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ON CLOSED MINIMAL SUBMANIFOLDS
IN PINCHED RIEMANNIAN MANIFOLDS

HONG-WEI XU

Abstract. In this paper, we first prove a generalized Simons integral inequality

for closed minimal submanifolds in a Riemannian manifold. Second, we prove

a pinching theorem for closed minimal submanifolds in a complete simply con-

nected pinched Riemannian manifold, which generalizes the results obtained

by S. S. Chern, M. do Carmo, and S. Kobayashi and A. M. Li and J. M. Li re-

spectively. Finally, we obtain a distribution theorem for the square norm of the

second fundamental form of M under the assumption that M is a minimal

submanifold with parallel second fundamental form in a Riemannian manifold.

1. Introduction

Let M" be an «-dimensional oriented closed minimal submanifold in an

(n +p)-dimensional manifold Nn+P . We denote the square norm of the second

fundamental form of M by S. In the case that the ambient manifold N is

the Euclidean sphere Sn+P(l), it is well known [2] that if S < n/(2 - \/p)
on M, then either M is the unit sphere S" ( 1 ), one of the Clifford minimal

hypersurfaces in Sn+' ( 1 ), or the Veronese surface in S4 ( 1 ). Further discussions

in this regard have been carried out by many other authors ([3, 5, 8, 9, 12],

etc.). Recently, A. M. Li and J. M. Li [6] have improved the pinching constant

above to \n for the case p > 3 . But all these results were obtained under the

assumption that the ambient manifolds possess very nice symmetry.

The aim of the present paper is to establish a generalized Simons integral

inequality for minimal submanifolds in a Riemannian manifold, and prove a

pinching theorem for minimal submanifolds in a complete simply connected

pinched Riemannian manifold, which does not possess symmetry in general.

The proof uses some equations and inequalities naturally associated to the sec-
ond fundamental form of M, the curvature tensor of N, and their covariant

derivatives. Since we do not assume that Nn+P is a sphere, the maximum prin-

ciple and the estimate for AS in [2, 6] cannot be applied here, and the trick of

constructing a differentiable 1-form and using integral estimates seems essen-

tial. Finally, a distribution theorem for S is obtained under the assumption
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that M is a minimal submanifold with parallel second fundamental form in a

Riemannian manifold.

2. Preliminaries

Let Mn bean «-dimensional Riemannian manifold immersed in an (n+p)-

dimensional Riemannian manifold Nn+P . We shall make use of the following

convention on the range of indices:

l<A,B,C,...<n+p,        l<i,j,k,...<n,

« + 1 < a, ß, y, ... < n + p.

Choose a local field of orthonormal frames {eA} in N such that, restricted

to M, the e;'s are tangent to M. Let {coA} and {coab} be the field of dual

frames and the connection 1-forms of TV respectively. Restricting these forms

to M, we have

(2.1) œai = YJhrjcoj,        hfj = hji,
j

(2.2) h=¿Z hUœi ® w; ® *<•,        £ = - E h<iiea '
a, i,j a,i

(2-3) Rijkl = Kijkl + ¿2(h?khj, - Kih%).
a

(2.4) Raßkl = Kaßkl + 5>3tA* - A3A&),
i

where h, £, 1?q/?a;/ , !?//£/, and KABCd are the second fundamental form, the
mean curvature vector, the normal curvature tensor, the curvature tensor of M,

and the curvature tensor of N respectively. We define

S=||«||2,        H=||£||,        Ha = (hfj)nxn.

M is called minimal if H vanishes identically. Therefore, if M is minimal,

its scalar curvature is given by

1? = E Kijij - S.

Now we define the covariant derivatives of «?■, denoted by hf¡k and hf¡k¡

respectively, as

E Kjk^k = dhfj + E hfjWis + E hfscojs + ¿2 huœ«fi >
k s s ß

E *Sw»i = dhw + E *&***• + E Kk<»js + E husœks + E hukœ^ ■
l s s s ß

Then we have

(2-5) K]k-hlj = Kaikj,

and the Ricci formula

(2.6)      hfjkl - hfjlk = y, KjRsik, + E h?sRsjki + E hijRßoki ■
s s ß
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Considering Kaijk as a section of T-L(M) ® T*(M) <g> T*(M) <g> T*(M), we also

define its covariant derivative Kaijk¡ as

/ ,Fiaijki(Oi = dKaijk + y ^KaSjkO}js + y ,Kaiska)jS

l SS

+ E KaijsWks + E Kßijk°>aß ■
s ß

M is called a submanifold with parallel second fundamental form if hfjk = 0

for all i, j, k, a. The Laplacian Ahfj of the second fundamental form h is

defined by Ahfj = J2k ^ukk ■ *n tne next section, we sometimes also use Vkhfj

to denote hfjk , etc.

For a matrix A = {a¡j)nxn we denote by N(A) the square norm of A , i.e.,

N(A) = tr(A'A) = Í2ijafj. Then N(A) = N{TA'T), for each orthogonal
(« x «)-matrix T.

Proposition 1 (see [2, 6]). Let An+l, An+2, ... , An+P be symmetric (« x «)-

matrices. Denote Saß — tr(A'aAß), Sa — Saa = N(Aa), S = ^2a Sa . Then

(2.7) Y,N(A°Aß ~AßA^ + Y,SZß * í1 + ¿sgn(p- 1)) S2,
a,ß a,ß ^ '

where sgn( • ) is the standard sign function, and the equality holds if and only if

at most two matrices Aa and Aß are not zero and these two matrices can be

transformed simultaneously by an orthogonal matrix into scalar multiples of Aa

and Aß respectively, where

1     0
0   -1

0

'?i
0

0,0/ \   0

Proposition 2 (see [4]). Let N bean (n+p)-dimensionalRiemannian manifold.

If a < Kjv < b at a point x £ N, then, at this point,

(i) \KACBc\<\{b-a),for A¿B.

(ii) \KABcd\ < \{b - a), for A, B, C, D distinct with each other.

3. Inequalities and pinching theorems

From now on, we assume that M" is a minimal submanifold in Nn+P . By

(2.5), (2.6), and the minimality of M, we have

Ahfj = - 2_^{Kakikj + Kaijkk) + 2^ hfniRmkjk
(3.1) * k'm

+ E KmRmijk + E hkiR"ßkj ■
k,m k,ß

Substituting (2.3) and (2.4) into the above, (3.1) becomes

^hfj - - ¿2^Kakiki + K<*'jkk) + ¿2(hmiKmkjk + KnkKmijk) + E KiK"ßkj
k m,k k,ß

+ E (C*W+2hkmhßkKj - kxx - ham,hßmkhßkJ - h°mykymk).
m,k,ß
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Therefore,

ÍA5=    E   (hUk)2 + Y, hUAhU
i,j,k, a i,j ,a

=   E   (hfjk)  ~   E   (h?jKakikj + hfjKaijkk)
i,j,k,a i, j, k , a

(3.2) +     E     (hfnjhfjK^ + h^hfjK^)
i, j, k, m , a

+  E  hfjhiKaßkj-   y   KKMjKi
i,j,k,a,ß i,j,k,l,a,ß

Y   (*a*j»-*îifc*4)(*3*î-*»*i)-
ij,k,l,a,ß

Put

Then the (pxp)-matúx (Saß) is symmetric and can be assumed to be diagonal

for a suitable choice of {ea} , i.e.,

Saß = Saoaß    for all a, /?.

By the definition, S = ¿~laSa ■ From (3.2) we have

Lemma 1. Denote

A = -Y N{HaHß - HßHa) -Ysl>
a,ß a

B=      Y     (KijhfjK-mkik + Kikh?jKmijk) +      Y      hfjhkiKaßkj,
i,j,k,m,a i,j,k ,a,ß

C=   E   (hfjk)2 -   Y  (hfjKakikj + hfjKaijkk).
i ,j ,k ,a i,j ,k,a

Then

(3.3) \AS = A + B + C.

Let a(x) and b(x) denote the infimum and the supremum of the sectional

curvature of N at a point x respectively. Now we derive a lower bound for B

in terms of a, b, and S.

Lemma 2.  B >nbS-[n + \(p - 1)(« - l)l'2](b - a)S.

Proof. Fix a vector ea.  Let {e,} be a frame diagonalizing the matrix (hf¡)

such that

hfj = kfôij,        l<i,j<n.

Then

E     hmjhfjKmkik +     Y     nn\khtjKmijk +     Y    h?jhkiK<*ßkj
C\á\ i,j,k,m i,j,k,m i,j,k,ß

= Y(tf) K'kik + Y^k^îKkiik +   Y  hkikfKaßki .
i,k i,k i ,k,ß
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By Proposition 2, we have

\Kaßki\ < ¡(b - a)   fora^ß,  i¿k.

Hence, for fixed a, one sees

YhktfK«ßki>-   Y    Ub-a)\hßkiXf\
i,k,ß ijik,ß^a

>-    Y    \(b-a)[(n-\){l2{hßkl)2 + {n-\)-xl2{kf)2]

(3.5) &k,ß*a

>-i(«_ i)W(b-a)Y*rf
ß*a

-\{n-\)xl2{p-\){b-a)WHl.

On the other hand, we have

EW) K'kik +Y^k^îKkiik
i,k i,k

(3.6) ! !
= 9 Y(X< - kk)2Kikik > =a Y(*i ~h)2 = na trH2.

i,k z   j.*

Substituting (3.5) and (3.6) into (3.4), we obtain

B>Y[na\rH2a - \{n - l)'/2(6 - a) Y*HJ
a ß^a

-i3(n-\)^2(p-\)(b-a)tTH2]

= nbS - [« + \(p - 1)(« - l)i/2]{b - a)S.

This proves Lemma 2.

We shall next estimate the integral of C.

Lemma 3.  JMC > -^/?«(« - 1)(26« - 25) JM(b - a)2.

Proof. Note that

_     E    (KkKajijk + hfjKaijkk)
i,j,k,a

= -   Y   vk(hfkKajij + hfjKaijk)+   Y   (h<ikkK<*jij + hfjkKaijk).
i,j,k,a i ,j ,k ,a

We define a differentiable 1 -form as

(3.8) œ=   Y   (hfkKajij + hfjKaUlc)cok.
i,j,k,a

It follows that

divw=    Y   Vk(hfkKajij + hfjKaUk).
i,j,k,a

Thus

C=    Y   (hUk)2+   E   (hfkkKa}ij + hfjkKaijk)-àivco.
i,j,k,a i ,j ,k,a
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Since M is minimal, we have

(3.9) Yh?ij = °   for all;, a.

From (2.5), (3.9), and Proposition 2, we have

(3 10) ^   n?kkK«JU=   Y   (Kki - Kcckik)Kajij = -Y[z2KaJiJ
i, j, k, a i,j,k,a i ,<

>-\pn{n-\)2{b-a)2.

On the other hand, by Proposition 2, we have

E (huk)2+ E hukK«uk
i:, j,k,a i,j,k,a

>-z E (K°vk)2

(3.11)
4.

i,J,k,a

*-?E   E   (W)2-¿EEfe)2
a   i,j,k distinct '    a    i¿j

> ~pn{n - 1)(« - 2)(b - a)2 - l-pn(n - l)(b - a)2.

So

(3.12) C > -jyPn{n - 1)(26« - 25)(ô - a)2 - divo>,

and by using Green's divergence theorem, we get

(3.13) [ C> -^pn(n - 1)(26« - 25) / (b - a)2.
Jm i¿ Jm

Lemma 3 follows.

Now we define

D(n,p) = n + ^(p-l)(n-l)i'2,

E{n, p) = jyPn{n - 1)(26« - 25).

Theorem 1 (Generalized Simons inequality). Let M" bean n-dimensionalori-

ented closed minimal submanifold in an (n + p)-dimensional Riemannian man-

ifold Nn+P . Denote the infimum and the supremum of the sectional curvature of

N at a point x by a(x) and b(x) respectively. Then

jJa
[nbS - (1 + 4 sgn(/> - l))S2 - D(«, p)(b - a)S - E(n, p)(b - a)2] < 0.2

M

Proof. Combining Proposition 1, Lemma 1 and 2, we obtain

(3.14) ±AS>nbS-(\ + {sgn{p-l))S2-[n + l{p-\){n-l)l'2](b-a)S + C.

Integrating both sides of (3.14) and applying Lemma 3, we have

(3.15) / [nbS-(l + ±sgn{p-l))S2-D(n,p)(b-a)S-E(n,p)(b-a)2]<0.
Jm

This completes the proof of Theorem 1.
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Denote

<*(n, P) = Tj[p/i(« - 1)(52« - 50)]1/2,

ß(n,p) = n + \{p - 1)(« - l)1'2 + ±[pn(n - 1)(52« - 50)]1/2.

We are now in a position to prove

Theorem 2. There is a number ô(n, p) with 0 < S(n, p) < 1 such that if

there exists an oriented closed minimal submanifold Mn in a complete simply

connected manifold Nn+P with S(n, p) < Kn < 1 and

a(n, p)(l -c)<S<n- \nsgn(p - 1) - ß(n,p)(l - c),

where c is the infimum of the sectional curvature of N, then either M is

the unit sphere Sn(\), one of the Clifford minimal hypersurfaces Sk(y/k/n) x

S"~kW(n-k)/n), k = 1, 2, ... , « - 1, in Sn+i(l), or the Veronese surface

in S4{1). Moreover, N = Sn+p(l).

Proof. Since

c < a(x) < b{x) < 1,

(3.15) gives

(3.16) [ [nS-(l + ^sgn(p-l))S2-D(n,p)(l-c)S-E(n,p)(l-c)2]<0.
Jm

Take

S(n,p) = l- «(3 - sgn(/> - 1))(3D(«, p) + 6El'2(n, p))~l.

Then

a{n,p){l -c)<«-i«sgn(/7- l)-ß(n,p)(l - c).

From the assumption

(3.17) a(n,p)(l-c)<S<n- \nsgn(p - 1) - ß(n, p)(l - c),

we see that

(3.18) nS- (1 + \ sgn(/7 - \))S2 - D(n, p){\ - c)S - E(n ,p){l-c)2>0.

Therefore, all inequalities in (3.10), (3.11), (3.15), and (3.18) are actually equal-
ities. This implies I—c = b — a = 0 and TV is a complete simply connected

Riemannian manifold with constant curvature 1. Hence N = Sn+P(l). This

together with (3.16) and (3.18) gives

S = 0   or   S = « - %n sgn(p - 1 ).

Furthermore, the previous inequalities become equalities, and it is not hard to

see from Proposition 1 that either M is the unit sphere Sn(l), one of the

Clifford hypersurfaces Sk(y/kjñ) x S"-k(y/{n-k)/n), k = 1, 2, ... , n - I,
or the Veronese surface. This proves Theorem 2.

Remark 1. Theorem 2 can be considered as a generalization of the main theo-

rems of [2, 6] as well as a pinching theorem for ambient manifolds.
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Theorem 3. Let M" be an oriented closed minimal submanifold with parallel

second fundamental form in a Riemannian manifold Nn+P . Then

(i) S <pnd + F{n,p){d~c), where F(n,p) = \p[p - 1)(«- 1)1/2 and d
is the supremum of the sectional curvature of N,

(ii) if ô'{n, p) < KN < 1, here

S'(n,p) = 1 - «(3 - sgn(/7 - 1))[3« + 2(p - 1)(« - l)1'2]"1,

then either M is totally geodesic or n - \n sgn(/? - 1) - D(«, p)(l - c) < S <
pn + F(n,p){l -c).

Proof. From the proof of Lemma 3 we have

C = -   Y   ^k(hfkKajij + hfjKaijk).
i,j,k,a

It is easy to see from (2.5) that Kaijk - 0, for all i, j, k, a. So

(3.19) C = 0.

Since i AS = J2(nfjk)2 + £A?-A/r?. = 0, S is a constant. This together with

(3.3) and (3.9) implies

(3.20) A + B = 0.

Obviously,

(3.21) y N(H«Hß - HßH*) + Ys"^ s2ip ■
a,ß a

For fixed a, similar to the estimate of lower bound for B , we have

LHS of (3.4) = Y,W)2Kikik + Y mKkük + Y hßkikfKaßki
i,k i,k i,k,ß

< ndXxHl + i(p - 1)(« - l)1/2(ú? - c) XT Hl

+ I(„_1)i/2(iy_c)^tryV2_

ßtc,

This gives

(3.22) B<ndS + \{p- \){n-\)xl2{d - c)S.

It foUows from (3.20), (3.21), and (3.22) that

ndS+\{p- \){n-\)xl2{d-c)S>S2lp.

This yields

(3.23) S<pnd + \p{p - l)(n - l)l,2(d - c).

If ô'(n, p) < Kn < 1, it is not hard to see from the definition of S'(n, p) that

(3.24) «-i«sgn(p- \)-D(n,p){\ -c)>0.

By (3.20), Proposition 1, and Lemma 2, we get

(3.25) nS - (1 + i sgn(/7 - \))S2 - D(n,p){l-c)S<0,
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which together with (3.23) implies that either S = 0 or n - 5«sgn(¿> — 1) —
D(n, p){l-c) < S < pn+F(n, p)(\-c). This completes the proof of Theorem

3.

Remark 2. When p = 1, the constant ô'(n, p) equals zero, which is indepen-

dent of dimension. In this case, we have that either S = 0 or nc <S < n .
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