     i        ps r

2(1-8)R> fa I     —JQr^drds = ̂ t(X)2.

Consequently, choosing 8 to be sufficiently closed to 1, we have t(X) < 1. For

A < -/3» also, our method remains valid.

From now on, we always fix 8 for which the conclusion of Lemma 4.12 is

valid. In the next lemma, we estimate t(X) from below.

Lemma 4.13. There exists a positive constant C such that

Ct(X)_\X\F(X)-x'2      for   A e(-oo, -73,] U M,, oo).

Proof. Let A > A* and u(r) = u(r, X). By (3.4) there exists a constant Cx > 0

such that sfas) < CxF(s) for 5 £ [Ax, oo). We note that Ax < 8X < u(r) < X
for r £ (0, t(X)) by (4.13). Then the right-hand side of (4.15) is estimated as

This inequality together with (4.15) implies the desired conclusion. In case of

A < -73, the above argument is also valid and the proof is complete.

We prove that the energy diverges to +oo as A —> ±oo, which will be used

in Section 6.

Lemma 4.14. We have

lim E(R, X) = oo      for any   R>0.
X—>±oo

Proof. Since E(r) is decreasing, it is sufficient to prove the lemma for R > 1.
Let R > 1. We fix A £ R arbitrarily and write u(r) = u(r, X) and E(r) =

E(r, A). The lemma is proved by using Pohozaev's identity [9]:

rR
(4.16) 2E(R)Rn + (n-2)u'(R)u(R)R"-x = /   (2nF(u)-(n-2)uf(u))rn~xdr.

Jo

This relation is obtained in the following way. First, multiplying (4.1) by

u(r)rn~x and integrating the resultant identity over [0, R], we obtain

rR rR

(4.17) /   \u'\2rn-xdr= /   uf(u)r"~xdr + u'(R)u(R)R"-x.
Jo Jo

Next, multiplying (4.1) by u'(r)r" and integrating it over [0, R], we have

n — i   rR fR
(4.18) ^-=- /   \u'\2r"-xdr + E(R)R" = n       F(u)rn~ldr.

2    Jo Jo

Lastly, combining (4.17) and (4.18), we obtain (4.16).
On the other hand, there exist constants v > 0 and C > 0 such that

(4.19) 2nF(s) - (n - 2)sf(s) > uF(s) -C   for   s £R.

Indeed, if n = 2, we choose v = 2n = 4 to get (4.19). If n > 3, we have a

small constant v > 0 by (f5) such that
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sf(s)     2n -1/ .
-^rfv <-=r       for 5 large enough,
77(5) ~  n-2

which implies (4.19).
Since limJ_±0O f(s)/s = oo , one finds a constant Co > 0 such that

(4.20) s2/2<F(s) + C0       for   seR.

Hence we have

(4.21) u'(R)u(R) < ^u'(R)2 + \u(R)2 < E(R) + C0.

Substituting (4.19) and (4.21) into (4.16), we obtain

rR
(4.22) CXE(R) + C2>       F(u)rn~xdr,

Jo

where Cx and C2 are positive constants depending only on R. We will es-

timate the right-hand side. Let t = t(X) be defined by Definition 4.11. From
(4.20) it follows that F(s) + C0 > 0 for 5 £ R. Adding (C0/n)Rn to both sides
of (4.22), we have

rR
(4.23) CXE(R) + C3>       (F(u) + C0)r"-Xdr,

Jo

where C3 = C2 + (Co/n)Rn . Note that the integrand on the right-hand side is

nonnegative and that t(X) < 1 < R by Lemma 4.12. Therefore we have

fR tt(X)
(4.24) /   (F(u) + Co)r"-idr> /     F(u)rn~xdr.

Jo Jo

Let X>A,. By (4.13) we have that Ax < 8X < u(r) < X and F(8X) < F(u(r))
for r £ (0, t(X)). Hence Lemma 3.2 with 5 = A implies that

r'W ftiX) 1
(4.25) /     F(u)r"~xdr> F(8X)r"-xdr >—F(X)t(X)n.

Jo                           Jo 2n

We use Lemmas 4.13 and 3.3 to estimate the right-hand side as

(4.26) (2n)~xF(X)t(X)n > C4F(A)-("-2)/2A" > c5Xn^p+x^n-2^2.

Combining (4.23), (4.24), (4.25) and (4.26), we obtain

CXE(R) + C3 > c5A"-(p+1)("-2)/2 —f 00       as   A - 00.

Here we have used that n - (p + l)(n - 2)/2 > 0 by Lemma 3.3. The argument

above remains valid for the case where A < -73,. Thus the proof is complete.

Recall the fact that E(r) > 0 for r > 0 and u £ S.  Then we have an a

priori estimate connected with \u'(r)\ and \u(r)\.

Lemma 4.15. There exist positive constants ao and C such that

(4.27) C\u'(r)\ > \u(r)\(q+x)'2

provided that \u(r)\ < ao and u £ S. Here q is the constant in (f3).

Proof. By (f3) there exist positive constants m and ao such that 0 < ao <

min(a, b) and F(s) < -m\s\q+x for |.s| < ao . Let u £ S and r > 0 be a point

satisfying \u(r)\ < a0 . Since E(r) = \u'\2/2 + F(u) > 0 by Lemma 4.4 (ii), we

have that |«'|2/2 - m\u\q+x > 0, which implies (4.27).
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5. Proof of the lower estimate

In this section we prove the proposition below.

Proposition 5.1. There exists a constant C > 0 such that

/•OO

C(k+l)n<        \u'\2r"-xdr      for   u £ Sk.
Jo

The proof of Proposition 5.1 is based on a nonlinear variant of Priifer trans-

formation. See [3, p. 332] for the usual linear Priifer transformation. Our goal

is to find the relation between the L2-norm of Vu for a solution u and the

number of zeros of u. The former is a continuous quantity, but the latter is a

discrete one. To connect these quantities, we rewrite equation (2.1) to the first

order system
{»' = v,

v' =-v - fau).

Then the solution (u(r), v(r)) draws a smooth curve which does not contain the

origin in the (u, v)-phase plain. Here we choose v-axis and w-axis as axes of

abscissa and ordinate, respectively. Then we will prove later on that if u(x) = 0

at some x, then the orbit (u(r), v(r)) intersects the w-axis at x and moves

counterclockwise around the origin as r increases in a small neighborhood of

t . Therefore, the number of zeros can be represented by the winding number

of the orbit as r varies over the interval [0, oo). To calculate the winding

number, we introduce polar coordinates and define the argument cp as below.

Definition 5.2. For u £ S we define the functions p(r) and cp(r) by

(5.1) u' = pcostp ,

(5.2) Y(u) = p sin tp ,

(5.3) P(0) = |,

where   Y(s) = sgn(s)y/G(s) and G(s) is defined by Lemma 3.4.

Observing Lemma 3.4 and (3.9), we see that sY(s) > 0 for s / 0 and

moreover that Y £ CX(R), Y'(s) = (l/2)\g(s)\G(s)~x'2 for s ^ 0 and Y'(0) =
0. The relations (5.1), (5.2) and (5.3) determine the functions p(r) and <p(r)

of class C'[0, oo) uniquely. In fact, since any nontrivial solution u =£ 0 of

(2.1)—(2.2) has only simple zeros, we get

(5.4) p(r)= (u'(r)2 + Y(u)2y/2 = (u'(r)2 + G(u))x/2>0   for   re[0,oc).

Therefore p(r) and <p(r) are well-defined. Since the left-hand sides of (5.1)

and (5.2) are continuously differentiable, the functions p(r) and cp(r) are of

class Cx[0, oo) as well.

The definitions (5.1) and (5.2) transform (2.1) into a system of differential

equations for (p, tp). In particular, cp' satisfies the following equation.

Lemma 5.3. For u £ S we have

(5.5) pV = Y'(u) {|M'|2 + 2/(K)^j} + n~^u> Y(u).
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Proof. Differentiating (5.1) with respect to r, we have

u" = p' cos tp - ptp' sin cp.

Substituting this relation into (2.1) yields

n - 1
(5.6) -u! + f(u) = -p'cos tp + ptp'sincp.

Next, we differentiate (5.2) to obtain

(5.7) Y'(u)u' = p'sin cp + pep'cos cp.

Multiplying (5.6) by (5.2) and (5.7) by (5.1), and then summing up these iden-
tities, we obtain

pV = Y'(u)\u'\2 + ?—^u' Y(u) + f(u)Y(u).

Substituting Y(u) = 2Y'(u)G(u)/g(u) into the last term on the above identity,

we get the desired relation (5.5).
The next lemma implies that the orbit (u', Y(u)), hence (u', u) also, winds

counterclockwise around the origin as r increases in a small neighborhood of

each zero of u .

Lemma 5.4. Let u £ S. Then for any zero x of u there is an e > 0 such that

cp'(r)>0       if  0< \r-x\ < e.

Therefore <p(r) is strictly increasing in some neighborhoods of zeros of u(r).

Proof. Since u has only simple zeros, u'(x) ^ 0 and x ^ 0. Substituting

Y(u) = 2Y'(u)G(u)/g(u) into (5.5), we get

P2 I ,    /,? r-, r,    x 2(/l -  1)     ,,G(U)
-f—tp' = \u'\2 + {2/(u) + -^-V}—)-f.Y'(u)        '   '       l r ' g(u)

From the definition (3.9) of g(s) it follows that

G(u(r)) 1
; ; .. =-Tu(r)—>0       as   r-»r,

g(u(r))     p+l

and so,

^i4/="'(t)2>0-
We note that Y'(u) = (1/2)|^(m)|C7(m)-'/2 > 0 for h / 0. Therefore, if

\r — x\> 0 is sufficiently small, then we obtain p(r)2tp'(r) > 0. This completes

the proof.
In the following lemma, we show that for any solution u, the value of cp(R2)-

<p(Rx) reflects the number of zeros of u in [Rx, R2]. Therefore we have only

to calculate the value of cp(r) instead of the number of zeros.

Lemma 5.5. (i) Let u £ Sk and {r/}*=1 (0 < rx < r2 < ■•■ < rk) denote its

zeros. Then we have

<P(rj) = Jn      f°r   !<./<£>

(j - l)n< tp(r) < jn       for   /■;_. < r < rj ,     l<j<k+l,

where we set r0 = 0 and rk+x = oo.
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(ii) Let u^O satisfy (2.1) and u'(0) = 0. Then it holds that u £ Sk if and
only if cp(r) tends to (k+l)n as r -> oo.

Proof. Notice by (5.2) that u(x) = 0 if and only if <p(x) = 0 (mod n).
Consider the first zero rx of u(r). Then it holds that u(r) ^ 0 (0 < r < rx)

and u(rx) = 0, in other words, cp(r) / 0 (mod tt) for 0 < r < rx and

cp(rx) = 0 ( mod n). Since cp(0) = n/2 by (5.3), it follows that 0 < cp(r) < n

for 0 < r < rx and cp(rx) = 0 or n. Then Lemma 5.4 implies that cp(rx) = n

and cp(r) > n for r slightly larger than rx . Since u(r) ^ 0 for rx < r < r2,

it holds that n < <p(r) < 2n for rx < r < r2. Proceeding with this argument
inductively, we obtain (i).

We prove assertion (ii). The definitions (5.1) and (5.2) imply

(5.8) tanp = ^.
u'

Let u £ Sk . Then assertion (i) gives

(5.9) kn < cp(r) < (k + l)n       for   r e (rk , oo).

Observing Lemma 4.6, we see that

(5.10) u(r)u'(r)<0      for   re (^,00),

where tk denotes the largest zero of u'(r). In case of k = 0, we set r0 = 0 in

(5.9) and t0 = 0 in (5.10). Since sY(s) > 0 for 5 ^ 0, it follows from (5.8)
and (5.10) that

(5.11) tantp(r)<0       for   r£(tk, 00).

Combining (5.9) and (5.11), we get

(5.12) (k+ l/2)n <cp(r) <(k+ l)n       for   r £ (tk , 00).

On the other hand, there is a constant C > 0 by (3.9) such that G(u) < C\u\f+X

for \u\ sufficiently small. Then (5.8) together with Lemma 4.15 implies that

I tan p I = vy < Ci\u\("-M2   for   r   large enough.

Since p > 2q - 1 > q by (3.7), tantp(r) tends to 0 as r —»■ 00. This together
with (5.12) means

(5.13) lim cp(r) = (k + l)n.
r—»oo

Conversely, suppose that cp(r) satisfies (5.13). Then tan^(r) tends to 0 as

r —> 00. Since \u'(r)\ is bounded by Lemma 4.2, we have

\Y(u)\ = \u'tancp\—>0       as   r —> 00.

This implies lim,.-^ u(r) = 0, i.e., u £ S. Then we have (5.10) for r large

enough, and hence tancp(r) < 0 by (5.8). This fact with (5.13) implies that

(k + l/2)n < cp(r) < (k + l)n       for all   r   large enough.

Therefore assertion (i) proves u £ Sk . Thus the proof is complete.

We now explain our plan tc prove Proposition 5.1 and Theorem 1.  Using

(5.4) and dividing (5.5) by p2, we obtain

cp' = Z(u, u! , r),
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where Z is a function of variables u, u' and r, which can be written explicitly

by (5.5). Integrating both sides over [0, oo), we have

/•OO

(5.14) tp (oc) - tp(0) =        Z(u,u',r)dr.
Jo

The left-hand side represents the number of zeros of u in [0, oo) by Lemma

5.5. The right-hand side will be estimated from above or below via the L2-norm

of Vw. More precisely, we will prove that
/•OO

(5.15) Ci||Vm||2/2"< /    Z(u,u',r)dr<C2\\Vu\\2/2n.
Jo

To make a success of the computation above, we adopted the nonlinear trans-

formation (5.2). Consequently, we can connect the number of zeros and the

Sobolev norm by using (5.14) and (5.15).
In what follows, we prove (5.15). To do so, we alter (5.5) into a simpler form

as below.

Lemma 5.6. There exist positive constants Cx and C2 such that

(5.16) ^^c^g^/u^ + ^-l)^^-,

(5.17) cp' > C2(g(u)/u)x/2 + (n- l)^p4

Proof. From the definition (3.9) of g(s) together with (f5), there exist constants

Cx, C2 > 0 such that

Cxsg(s) < G(s) < C2sg(s)       for   s £R.

Using this inequality in the relation Y'(s) = (l/2)\g(s)\G(s)~xl2, we have

(5.18) C3(g(s)/s)x'2 < Y'(s) < C4(g(s)/s)x/2       for some   C3,C4> 0.

On the other hand, by Lemma 3.4 (iii) there exists a positive constant C

such that f(s)/g(s) < C for all s e R. Then we have

(5.19) \u'\2 + 2f(u)^- <\u'\2 + 2CG(u)<max(l,2C)p2,

where we have used the relation p2 = \u'\2 + G(u) by (5.4). Combining (5.18),

(5.19) and (5.5), we obtain (5.16).
We prove (5.17). Using f(u) = g(u) - h(u) and Lemma 3.4 (iv), we get

\u'\2 + 2f(u)^\ = \u'\2 + 2G(u) - 2h(u)^\ > \u'\2 + 2G(u) - H(u).
g(u) g(u) -     '

Now, recall Lemma 4.4 (ii), that is,

E(r)=X-\u'\2 + G(u)-H(u)>0.

Then the two inequalities above yield

(5.20) \u'\2 + 2f(u)^ > i|M'|2 + G(u) > ip2.

By (5.18), (5.20) and (5.5) we have (5.17). The proof is complete.
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We integrate (5.16) over [0, oo) and estimate the integral of the first term

on the right-hand side. To this end, we divide the interval [0, oo) into two

domains / and J in the following way.

Definition 5.7. Let u £ S. Let a0 be defined by Lemma 4.15. For 8 £ (0, ao)
we set

/ = /(<5,w) = {r€(0,oo):|M(/)|><J},

J = J(8, u) = {r £ (0, oo) : \u(r)\ < 8}.

Lemma 5.8. For any u > (q-l)/2 there exists a positive constant Cv such that

[ \u\"dr<C„8{2»-q+xV2(k + l)      for   u £ Sk and 8 £ (0, a0).

Proof. Let u £ Sk and {n}k=x (0 < rx < r2 < • ■ ■ < rk ) denote the zeros of u.
Recalling the outline of the graph of u(r), that is, noting Lemma 4.6, we see

that J is represented as
k+l

J=\J(ai,fii),
i=\

where

a, < r, < Pi    (1 < / < k),     ak+x < 0k+x = oc,

\u(ai)\ = \u(Bi)\=8,     u(ai)u(pi)<0   (l<i<k),

l"(a*+i)l = <*.     and   u(/3k+x) = u(oo) = 0.

We consider the interval (a,, r,) with i < k in which u(r) > 0 and u'(r) < 0.

Hence «(«,) = 8 and u(rt) = 0. Let o > 0. Then Lemma 4.15 gives

-(ua)' = -oua-xu' = o\u\"-x\u'\ > Ca\u\{2a+q-X)l2

for some Ca > 0. We integrate both sides over [a,, r,] to obtain

Ca j ' \u\(2a+q-x)/2dr < -u(ri)a + M(a,)CT = 8".
Jai

In the case where u(r) < 0 for r £ (a,, r,), moreover, in the interval (r,, /?,)

or (ak+x, /3k+x) even, the above estimate remains still valid. Summing up these
inequalities on i from 1 to k + 1, we have

Ca f \u\{2a+q-x)/2dr < (2k + 1)8".

Substituting o = (2u-q+l)/2 > 0 into this inequality, we obtain the conclusion

of Lemma 5.8.
By (3.9) there exists a constant C > 0 such that

(g(s)/s)1'2 < C\s\^~X)'2       for   |5|    sufficiently small.

Using this inequality in Lemma 5.8, we have the following lemma.

Lemma 5.9. There exists a positive constant C independent of 8 and k such

that

f(g(u)/u)x/2dr < C8(fl-q)l2(k +1)      for u £ Sk and 8 £ (0, a0).

The above lemma gives the estimate for the integral over J. Next we need

to estimate the integral over 1(8, u) of (g(u)/u)xl2. To this end, we present a

brief lemma on the Lebesgue integral of nonnegative and monotone functions.
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Lemma 5.10. Let f be a nonnegative function defined on (0, oo). Suppose that

I is a measurable subset of (0, oo). Then the following assertions (i) and (ii)

hold:
(i) // / is nondecreasing, then we have

/•l/l r
J    f(r)dr<jf(r)dr.

(ii) If f is nonincreasing, then we have

[f(r)dr< (' f(r)dr.
J] Jo

Here \I\ denotes the measure of I. Some of these integrals may be +00. But
this lemma asserts that when the right-hand side is finite, so is the left-hand side,

and hence the inequality is valid.

Proof. We prove (i) only, but the assertion (ii) can be treated in the same way.
If f(r) = 0 a.e. on (0, 00), then the inequality is trivial. Suppose that there

exists a 8 > 0 such that far) > 8 for r large enough since / is nondecreasing
and nonnegative. If |/| = 00, both sides of the inequality (i) are equal to +00.

Suppose that |/| < 00 . We first deal with the case where / is a bounded open

set. Hence it is represented as / = U~i(a/> h) • We set h = U/=i(a/> bi).

Rearranging it, we have Ik = UJLi(ai» Pi) where 0 < ax < fix < a2 < ■■■ <

Pk < 00 . Set Tj = J2Ji=x(i3i - a,) for 1 < j < k and T0 = 0. Then since / is
nondecreasing, we have

j ' f(r)dr= j ' f(r + ai-Ti_x)dr> f ' f(r)dr.
J at JTj-x •/7",_,

The summation on i gives

r rTk r\h\

/ f(r)dr > /    f(r)dr = /     f(r)dr.
Jik Jo Jo

Since Ik C I and / > 0, we get

r W4I
/ f(r)dr > /      f(r)dr.
Ji Jo

Letting k —* oc, we obtain (i). If / is an unbounded open set, then we use an

approximate sequence of bounded open sets to get the conclusion.

Let / be a measurable set. Then there exists a sequence {Ik}kLx of open

sets such that / c Ik and lim^oo \Ik - I\ = 0. Therefore we have

r r\h\ /-m
/ f(r)dr > /     f(r)dr > /    f(r)dr.

Jik .     Jo Jo

Letting k -» 00, we obtain assertion (i) and the proof is complete.

Applying the above lemma, we can estimate the integral of (g(u)/u)xl2 over

1(3, u}.

Lemma 5.11. For any 8 £ (0, ao) there exists a constant C0 depending on 8
such that

(5.21) j(g(u)lu)xl2dr<C0(^jug(u)rn-xdr^

for u £ S and I = 1(8, u).
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Proof. Let 8 £ (0, ao). Then there exist constants m(> n) and Q(> 0) such

that

(5.22) (g(s)/s)ml2 < Qsg(s)       for    \s\>8.

Indeed, by Lemma 3.3 and Lemma 3.4 (i) we have a constant m(> n) such

that

,2/ti              .„          -                         2m          2«
p + 1 <-= <oo   if   n = 2,       p+l<- <--   if   n > 3,

m-2 m-2     n-2 ~

sg(s)<C\s\2m/{m-2)       for   s£(-oo,-Bx]U[Ax,oc).

The last inequality remains still valid for \s\ > 8 if we replace C by a larger

constant C§ . Then the above inequality is equivalent to (5.22).

We use Holder's inequality to get

(5.23)

f(g(u)/u)[/2dr = f(g(u)/u)x(2r^-X)'mr^n-x^mdr

< (f(g(u)/u)m'2r"-xdr\      ( f r-'"'("-n/mdr\

where l/m + l/m! = 1. By Lemma 5.10 (ii) the last term is estimated as

j r-m'(n-\)lmdr _    f r-(n-\)l(m-\)^r

(5.24) |/(
<    /       r-(n-\)l(m-\)dr_™__tj\{m-n)/(m-l)

Jo m-n{

Here we note that |/| < oo. Indeed, / is a bounded set because u(r) tends to

0 as r —> oo . Combining (5.22), (5.23) and (5.24), we obtain

(5.25) f(g(u)/u)x/2dr<Cs(fug(u)rn-xdr)      \i\l"-»)/".

On the other hand, the application of Lemma 5.10 (i) yields

fug(u)r"-xdr>Ds [r"-xdr>Ds f    rn~xdr = (Ds/n)\I\n ,
Ji Ji Jo

where D0 denotes the infimum of sg(s) for \s\ > 8. The above inequality is

rewritten as

(5.26) \I\<D'Jjug(u)rn-xdr\     .

By (5.25) and (5.26) we obtain the conclusion (5.21) and the proof is complete.

Summing up the inequalities in the assertions of Lemmas 5.9 and 5.11, we
get the lemma below.

Lemma 5.12. There exist constants C, C0 > 0 such that

/•OO /    /-oo \   l/«

/    (g(u)/u)x/2dr<CdU    ug(u)r"-xdr)     + C8^~q)/2(k + 1)
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for u £ Sk and 8 £ (0, ao).  Here Q depends only on 8, but C does not

depend on anything.

Recall Definition 4.11. We modify the notation t(X) slightly, which has
been defined for the initial data A. But, in what follows we define t(u) for any

solution u (^ 0) of (2.1) with (2.2).

Definition 5.13. Observing Lemma 4.8 and Definition 4.11, we define t(u) by

t(u) = min{r > 0 : u(r) = 8u(0)}       for   u £ S.

We now proceed to estimate the integral of the second term on the right-
hand side of (5.16). The interval [0, oo) of integration is divided into three

subintervals [0, t(u)), [t(u), R) and [7v,oo). Here R will be determined

later on. First, in the interval [0, t(u)) the function u' Y(u)/rp2 is negative.

Indeed, Lemma 4.6 implies that u'(r)u(r) < 0 for r £ (0, t(u)) because t(u)

is less than the first zero rx of u. Since sY(s) > 0 for s ^ 0, it holds that

u' Y(u) < 0 for r £ (0, t(u)). Next, we estimate the integral of u' Y(u)/rp2

over [t(u), R).

Lemma 5.14. For any e > 0 and any R > 1 there exists a constant C#,£ > 0

depending only on e and R such that

[R ̂ P^dr<CRJr F(u(r))r"-xdX
Jt(u)       rP \Jo )

for any u £ S.

Proof. Let u £ S+ . For simplicity, we use the notations A = u(0) and t = t(u).

We recall (4.25), i.e.,

(5.27) f F(u)r"-xdr>^-F(X)t".
Jo 2n

On the other hand, from (5.4) it follows that

\u'Y(u)\      \u'\2 + Y(u)2      I

p2      ~ 2p2 - 2 '

and therefore

(5.28) /   xU'Y<?)xdr<\ [   r-xdr<\r£ j   r~x+£dr < ^-Ret~£.
J,       rp2 2 J, - 2      J, 2e

We now show that there exist constants a > 0 and Co > 0 such that

(5.29) C0F(X)t" > t~a.

From Lemmas 4.13 and 3.3, it follows that

F(X)tn+a > CxXn+aF(X)-{n+a-2)/2 > c2Xn+a~(p+x)(n+a-2)l2,

where Cx, C2 > 0 are independent of A. We fix a so small that

2(p + l)/(p-l)-n>a>0,
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and therefore n + a - (p + l)(n + a - 2)/2 > 0. Then we obtain the inequality

(5.29) by using A > A*. Combining (5.28), (5.29) and (5.27), we obtain

fRWJ_mdr< U<t-> = ci(r°yi°
Jt       rp ~ 2e

< Cx(CoF(X)tnfla < C2 (j F(u)r"-Xdr\      ,

where each C, (0 < / < 2) depends only on R, a and e. Since e is an

arbitrary positive number and a is a positive constant, we can replace s/a by

e. This completes the proof.
The lemma above gives the estimate for the integral over [t(u), R). In the

next lemma, we estimate the integral over [R, Rx) or [7?, oo) of \u' Y(u)\/rp2 .

Lemma 5.15. For any a > 0 there exist constants C, Ca > 0 such that

[RX |M'y(.M)lrfr < % [R\g(u)/u)x'2dr + Co^-2q+x^'2(k + 1)
Jr       rp2 R JR

for any 1 < R < Rx < oo and u £ Sk. Here Ca depends only on o, but C

does not on anything.

Proof. Since g(s)/s > 0 for j ^ 0 and lim^±00 g(s)/s = oo , we set

Ca = sup{(l/2)(s/g(s))l>2:\s\_o}.

It suffices to prove the lemma for a £ (0, ao) only. We use the notations

/ = I(o, u) and J = J (a, u) defined by Definition 5.7 with 8 = a . Then for
r £[R, Rx)r\I(o,u) it holds that

rp2     ~        2rp2        ~ 2R~ R {8{U>/U>     '

and therefore

(5-30) / ^^dr < % [R\g(u)/u)x<2dr.
J[R,R,)ni     <P K Jr

Next we use that r > R> I for r £ [R, Rx) and employ the inequality that

G(u) < C|w|^+1 for |«| small enough because of (3.9). Then Lemma 4.15 gives

for r£[R,Rx)nJ,

\u'Y(u)\ < \u'\G(u)xl2 = G(u)xl2 <        {tl_g)/2

rp2 \u'\2 \u'\

Hence Lemma 5.8 with J = J(o, u) and v = (p - q)/2 implies that

(5.31) f \±_Xpidr<C [ \u\^-qV2dr<Ccr^-2q+x)'2(k+l).
JlR.R^nj      rP Jj

Here we note that the assumption of Lemma 5.8 is fulfilled since v = (p-q)/2 >
(q - l)/2 by (3.7). Summing up (5.30) and (5.31), we obtain the conclusion.

We connect the two integrals of ug(u) and u'(r)2 as below.
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Lemma 5.16. There exists a constant C > 0 such that
/•OO /»oo

(5.32) /    ug(u)rn~xdr <C       \u'\2rn-xdr      for   u £ S.
Jo Jo

Proof. Let u £ S. We recall Lemma 4.4 (iv), i.e.,

sup  \u'(r)\rn~x < oo.
0<r<oo

Therefore, letting R —► oo in (4.17), we have

/•OO /■oo

(5.33) /    \u'\2r"-ldr= /    uf(u)rn~xdr.
Jo Jo

We now set

K = {r £ (0, oo): -bx < u(r) < ax}   and   L = (0,oo)\K,

where ax and bx are the constants fixed in Lemma 3.4, and so ax £ (a, A)

and -b\ £ (-73, -b). Then there exists a C > 0 independent of u such that

(5.34) cf    \u'\2r"-xdr> f (-ufau)+ ug(u))rn~xdr.
Jo Jk

This will be proved soon. Summing up (5.33) and (5.34), we have
/•OO /* /» /*oo

(1+C) /    \u'\2r"-xdr> / uf(u)rn-xdr+    ug(u)rn~xdr= /    ug(u)rn~xdr,
Jo Jl Jk Jo

where we have used that f(u) = g(u) for r £ L by Lemma 3.4 (i). Therefore

we get (5.32).
We show (5.34). To this end, it suffices to prove the stronger assertion

(5.35) C|w'|2 > \uf(u)\ + ug(u)       for   r £ K.

Since limsupj_.o/Cs)/kl'_1s < 0 an(* limsup^0 \sf(s)/F(s)\ < oo, there exist
constants 80> 0 and C, > 0  (1 < / < 4) such that

(5.36) \sf(s)\<Ci\F(s)\ = -CiF(s),

(5.37) sg(s) < C2\s\"+X < C3\s\q+l < -C*F(s)

for \s\ <80. We note that -F(s) > 0 for s £ [-bx, -80] U [80, ax]. Hence the
inequalities (5.36) and (5.37) remain valid for 5 £ [-bx, ax] if we replace each

Cj by a larger constant. We sum up (5.36) and (5.37) to get

(5.38) -CF(u)>\uf(u)\ + ug(u)   for   r£K,

where C is independent of u . Since E(r) = \u'\2/2 + F(u) > 0 by Lemma 4.4
(ii), we have

(5.39) ^u'(r)2 > -F(u).

By (5.38) and (5.39) we obtain (5.35) and the proof is complete.
We are now in a position to give the proof of Proposition 5.1.

Proof of Proposition 5.1. Let u £ Sk. We define t = t(u) by Definition 5.13.
Integrating (5.16) over [0, oo) and using Lemma 5.5, we have

(5.40) (k + 1/2)71 < Cx f°°(g(u)/u)x/2dr + (n - 1) f°° "'^dr.
Jo Jo       rP
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We estimate the second term on the right-hand side. In view of the outline of the

graph of u(r) (recall Lemma 4.6) we see that u'(r)u(r) < 0 for 0 < r < t(u),

and hence

,.,., f'u'Y(u),      .
(5.41) /   -\-!-dr < 0.

Jo     rp2

Next, it follows from Lemmas 5.14 and 5.15 with R = 1 and Rx = oo that

(5-42)

/oo (g(u)/u)x'2dr + Co(fl-2q+x]l2(k + 1).

Here and in what follows, C£ and Ca denote various positive constants de-

pending on e and o, respectively. However, C, Cx and C2 denote positive

constants independent of e and 8 .' We set s = l/n and combine (5.40), (5.41)

and (5.42) to get

1 1 f°°
_{k+l)<k + _<CaJ    (g(u)/u)x'2dr-

+ Cx(f F(u)r"-Xdr\     + C2a(ll-2q+X)l2(k + 1).

We choose a > 0 so small that C2o^-2q+x^2 < 1/4 to get

\(k+l) < CxJOC(g(u)/u)x/2dr + C2(fF(u)r"-xdA     .

Using Lemma 5.12, we have

i / r°° \ xi"
-^(k+l)<Cd(        ug(u)r"-xdr\      + Cx8^~q)'2(k + 1)

+ C2(f F(u)r"-Xdr)     .

Fix 8 > 0 so small that Cx8^~q^2 < 1/8. Then it follows that

/•oo /•;

(5.43) ((fc + l)/8)n<Ci /    ug(u)r"-xdr + C2      F(u)r"~xdr.
Jo Jo

We here recall Lemma 4.8, (4.13) and (4.14). Then it holds that

u(r) > Ax       when   re[0,t(u)]   and   u £ S+,

u(r)<-Bx    when   r£[0,t(u)]   and   u£ S~.

Moreover, by (f5) and Lemma 3.4 there exists a constant C > 0 such that

F(s) < Csfas) = Csg(s)       for   s £ (-oo,-BX]U[AX , oc),

and so

F(u(r))<Cu(r)g(u(r))       for   r£[0,t]  and  u £ S.
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Therefore it follows from (5.43) that

/•oo

(k + l)n<C       ug(u)rn~xdr,
Jo

which together with Lemma 5.16 yields

/•OO

(k+l)n<C       \u'\2r"-xdr.
Jo

This completes the proof of Proposition 5.1.

6. Proof of the upper estimate

The purpose of this section is to prove the following proposition and to

complete the proof of Theorem 1.

Proposition 6.1. There exists a constant C > 0 such that

/•OO

/    \u'\2r"-xdr<C(k + l)"      for   u£Sk.
Jo

We slightly modify the notation E(r, X), which has been defined for the

initial data A. However, from now on the energy is defined for any solution u
of (2.1) with (2.2).

Definition 6.2. We define E(r, u) by

E(r, u) = ^u'(r)2 + F(u(r))       for   u £ S.

Recall E(r, u) > 0, which has been proved in Lemma 4.4. We consider the
infimum of the energy at r = 1 .

Lemma 6.3. // holds that inf{£(l, u): u £ S} > 0.

Proof. Suppose that the assertion is false. Then there exists a sequence {Uj} c

S such that E(l, uf) tends to 0 as j -» oo. Therefore Lemma 4.14 implies
that {uj(0)} is bounded. Set Xj = W/(0). We choose a convergent subsequence

(denoted again by A7) of {Xj} and denote its limit by Ao. We set u0(r) =

u(r, Xq) . Then it follows that E(l, «o) = 0. The function Uo(r) satisfies

equation (2.1) but may not tend to 0 as r —> oo, and hence uo(r) does not

need to satisfy E(r, uo) > 0. On the other hand, since Xj > A, or Xj < -73,

by Lemma 4.8, it holds that Ao / —b, 0, a. Therefore E(r, uo) is strictly

decreasing, and in particular E(2, «0) < 0. The convergence of {w,} to Uq

in C2[0, 2] implies that E(2, Uj) < 0 for j large enough. But this result
contradicts the fact that £(/%w)>0for/'>0 and u £ S. This contradiction

completes the proof.

Definition 6.4. We define the constant eo by

e0 = inf{E(l, u) : u £ S} > 0.

We note that for each u £ S, the energy E(r,u) is strictly decreasing and

converges to 0 as r -> oo . For u £ S and e £ (0, e0), we denote by T(u, e)

the unique point r which satisfies E(r, u) = e . From the definition of eo , it
follows that T(u, e) > 1.
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The next proposition plays the most important role in the proof of Proposi-

tion 6.1.

Proposition 6.5. (i) If e £ (0, eo) is sufficiently small, then we have

/OO

F(u)rn~xdr<0   for   T=T(u,e)   and   u £ S.

(ii) For any e > 0 sufficiently small, there exists a constant C(e) > 0 de-

pending only on e such that

/•OO /»oo

/    uf(u)r"-xdr + C(e)       F(u)rn~xdr <0   for   T = T(u, e) and u £ S.
Jt Jt

This proposition will be proved later on. In what follows, we always fix e

so small that 0 < e < min(e°o, 1) and that the conclusion of Proposition 6.5 is

valid. The application of Proposition 6.5 gives the next a priori estimate related

to the integrals of u'(r)2 and G(u).

Lemma 6.6. There is a constant C > such that

/•oo fT

(6.1) /    \u'\2r"-xdr<C l   G(u)r"~xdr   for   T=T(u,e)   and   u £ S.
Jo Jo

Proof. We recall that E(r)rn tends to 0 as r —> oo by Lemma 4.4 (iv). Hence

letting R —► oo in (4.18), we obtain

/•oo /*oo

(6.2) (n-2)        \u'\2r"-xdr = 2n       F(u)rn~xdr.
Jo Jo

We first deal with the case of n = 2 . Then the left-hand side of (6.2) vanishes,

and so we have
/•OO

/     F(u)rdr = 0,
Jo

or equivalently

/    F(u)rdr = -       F(u)rdr.
Jt Jo

We substitute this relation into Proposition 6.5 (ii) with n = 2 to obtain

/•oo fT fT

(6.3) /    uf(u)rdr<C(e)       F(u)rdr<C(e)       G(u)rdr,
Jt Jo Jo

where we have used that F(s) = G(s) - H(s) < G(s) for 5 £ R by Lemma 3.4

(ii).
We here prove that there is a constant Cx > 0 such that

(6.4) sf(s)<CxG(s)   for   s£R.

Using (f5) and noting that F(s) = G(s) - H(s) < G(s), we get a constant C > 0

satisfying

sfas) < CF(s) < CG(s)   for |j| large enough.

Next, it follows from (f2) that

sf(s)<0<G(s)   for s£[-b, a].
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Hence the two inequalities above prove (6.4) since G(s) > 0 for any s / 0. In

view of (6.4) we have

(6.5) /   uf(u)rdr <CX f   G(u)rdr.
Jo Jo

Summing up (6.3) and (6.5), we obtain

/•oo fT

(6.6) /    uf(u)rdr <C       G(u)rdr.
Jo Jo

We recall (5.33) with n = 2, i.e.,
/•OO 1*00

/    \u'\2rdr= /    uf(u)rdr.
Jo Jo

This together with (6.6) gives (6.1) in case of n = 2.

We treat the case n > 3. Using (6.2) together with Proposition 6.5 (i), we
have

r°° ?n      rT 7n      rT
/    \u'\2r"-xdr < -=?- /   F(u)r"-Xdr<^-       G(u)rn~xdr,

Jo n - 2 Jo n - 2 Jo

where we have used that F(s) < G(s) for s £R. The proof is now complete.

In view of the above lemma, we want to estimate the integral of G(u)r"~x

over [0, T] from above.

Lemma 6.7. There exists a constant C > 0 such that

(6.7) /   G(u)r"-xdr<CT"   for   T=T(u,e)   and   u £ S.
Jo

Proof. We substitute R = T into (4.16) and use the inequality (4.19). Then it
follows that

2E(T)T" + (n- 2)u'(T)u(T)T"-x >vf   F(u)rn~xdr - -T".
Jo n

We see that \u'(T)\ and \u(T)\ are bounded since E(T) = e < 1 . Therefore
we have

CT" + CTn~x >vf   F(u)rn~xdr.
Jo

We find a constant C0 > 0 such that F(s) = G(s) - H(s) > G(s) - C0 for 5 £ R

because H(s) is bounded on R. Since T > 1, we have T" > T"~x, and so

the above inequality yields (6.7). This completes the proof.

The inequality (6.7) provides a clue to establish a sharper estimate for the
integral of G(u)r"~x. In fact, from (6.7) we derive the following estimate.

Lemma 6.8. There exists a positive constant C such that

If   G(u)r"-Xdr\      <C(k+l) + C f (g(u)/u)xl2dr

for t = t(u),   T = T(u, e) and u £ Sk, where t(u) is defined by Definition
5.13.

Proof. We recall that 0 < t < 1 < T by Lemma 4.12. Let u £ Sk . We set

I = {r£(t, T):-b<u(r)<a}.
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Since F(u) < 0 for r £ I, we have

\\u'\2> \\u'\2 + F(u) = E(r)> E(T) = e   for   re/,

and therefore

(6.8) \u'(r)\ >V2e   for   re/.

Considering the outline of the graph of u(r), we can write / in the form of

/ = U/=i(Q( > Pi) with some j < k + 1. Here a, and fii satisfy the following
conditions :

(i)      u(ai) = a and u(fii) = -b,   or    w(a,-) = -& and m (/?,-) = a for

1 < i < j - 1 ;
(ii)     «(a/) = a,  -b and u(fij) e [-6, a].
Fix i € [1, /'] arbitrarily. By the mean-value theorem, there exists a point

& e (a,-, /J,-) such that

u(fi,) - w(a,) = u'(&)(/3, - a,).

In any case of (i) and (ii) we have

a + b>\u(Pi)-u(ai)\ = \u'(ii)\(Pi-al).

This together with (6.8) yields

fit ~ at <(a + b)/V2e.

Thus we estimate the measure of / as

(6.9) \I\ = z2(Bi-ai)<Ci(k + l),
i=i

where Cx = (a + b)/V2e .
On the other hand, we set Ic = [t, T] \ I to get

(6.10) J (g(u)/u)x'2dr> j' (g(u)/u)xl2dr>8x\Ic\,

where
8X =min{(g(s)/s)1/2 :s e (-oo, -b]U[a, oo)} > 0.

Combining (6.9) and (6.10), we obtain

Cx(k+l) + 8;x j (g(u)/u)x'2dr

>\I\ + \Ic\ = T-t>T-l>c( f   G(u)r"-Xdr)      -I,

where we have used Lemma 6.7 in the last inequality and employed t(u) < 1.

The above inequality completes the proof.
Combining Lemmas 6.6, 6.8 and using several a priori estimates in Section

5, we prove Proposition 6.1 in the following.

Proof of Proposition 6.1. Let u £ Sk . Integrating (5.17) over [t, T] and using

Lemma 5.5, we get

(k + l)n > tp(T) - tp(t) > C2 f (g(u)/u)xl2dr + (n-l) f   ^^-dr,
Jt Jt       'P
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which is rewritten as

(6.11) f (g(u)/u)xl2dr<Cx(k + l) + C2f   lu'Y[u)ldr.
Jt Jt       rP

For any R > 1, we set
7?i =ma\(R, T).

Using Lemmas 5.14 and 5.15 and noting that F(s) < G(s) for 5 e R, we have

(612) / r' \E    r   rRi
<CR,c^G(u)r"-xdrj   +^-Jr   (g(u)/u)x'2dr

+ Co^-2q+x^2(k + 1),

where CR, E and Ca depend only on R, e and o, respectively, but C does

not depend on anything. First, we set o = 1. Then (6.11) and (6.12) yield

/ (g(u)/u)x'2dr <C0(k + l) + CR,£ ( f G(u)r"-Xdr)
(6.13) Jt Ri Uo J

+ ^jR\g(u)/u)x'2dr.

Secondly, we fix R > 1 so large that C./7? < 1/2. For such R, if R > T,
then Rx = R and the last term in (6.13) vanishes. If R < T, then Rx = T,
hence the last term is estimated from above by

\f(g(u)lu)xl2dr.

Then (6.13) yields

/ (g(u)/u)x/2dr<C(k + l) + Ce(fG(u)rn-xdrj  .

This together with Lemma 6.8 gives

(/   G(u)r"-Xdr)      <C(k + l) + C£(f G(u)rn~xdr\  .

Lastly, noting that t < 1 < T and setting e = l/2/i, we obtain

( /   G(u)r"-Xdr)      <C(k + l).

This inequality together with Lemma 6.6 yields
/•OO

/     \u'\2r"-xdr<C(k+l)n,
Jo

which proves Proposition 6.1.

To complete the proof of Proposition 6.1, we must prove Proposition 6.5.

To this end, we introduce some notations.
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Definition 6.9. For <5 > 0, e > 0, u£S and T =T(u,e), we set

/+ = {r£ (T, oo):0 <u(r) < a},

/" = {/-€ (7\ oo):-6< w(r)<0},

J+ = {r£ (T, oo) :u(r) > A - 8},

/- = {r £ (T,oo) :u(r)< -73 + 8}.

Since T depends on u and e, the sets /+ and /_ depend only on u

and e, however, J+ and J' depend on u, e and 8 as well. The proof of

Proposition 6.5 is based on the next lemma.

Lemma 6.10. For any e > 0 sufficiently small there exists a 8 > 0 such that

(i) f  uf(u)r"-xdr<C0Ve f \uf(u)\r"-xdr      for   u£S,
Jj+ Ji+

(ii) /   uf(u)rn-xdr<C0s/e f  \uf(u)\rn~xdr      for   u£S,

where Co is a positive constant independent of u, e and 8.

Proof. We prove assertion (i) only since assertion (ii) can be proved in the

same way. Let u £ S. In the case where J+ = 0 , the assertion is trivial. Let

J+ ^ 0. Then /+ is also nonempty since u(r) tends to 0 as r —> oo. Let

0 < e < min( 1, eo) ■ Then we have

(6.14) ]ru'(r)2 + F(u(r)) = E(r)<E(T) = e < 1    for   r > T.

Note that F(s) has local minima at s = -b, a , and we set

-F0 = min{F(-b), F(a)} = inf{F(s) : s £ R} < 0.

Then (6.14) implies that

(6.15) \u'(r)\ <CX = y/2(l+F0)    for   r > T.

On the other hand, since F(s) is increasing in (a, oo), it holds that F(u(r)) >

F(A - 8) for r £ J+ . Hence (6.14) implies that

(6.16) \u'(r)\2 <2e-2F(A-8)    for   r £ J+.

Since F(A) = 0, we can choose 8 > 0 so small that

(6.17) \F(A-8)\<e   and   (A + a)/2 < A - 8 < A.

Then (6.16) gives

(6.18) \u'(r)\<2y/e    for   r £ J+.

We here observe (6.14) again, which gives directly

F(u(r)) < 1    for   r > T.

Hence we set A = sup{s : F(s) < 1} to obtain

(6.19) (A + a)/2<A-8<u(r)<A    for   r e J+.

Since fas) > 0 fors>a by (f2), we set

m = min{/(s) : (A + a)/2 < s < A} > 0.
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Using (6.18) and noting that r > T > 1, we obtain

vt _  1 yyi

(6.20) -u" = f(u) + --u'> m - 2(n - l)Ve > y   for   r e J+ ,

if e > 0 is so small that
YYl

(6-21) ^4(^T)-

In view of Lemma 4.6, we can write J+ as J+ = U/=i(ai> fii) > where u(ai) =

u(fii) = A-8 for 2 < i < j, u(ax) >A-8, u(fix) = A-8. Integrating (6.20)
over [a,, fii] and using (6.18), we get

m
*Ve~ > -u'(fii) + u'(ai) > j(fii - at),

or equivalently

(6.22) 0<fii- at < —^/e.

In view of (6.19), we set M = max{sf(s) : (A + d)/2 < s < A} to obtain

(6.23) /    uf(u)r"-xdr < Mfi^x(fii - a,) < —-^fit ■
Jat m

Let us estimate the integral of \uf(u)\  over /+ .   To do so, we define a

subinterval (y,, Si) of /+ . For 1 <i < j, we set

fi = min{r e [fii, oo) : u(r) = a/2},

Sj = min{r e [y,, oo): u(r) = a/4}.

Therefore it holds that

ax < fix < yx < Sx < a2 < ■ ■ ■ < Sj,

a/4 < u(r) < a/2,   u'(r) < 0   for   re (y,, dj).

Using (6.15), we have

-u'(r) < Cx    for   re(y,, f5,).

Integrating both sides over [y,, Sj], we obtain

^ = -u(S,) + u(yi)<Cx(8i-7l),

that is,

(6.24) c2 = ^-<Sj- y,.

We set mx = min{|s/(s)| : a/4 < s < a/2} > 0. Then (6.24) yields

(6.25) / ' \uf(u)\r"-xdr > m^'^Si - y,) > mxC2fi1~x.
Jy,

Combining (6.23) and (6.25), we obtain

/ ' uf(u)r"-xdr < C3V^ / ' \uf(u)\rn~xdr,
Ja, Jy,
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where C3 = SM/mmxC2. We note that (y,, Sj) c /+ . Summing up both sides
on i, we have

(6.26) /  uf(u)r"-xdr<CiJe~ f \uf(u)\rn~xdr.
Jj+ Ji+

Note that C3 is independent of u, e and 8 . In view of (6.21), we set

ex = min{l, e0, (m/4(n - I))2}.

For given e £ (0, ex) we choose a small 8 > 0 which satisfies (6.17). Then the

choice of 8 yields (6.26), which is the desired inequality (i).
To prove Proposition 6.5, we prepare the next notations and need another

lemma.

Definition 6.11. For u £ S we set

K+ = {r £ (T, 00) :0 <u(r) < A},

K~ = {r £ (T, 00) : -73 < u(r) < 0},

L+ = {r £ (T, 00) : u(r) > A} ,

L~ = {re (T, 00): u(r) < -B}.

Lemma 6.12. If e > 0 is sufficiently small, then for any u e S we have

(i) f   F(u)rn-Xdr<\ f   \F(u)\r"-xdr = -i /   F(u)rn~xdr,
Jl+ 2 JK+ 2 JK+

(ii) /   F(u)rn~xdr<]- f   \F(u)\rn-xdr =-\ f   F(u)rn~xdr.
Jl- 2 JK- 2 JK-

Proof. We prove assertion (i) only, however, (ii) can be treated in the same

way. By assumptions (f2) and (f5), there exists a constant Cx > 0 such that

(6.27) F(s) < Cxsf(s)    for   s > A.

Next, we note that F(s) ^ 0 for 0 < s < a and F(0) = 0. Then there exists a

positive constant C2 by (f3) such that

(6.28) \sf(s)\ < C2\F(s)\   for   0<s<a.

Compare Definitions 6.9 and 6.11. Then we see that L+ c J+ and /+ c K+ .

Hence Lemma 6.10, (6.27) and (6.28) imply that

/  F(u)r"-xdr<Cx f  uf(u)r"-xdr < Cx f  uf(u)rn~xdr
Jl+ Jl+ Jj+

< C0CxVe f \uf(u)\rn~xdr < C0CxC2Ve f \F(u)\rn~xdr
Ji+ Ji+

<CoCxC2yfe f   \F(u)\r"~xdr.
Jk+

We choose e > 0 so small that CoCxC2\[e < 1/2 . This completes the proof.

We are now ready for proving Proposition 6.5.

Proof of Proposition 6.5. Summing up (i) and (ii) in Lemma 6.12, we have

(6.29) /   F(u)r"-Xdr<\ f F(u)rn~xdr,
Jt 2 JK
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where

K = K+ U K~ = {r £ (T, oo) : -B < u(r) < A}.

We note that F(u(r)) < 0 for r e K. Hence the inequality (6.29) proves
assertion (i) of Proposition 6.5.

We show assertion (ii). For small 8 > 0, e > 0 and any u £ S ,we define

W = W+ U W~ ,

W+ = {r £ (T, oo) : a < u(r) <A-S},

W~ = {r e (T, oo) : -73 + 8 < u(r) < -b}.

We choose e > 0 so small that CoVe < 1, and then 8 > 0 is determined by

Lemma 6.10. Since uf(u) < 0 for r £ I+ U I~ , the inequalities (i) and (ii) in
Lemma 6.10 are rewritten as

/  uf(u)r"-xdr<- f uf(u)rn~xdr,
Jj+ Ji+

f   uf(u)rn~xdr<- f  uf(u)rn~xdr.

Note that I+l)I~l)J+UJ~ = (T, oo)\W. Then we sum up the two inequalities
above to obtain

(6.30) r uf(u)r"-xdr< f uf(u)r"-xdr.
Jt Jw

On the other hand, since F(s) < 0 for s e (-73, A) \ {0} and K D W, the
inequality (6.29) yields

fX F(u)rn~xdr<-\ f \F(u)\r"-xdr < -]- f \F(u)\rn~xdr.
Jt 2 JK 2 jw

Summing up (6.30) and the above inequality multiplied by C > 0, we obtain

/•OO fOO f f-^

(6.31) /    uf(u)r"-xdr + C       F(u)rn~xdr <     (ufau) - ^-\F(u)\)rn-xdr
Jt Jt Jw 2

for any C > 0. We set

M = max{sf(s) : s £ [-B + S, -b]l)[a, A - S]} >0,

m = min{|F(s)| : s £ [-73 + 8, -b] U [a, A - 8]} > 0.

We now choose C > 0 so large that M - mC/2 < 0. Then the right-hand side

of (6.31) is negative. This proves Proposition 6.5(ii) and the proof is complete.

We conclude this paper by proving Theorem 1.

Proof of Theorem 1. By Propositions 5.1 and 6.1, there exist constants Cx, C2
> 0 such that

/•OO

(6.32) Cx(k + l)"<        \u'\2r"-xdr<C2(k+l)n
Jo

for u £ Sk and k > 0. We estimate the Lagrangian L(u) defined by (1.9), i.e.,

(6.33) L(u) = J^ Q|Vu|2 - F(u)\ dx = co T Q|w'|2 - F(u)\ rn~xdr,
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where co means the surface area of the unit sphere {x e R" : |x| = 1}. We
show that

(6.34) L(u) = - /    \u'\2r"-xdr       for   u £ S.
n Jo

To this end, we recall the identities (5.33) and (6.2), i.e.,

/■OO fOO

(6.35) /    \u'\2r"-xdr= /    uf(u)r"-xdr,
Jo Jo

/•OO fOO

(6.36) (n-2)        \u'\2r"-xdr = 2n       F(u)r"-Xdr.
Jo Jo

The substitution of (6.36) into (6.33) gives (6.34).  By (6.32) and (6.34), we
obtain the estimate

C3(k + l)n < L(u) < C4(k + l)n       for   u £ Sk.

We now consider the special cases where f(u) = |w|p-1w - u and fau) =

wlog|w|. First, we treat fau) = \u\p~xu-u. Then F(u) = \u\p+x/(p+l)-u2/2.
Therefore the inequalities (6.35) and (6.36) become

/•oo /*oc /*oo

/    \u'\2r"-xdr= /    \u\p+xrn-xdr- /    u2rn~xdr,
Jo Jo Jo

/•oo 2«     r°° r°°

(n-2)        \u'\2r"-xdr=—-        \u\p+x rn~x dr - n       u2rn~xdr.
Jo P + Uo Jo

These identities imply

fVlV-'rfr = y ~ \} r\u\p+xr"-xdr=-"^ 7 l) ̂     H u2r"~xdr.
Jo 2(p+l)70 n + 2-(n-2)p Jo

Each coefficient of the integrals is positive. This relation and (6.32) give

(6.37) C5(k + l)"/2 < ||m||lJ < \\u\\HI < C6(k + l)n'2.

Let fau) = wlog|w|. Then F(u) = (l/2)w2log|w| - (l/4)w2. Substituting
these functions into (6.35) and (6.36), we obtain

/•OO fOO /-OO

/     \u'\2r"-xdr=        u2log\u\r"-xdr = -^        u2rn~xdr.
Jo Jo 4 Jq

This identity together with (6.32) yields (6.37). The proof is thereby complete.
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