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GROUPOIDS ASSOCIATED WITH ENDOMORPHISMS

VALENTIN DEACONU

Abstract. To a compact Hausdorff space which covers itself, we associate an

r-discrete locally compact Hausdorff groupoid. Its C*-algebra carries an action

of the circle allowing it to be regarded as a crossed product by an endomorphism

and as a generalization of the Cuntz algebra Op . We consider examples related

to coverings of the circle and of a Heisenberg 3-manifold.

Given a compact Hausdorff space X and a continuous surjective map a: X—►

X, we want to associate to the pair (X, a) a C*-algebra C*(X, a) which, in

the case a is a homeomorphism, coincides with the well-known crossed product

C(X)xaZ.
In this paper we consider the case of a covering a: X —► X and C*(X, a)

will be defined via a groupoid that generalizes the construction of the Cuntz

groupoid Op considered by Renault in [Re]. In that case I is a unilateral

sequence space and a is the unilateral shift. We start with some definitions

and notation that make sense in greater generality.

Definition. Given a set X and a map a : X —» X, let

r = {(x,n,y)£XxZxX\3k,l>0,n = l-k, akx = a'y}

with the set of composable pairs

r<2> = {((x, «, y), {w, m, z)) £ T x F \ w = y}.

The multiplication and inversion are given by

(x, n,y){y, m, z) = (x, m + n, z)    and     (x, «, y)"1 = (y,-«, x).

The range and source maps are

r(x, «, y) = (x, 0, x),    s(x, n, y) = (y, 0, y).

With these operations T becomes a groupoid with the unit space identified

with X. The equivalence relation associated to T will be denoted by 5, where

R = {(x, y) € X x X | 3k, / > 0, akx = aly},

and the isotropy group bundle is

I = {(x,n,x)£XxZxX\3k,l>0,n = l-k, akx = alx} .
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For k > 0 we consider

Rk '■= {(x, y) € X x X | akx = aky}

and

5co := \J Rk.
k>0

Note that 5^ c 5.

Theorem 1. Suppose a: X —> X is a covering. Then Y, defined above, carries

a topology making it an r-discrete locally compact Hausdorff groupoid with the
Haar system given by the counting measures.

Proof. Consider on Rk the induced topology from X x X. Then Rk is a
principal r-discrete groupoid since ak is a local homeomorphism (see [Kul]).

Consider on R^ = \Jk>0Rk the inductive limit topology. Since the Rk are

compact as topological spaces, i?«, is a hyperfinite relation in the terminology
of Kumjian (see [Ku2]). Hence iM is a principal r-discrete groupoid and X,
identified with the diagonal in X x X, is open in R^ . Let

X = I (xt) e[[l,| Xi = X, a{xi+i) = x, V/ > 0 I
I <>o J

be the projective limit space and let n0 : X -* X the projection onto the first

component. With the product topology, X becomes a compact Hausdorff
space, and no a continuous open map. The map a induces a homeomorphism

a:X ->X,
à (xo, xi, X2, ... ) = (axo, Xo, X\, ...),

with inverse

à-  (Xo , Xi , X2 ,...) = (Xj , X2 , X3 ,...) ,

such that 7Cqoo = aono (see [Br]). Let Roo — (no x no)~x(Roo) equipped with

the preimage of the inductive limit topology. Then

Roo - {((xt), (yd) £XxX\3k>0,akx0 = aky0}

is a principal r-discrete groupoid with unit space identified with X. The map

à induces an automorphism of 5^ by the formula

à((Xi), (y,)) = (ö(xj), à (y i)),

and one can consider the semidirect product f = 5^ xd Z (see [Re]). Two

elements of T, written as ((x,), «, (y,)) and ((tu,-), m, (v¡)) with ((x,), (y,)),

((w¡), (Vi)) £ Roo , are composable iff (w¡) = d~n(y¡), (v¡) = o~n(z¡) and then

the product is given by the formula

((Xt), n, (y,)) • (a-"(y¡), m, &-"(zj)) = ((x¡), n + m, (z,)).

The inverse of ((x,), «, (y,)) is (à-_"(y,), -«, cr~"(x,-)). With the induced

topology from 5^ x Z, T becomes an r-discrete locally compact groupoid.

Note that T - n(T), where

n:X xZxX ^X xZxX



GROUPOIDS ASSOCIATED WITH ENDOMORPHISMS 1781

is given by the formula

x((Xi), y, (yi)) = (xo, « , 7r0(cr-"(y,))),

and that n is a groupoid homomorphism. With the quotient topology, T be-

comes an r-discrete locally compact groupoid. It turns out that a basis of open

sets for the topology of T consists of the subsets of the form U x {«} x V, where

« e Z, U, V are open in X, an\v: V -► t(U) (respectively a~"\u- U —►
p(V)) is a homeomorphism for « > 0 (respectively « < 0), and x, p are

suitable deck transformations for suitable powers of a. The equivalence re-

lation 5 with the trace of this topology was considered also by Vershik and

Arzumanian (see [ArVe]). Note that, by construction, T has a (left) Haar sys-

tem given by the counting measures.   D

Definition. If X is compact and a: X —► X is a covering map, we define

C*(X,a) tobe C*(rj-

Observe that, in the case a is 1-1, Y is the transformation group groupoid
X x Z and C*(r) ~ C(X) xaZ. But note that when a is not 1-1 (the case in

which we are interested), C*(T) is more closely allied to a crossed product of

Z+ on the noncommutative algebra C*(5oo). To see this and in order to study

the structure of C*(X, a), let c: T -* Z,

c(x, «, y) = -«.

Then c is a 1-cocycle, which induces an S'-action on C*(T) via the formula

(kf)(x,n,y) = k-nf(x,n,y),        f £ CC(T), k£ Sx,

where CC(T) are the compactly supported functions on T. The fixed point

algebra is C*(5oo), which appears as an inductive limit of C*(Rk), k > 0.

Kumjian observed in [Kul] that C*(Rk) ~ C(X) x Gk , where Gk is the group

of deck transformations of the covering ak : X -» X.

Definition. The orbit of x £ X is defined to be

0(x)= [}a~kakx,

k>0

where
a~ky = {z € X | akz = y}.

We say that cr minimal if each orbit is dense and that a is essentially free if

{x e X | VA:, / > 0, akx = a'x => k = 1}

is dense in X.

Proposition. If a is minimal, then C*(Roo) is simple. Moreover, if a is essen-

tially free, then C*(T) is also simple.

Proof. Since a is minimal and

0(x) = {y£X\ (x,y)£Roo}c{y£X\ (x, y) £ R},

it follows that there are no nontrivial open invariant subsets. If a is also
essentially free, then the groupoid T is essentially principal in the sense of
Renault (see Definition II.4.3 of [Re]). Now apply Proposition II.4.6 of [Re],
where the ideals of an essentially principal groupoid are characterized.   G
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The covering map a induces a *-endomorphism of C*(500), denoted also

by a, via the formula

(af)(x,y) = -f(ax, ay),        /eCc(500),
P

where p is the index of the covering.

Indeed the fact that this gives an endomorphism follows from these calcula-

tions:

(o(fg))(x,y) = -(fg)(ax,ay) = - £ f(°x, z)g(z,ay)

and

((af)(ag))(x ,y)=J2 (°f)(x > w)(°S)(w, y)
x~w

= p-iYl f(ax ' °w)s(°w >ay) = pYl f(ax ' z)g(z ' °y) <
x~w ax~z

where z = aw and x ~ y means (x, y) € i?M .

One can check easily that the induced endomorphism is never unital (unless

a is a homeomorphism). However, more important for our purposes, a is

induced by a nonunitary isometry and this allows us to represent C*(X, a) as

the crossed product of C*(5oo) by this endomorphism in the sense of Paschke

(see [Pal, Pa2]). In his notation, 5 = C*(T), A = C*(Roo) and the spectral

subspace E\ is generated by functions supported on {(x ,«,y)er|« = -l}.
Let

{ \IJp~ if « = -1 and y = ax,
v(x,n,y) = \ .

{ 0 otherwise.

Then v £ E\,

f 1     if x = y and« = 0,
(v*v)(x, n,y) = i
v      A '     \ 0    otherwise.

Thus v is an isometry in 5 and

f l/p     if ax = ay and« = 0,

(™ )(*,»,y) = (0        othemise

is a projection in ^4 , different from 1. Moreover, af = vfv*. These calcula-

tions lead to

Theorem 2. Suppose a : X —» X is minimal. Then we have an exact sequence

• • • - K0(C*(Roo)) -^ K0(C*(Roo)) ± K0(C*(X, a)) -

- K^C^Roo)) -*^» K^C^Roo)) -^ *i(C*(X, a)) -> • ••

wÄtre i: C*(5oo) ■-» C*(X, c) is i«e inclusion map and id is f/ze identity on

K-theory.

Proof. Using the fact that af = w/u*, it follows that rj(C*(5oo)) is a corner

in C*(5oo). Since C*(Roo) is simple, it is a full corner and we may apply

Theorem 4.1 of [Pa2]. Notice that

a:C*(500)^fr(C*(500))
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is an isomorphism, therefore ct» is an isomorphism at the level of K- theory.   D

We turn now to some examples that illustrate the applicability and the limi-

tations of our analysis.

Example 1. Let X = n,>o%i> where X¡ = {\ ,2, ... , p} for each /' > 0, with
product topology, and let a : X -> X be the unilateral shift,

a(xo, xi ,...) = (xi, x2,...).

Then a : X —► X is a p-fold covering. In this case

C*(Rk)~Mpk(C(X)),

Roo is the Glimm equivalence relation,

C*(Roo)^UHF(p°°),

and C*(X, a) is the Cuntz algebra Op . Note that a is essentially free since

the points in X with trivial isotropy are the nonperiodic sequences, which are

dense in X. The fact that UHF(p°°) and Op are simple is well-known.

Example 2. Let A = (A(i, 7')) be a p x p matrix of O's and l's, let X be as in

example 1 and let

XA = {(xi)£X\A(xi,xi+{)=\}.

Define aA: XA —> XA to be the restriction of a to XA. For simplicity, we

require that

YdA(i,j) = q   V7
(=1

for some q > 2, so that aA is a q-fo\d covering. (Without this condition, we
would consider different g's for different pieces of XA). Then

C*(Rk)^Mqk(C(XA)),

C*(5(X)) is an ^45-algebra, and C*(XA, aA) is the Cuntz-Krieger algebra Oa .

If the matrix A is aperiodic, then aA is minimal and essentially free, so that

C*(5oo) and 0A are simple (again a well-known result).

Example 3. Let X = T, a: T -+ T, a(x) = x" , p > 2. In this case C*(Rk) ~
A/p,t(C(T)) (see [Kul]), and C*(50O) is the Bunce-Deddens algebra of type

p°° . It is known that

Ko^RooV^Zll/p], K^C^RooV^Z

(see [Bl]) and it is easy to see that a is minimal. Thus one may apply the
exact sequence in Theorem 2 to compute the A^-theory of C*(T, a). In order

to determine a*, observe that a(C*(Rk)) c C*(Rk+l) and it will be enough to

know the maps at the level of ^-theory induced by

C*(50) = C(T) -^ MP(C(T>) = C*(5r).

Borrowing notation from [Kul], l2(a) isa C(T)-Hilbert module via the inner
product

(/i«)(x)= Y,f(y)h(y)>    f,h£C(T),
ay=x
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with basis gj(x) = x]¡yfp, j — 0, 1, ... , p - 1. Furthermore, C*(5i) ~

3?(l2(a)). Since / £ C(R\) may be viewed as an element of J?(l2(a)) via

the formula

(fg)(x) = £/(*, 30*00,* 6 l2(a),
y

one can identify / with the matrix (/,), where fi¡ = (g¡\fgj).  So, letting
x = e(t) — exp(2nit), we see that

1   p'x

fij(e(t)) = -  £ e((t(j-l) + k(j-l) + mj)/p)f(e((t + k)/p),
P k,m=0

e((t + m + k)/p)).

Following these identifications, the projection cr(l) = vv*  corresponds to

en ® 1 in MP(C(T)), so that

Z = KQ(C(T)) -^ K0(MP(C(T))) = Z

is the identity map. If we denote by u the unitary

J x    if y = x and « = 0,

\ 0     otherwise,

which generates C(T),then vuv* corresponds in MP(C(T)) to eu<8>u so that

Z = *i(C(T)) -^ Ky(Mp(C(J))) = Z

is again the identity map. Therefore a»: K0(C*(Roo)) -* ^o(C*(500)) is the

multiplication by \/p, and a*: ä:1(C*(500)) -► A:1(C*(500)) is the identity

map. We get the exact sequences

0 - Zp_! U K0(C*(T, a)) - Z -> 0

and
0^Z^#,(C*(T,<7))^0,

from which it follows that

iTo(C*(T,a))~ZeZp_1     and    Ki(C*(T, a)) ~Z.

The isotropy groups

7X = {« € Z\xpk = x"', / - k = «}

are trivial for a dense set of x in T, therefore a is essentially free and

C*(T, a) is a simple C*-algebra. Since the corresponding isometry v isnonuni-

tary, it follows that C*(T, a) is infinite.
One can consider coverings of T9 for q > 2 to get other simple infinite

C*-algebras.

Example 4. Consider the real Heisenberg group of dimension 3, N. We write
the elements of N as triples (x, y, z) £ R3 with multiplication

(x, y, z)(x', y', z') = (x + x', y + y', z + z' + xy').

Consider also the discrete Heisenberg group

L = {(x, y, z) 6 TV | x, y, z e Z},
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and let X = N/L. This is a compact 3-manifold (a circle bundle over T2).

The elements of X will be written as [x, y, z], x, y, z e [0, 1 ). Let

s:N^N,    s(x,y, z) = (px,qy,pqz),

where p, q > 2 are integers. Since s(L) c L, we get a map

a:X^X,    a[x,y, z] = [px, qy, pqz],

which is a p2q2-fold covering (see [Sh]). Invoking the methods of Kumjian

[Kul] again, we observe that a basis for the C(X)-Hilbert module /2(cr) is
given by

l = 0,...,p-l,

«2 = 0, ... , q- 1,

« = 0, ... ,pq-\,

where e(a) — exp(2nia). This allows us to identify C*(5i) with Mpiqi(C(X)).

Therefore C*(5oo) will be an inductive limit of matrix algebras over C(X).

Observe that a is minimal and essentially free, so that C*(Roo) and C(X, a)

are simple. It is known that the computation of K*(C(X)) may be reduced to

the computation of K*(C*(L)), which is done by Anderson and Paschke (see
[AnPa]). The computation of the ÄMheory of C*(X, a) using Theorem 2 can

proceed, at least in principle. However at the moment, the details appear quite

complicated.

Remark. If a : X —► X is a branched covering like z —► zp on the closed unit

disc D2, one can define a locally compact topology on the groupoid T using

the procedure described above. However, it will no longer be r-discrete. The
reason is that the family of measures

A<°'°>(/) = 2/(0,0),    Xx'xHf) = f(x,x) + f(x,-x),        x¿0,

is a Haar system for

5, ={(x,y)eD2xD2 |x2 = y2}

which does not consist of counting measures (see [Re]).

Notice that D2\{0} is an open invariant subset of the unit space D2. Group-
oids associated with branched coverings will be discussed elsewhere.
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