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HYPERSURFACES IN SPACE FORMS SATISFYING
THE CONDITION Ax = Ax + B

LUIS J. ALÍAS, ANGEL FERRÁNDEZ, AND PASCUAL LUCAS

Abstract. In this work we study and classify pseudo-Riemannian hypersur-

faces in pseudo-Riemannian space forms which satisfy the condition Ax =

Ax + B , where A is an endomorphism, B is a constant vector, and x stands

for the isometric immersion. We prove that the family of such hypersurfaces

consists of open pieces of minimal hypersurfaces, totally umbilical hypersur-

faces, products of two nonflat totally umbilical submanifolds, and a special

class of quadratic hypersurfaces.

0. Introduction

Let x be an isometric immersion of a hypersurface M" in R"+1 and assume

there exist an endomorphism A of R"+1 and a constant vector B in R"+1

such that Ax = Ax + B. We ask the following question: "What is the geometric
meaning involved in that algebraic condition^ This question was first studied

in the Euclidean case by Chen and Petrovic [4], Dillen, Pas, and Verstraelen

[5], and Hasanis and Vlachos [7], who obtained some interesting classification

theorems. Recently, Park [10], following closely the ideas in [1] and [2], has

considered that condition with B = 0 for hypersurfaces in Euclidean spherical
and hyperbolic spaces.

To study that question in its full generality, it seemed natural to us to be-
gin with Lorentzian surfaces [1]. Later, in [2], in order to generalize the above

papers we gave a classification theorem for pseudo-Euclidean hypersurfaces. Ac-

tually, we proved that the only hypersurfaces satisfying the matricial condition

on the Laplacian are open pieces of minimal hypersurfaces, totally umbilical

hypersurfaces and pseudo-Riemannian products of a totally umbilical and a
totally geodesic submanifold.

This paper arises as a natural continuation of [1] and [2], taking now a non-

flat pseudo-Riemannian space form as the ambient space. Here, we analyze

the isometric immersions x of a hypersurface M" of M"v     satisfying Ax =

Ax + B, where M"v+    is the pseudo-Euclidean sphere S£+1 c R£+2  or the

pseudo-Euclidean hyperbolic space H^+1 c R"+,.
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In this new situation, the codimension of the manifold M£ in the pseudo-

Euclidean space where it is lying is two, so that one hopes to find a richer

family of examples satisfying the asked condition. On the other hand, although

the proofs given in [2] do not work here, we follow the techniques developed

there.

Before referring to the main result, we wish to point out that a lot of hy-

persurfaces having nondiagonalizable shape operator are given. This property

makes substantially different this case and that treated in [2].

The main result of this paper states that the only hypersurfaces M" of A/"

satisfying the matricial condition on the Laplacian are open pieces of minimal
hypersurfaces, totally umbilical hypersurfaces, pseudo-Riemannian products of

two nonflat totally umbilical submanifolds and quadratic hypersurfaces defined

by {x e R"+2 : (x, x) = ±1, (Lx, x) = c} , where L is a selfadjoint endomor-

phism of R"+2 with minimal polynomial /¿l of degree two, and c is a real

constant such that fiL(kc) ^ 0.

1. Preliminaries

Let R"+2 be the (n + 2)-dimensional pseudo-Euclidean space whose metric

tensor is given by

t M + 2

ds2 = - ^3 dx' ® dx' + ^3 dxj ® dxj,
i=i v=r+i

where (x\, ... , xn+2) is the standard coordinate system. For each k ^ 0, let

Mv   (k) be the complete and simply connected space with constant sectional

curvature sign(k)/k2 . A model for M„ (k) is the pseudo-Euclidean sphere

S"+1(Ä:) if k > 0 and the pseudo-Euclidean hyperbolic space M"+l(k) if k < 0,

where S^+l(k) = {" ^"+2 :<*,*} = k2} and Wv+\k) = {x e R£+2 : (x, x) =

-k2} , ( , ) standing for the indefinite inner product in the pseudo-Euclidean

space. Throughout this paper we will assume, without loss of generality, that

k2 = 1.

Let Mj" be a pseudo-Riemannian hypersurface in Mv and let V (V and

V) denote the Levi-Civita connection on M" {Mv and R"+2 , respectively).

We will also denote by N the unit normal vector field to M¡{ in Mv    . Let

H' and H be the mean curvature vector fields of A/" in Af " and W}+2,

respectively.  Thus we may write H' = aN, a being the mean curvature of

Af/1 in Mv    , and

(1.1) H = H' -kx = aN-kx.

Let x : M" —> Mv     be an isometric immersion satisfying the condition

(1.2) Ax = Ax + B,

where A is an endomorphism of R"+2 and B a constant vector in R?+2.

Taking covariant derivative in (1.2) and using the Laplace-Beltrami equation
Ax = -nH and the Weingarten formula we get AX = nSnX - nDxH, for

any vector field X tangent to M¡?, where D denotes the normal connection on

M? and Sç the Weingarten endomorphism associated to a normal vector field
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Í. Then by (1.1) we have DXH = X(a)N and SHX = aSX + kX, where, for
short, we have written S for the Weingarten endomorphism SV . From now

on, we will call S the shape operator of M* . Now from the above formulae

we deduce that

(1.3) AX = n(aSX + kX) - nX(a)N.

From (1.2), taking into account the Laplace-Beltrami equation and (1.1), we

obtain the following equation:

(1.4) Ax —-naN + nkx - B.

By applying the Laplacian on both sides of (1.2) and using again that Ax —

-nH, we find AH = AH ; that along with (1.1) leads to aAN = AH + kAx.
Now, bringing here (1.4) and the formula for AH obtained in [3, Lemma 3]

AH = 2S(Va) + neaVa + (Ac* + ea\S\2 + nka)N - nk(k + ea2)x,

where Va stands for the gradient of a, e = {N, N) and |5|2 = trace^2), we

get the following equation

(1.5) aAN = 2S(Va) + neaVa + (Aa + ea\S\2)N - nkea2x - kB.

2. Some examples

In this paper we wish to classify the hypersurfaces M" in Mv whose

isometric immersion satisfies the condition (1.2). In order to get such a classi-

fication we need some examples.

2.1. Minimal hypersurfaces A/"/1 in Mv obviously satisfy (1.2). Indeed, by

using (1.1) we have H — -kx and Ax = nkx. So we can take A = nkIn+2

and 5 = 0.

2.2. Let M? be a totally umbilical hypersurface in Af" . Taking into account

the classification theorem for such hypersurfaces (see, for example, [9, Theorem

1.4]) we get, according to whether (H, H) is positive, negative, or zero, M" is

an open piece of a pseudo-Euclidean sphere S"(r), a pseudo-Euclidean hyper-

bolic space HJ(r) or R£ . In the last case, the immersion / : RJ -» R"+2 is given

by f(u) = (q(u), «i,...,«„, q{u)), where q(u) - a(u, u) + (b, u) + c, a^O.
The pseudo-Euclidean spheres and pseudo-Euclidean hyperbolic spaces both sat-

isfy the condition (1.2). Indeed, by considering cp as the standard immersion of

SJ(r) or Ws{r) in a hyperplane R£+1 of R?+2, we know from [2] that Atp = Lq>,

L being an endomorphism of R"+1 . The (n + 1) x (n + 1) matrix L and the

immersion ç become an (n + 2) x (n + 2) matrix A (filling with zeros) and an

immersion x in R"+2, respectively, in a natural way and so we get (1.2) with

B = 0. Therefore the most interesting case is that with (H, H) — 0. Now we

can choose a point p in R"+2 such that {f-p, f—p) = ±1 and then x = f—p

is an immersion from R£ in M„ with Ax = -2n(a, 0, ... , 0, a). Thus this

hypersurface satisfies (1.2) with A = 0 and B = (-2na, 0, ... , 0, -2na).

Furthermore, from the equation Ax = -naN + nkx, we easily obtain that its

constant mean curvature a is given by a2 = 1.
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2.3. Let x : A/f -* R™+1 and y : M'J"' -» R™'+1 be two isometric immer-
sions satisfying the condition (1.2) and let z = x x y be the natural isometric

immersion from the pseudo-Riemannian product Mf x M'™' in R™|/"'+2. If

Ax — Ax + B and A'y = A'y + B', then we can consider A — diag[^4, A'] and

B — (B, B'). Thus it is easy to show that Az = Az + B. Then from [2, §2], we

can construct the following examples of hypersurfaces in A/" satisfying the

condition (1.2):

(a) S£(r) x S?r£(vT^72) c §?+1 , with 0 < r < 1 and r^ Jpjn, whose

constant mean curvature is given by a2 = (nr2 -p)2/(n2r2(l - r2)) ;

(b) HS(-r) x H^-^T^r2) c H^,1, with 0 < r < 1 and r ^ V/V".

a2 = (nr2 -p)2/(n2r2(l-r2))^

(c) SS(r) x Hinr^(-v/-l + r2) c 8,"+/, with > > 1,

a2 = (nr2-/>)2/(rtV(r2-l));

(d) SjJ(r) x H^-vTTT2) c HJ+1, with r > 0,

Q2 = (n/-2+Jp)2/(«2r2(l + /-2));

where 1 </?<«— 1 and 0 < u < s. We will refer to these examples as the

pseudo-Riemannian nonminimal standard products.

2.4. The hypersurfaces in examples 2.2 and 2.3 have diagonalizable shape op-

erator. However, it seems natural thinking of hypersurfaces with nondiagonal-

izable shape operator satisfying ( 1.2) into indefinite ambient spaces. Let L be

a selfadjoint endomorphism of R"+2 ; that is, {Lx, y) = (x, Ly) for all x, y e

R"+2 . Let / : Mv —> R be the quadratic function defined by /(x) = {Lx, x)

and assume that the minimal polynomial of L is given by /¿¿(i) = t2 + at + b,

a, b el. Then by computing the gradients, at each point x € M„ , we have

V/(x) = 2Lx and V/(x) = 2Lx - 2A:/(x)x. If A and A denote the Lapla-

cian operators on Rf+2 and Mv , respectively, a straightforward computation

yields A/(x) = -2trace(L) and A/(x) = -2trace(L) - 2k(n + l)/(x).
Consider the level set M = f~l(c) for a real constant c. Then at a point

x in M we have (V/(x), V/(x)) = 4(L2x, x) - 4Ä:/(x)2 = -4kfiL(kc),
and so / is an isoparametric function (see [6]). Thus the level hypersurfaces

{/_1(c)}ce/, where / c {c e R : HL(kc) ¿ 0} is connected, form an isopara-

metric family in the classical sense. The shape operator of M? is given by

and a messy computation gives

tr(S) = nk'-^-a.

Then the mean curvature a is given by

e xa + tr{L)-nkc
a = -tr(S) = S nk]llL{kc)VI2   ,
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where S stands for the sign of ßL(kc). Therefore we get

H,= a + tTL-knc
knßL(kc)

from which we deduce, by using Ax = -n(H' - kx), that Ax = Ax, where A

is given by

knc-a-trL       ctrL + (n + l)ac + knb

A *      knL(kc)        + Jdkc) In+2 ■

3. First characterization results

The aim of this section is to show that a hypersurface M" of M„ satisfying

the condition (1.2) has to be of constant mean curvature. To do that, let W

be the open set of regular points of a2, which we may assume a nonempty

set. From (1.3) we have (AX, x) = 0, for any vector field X tangent to M" .

Taking covariant derivative there we get

(3.1) (Aa(X,Y),x) = -(AX,Y),

for all tangent vectors X and Y, where a represents the second fundamental

form of M* in R"+2, which is given by

(3.2) a(X,Y) = e(SX,Y)N-k(X,Y)x.

Now equation (3.1), jointly with (1.3) and (3.2), leads to

e(SX, Y)(AN, x) - k(X, Y)(Ax, x) = -na(SX, Y) - nk(X, Y).

Bringing here the formulae for Ax and AN given in (1.4) and (1.5), respec-

tively, a straightforward computation yields

(3.3) (SX-eaX,Y)(B,x) = 0,

at the points of W. This equation is the key to the following result.

Lemma 3.1. Let x : Aff —► M„ be a hypersurface such that Ax = Ax + B . If
A/j" has nonconstant mean curvature, then 5 = 0.

Proof. Let us consider the set ^ = {p e W : (B, x)(p) / 0} and assume it is
a nonempty set. Then at the points of %, from (1.3) and (3.3), we have

(3.4) AX = n(ea2 + k)X - nX(a)N.

Since n > 2, we can always find a vector field X such that X{a) — (X, Va) =

0. This shows, by using (3.4), that n(ea2 + k) is an eigenvalue of A and

therefore locally constant on %, which is a contradiction. Hence % = 0 and

(B, x) = 0 on W. Taking covariant derivative here we deduce that B has
no tangent component and therefore we get B = e(B, N)N and (B, N) = 0,

because W is not empty.

Next we are going to make some computations before stating the main result

of this section. From equation (1.3) it is easy to see that

(3.5) (AX,Y) = (X,AY),
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for all tangent vector fields X and Y. Taking covariant derivative here and
using the Gauss formula jointly with (3.5), we find

(Ao{X,Z)Y)-(Ao{Y,Z),X)

= (a(X, Z), AY) - (a(Y, Z), AX).

By (3.2) and (1.3), the equations (3.6) becomes

e(SX,Z)(AN, Y) - k(X, Z){Ax, Y)

(3.7) -e{SY, Z){AN, X) + k{Y, Z)(Ax,X)

= -nY(a)(SX, Z) + nX(a)(SY, Z).

Finally, by Lemma 3.1, (1.4) and (1.5), from (3.7) we obtain

(3.8) TX{a)SY = TY{a)SX,

where T means the selfadjoint operator defined by TX = naX + eSX. This

equation becomes the crucial point to show the next result.

Proposition 3.2. Let x : M" -» Mv be an isometric immersion such that

Ax = Ax 4- B. Then M" has constant mean curvature.

Proof. From Lemma 3.1 we can assume B = 0 and then equation (3.8) holds

on W. First, suppose that T(Va) ^ 0 at the points of W. Then there is

a vector field X tangent to M? such that TX(a) ^ 0, so that by using (3.8)

we find that rank S = 1 at the points of W. Therefore, we can choose a

local orthonormal frame {E\, ... , E„} such that SE\ = neaE\, SE¡ — 0,

i = 2, ... , n, and e, = (E¡, E¡). Also from (3.8) we have that E¡(a) = 0,
i = 2, ... , n, and using again (1.3), (1.4), and (1.5), we get

AE\ = n{k + ena2)E\ - nEi(a)N,

AEi — nkE¡,        i = 2, ..., n,

AN = 7>nee\E\(a)E\ + <-h e«2a2 > N - nkeax,

Ax = -naN + nkx.

Therefore, span{^!, N, x} is an invariant subspace under A and the charac-

teristic polynomial Pa(í) of A is given by pA(t) = (t - nk)n~*pA.{t), where

A* stands for A\^&n(Ex,N,x} • Then Pa*(í) is constant and we can find three

real constants X\, A2 , and A3 (which are nothing but the invariants associated
to A*) such that

,       Aa     .   ,, ->,
A\ —-1- 2n{k + ena },

a

.   / Aa
A2 = n{2k + ena1) \ — + en¿a¿ 1 + 3n¿eeiEi(a)¿

+ n2k(k + ena2) - kn2ea2,

23 = «2fc(ic + e«a2)('^ + en2a2]

- n3kea2(k + ena2) + 3n3ee\kEi(a)2.

Then we obtain
/A \

nkl2 = h + n3(k + ena2) + n2 ( — + en2a2 J + n4ka4
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and

— = Xi — 2n(k + ena2).
Aa 2

a

The last two equations allow us to write n4a4 = kpA-(kn) and so a is locally

constant on W, which is a contradiction.
Finally, assume now there is a point p in W such that T(Va)(p) = 0. Note

that from (1.3) and (1.5) we have in W, Vi = 1, ... , n,

(AEj, N) = -neEj(a),

(Ei, AN) = -<7\Va), Et) - neE¡(a).
a

It follows that, at p,

(3.10) j     (AEi,N) = {Ei,AN).

From (1.3), (1.4), (1.5), (3.1), and (3.10) we deduce that A is a selfadjoint
endomorphism of R"+2 , and thus equation (3.10) remains valid at every point

in W . In turn, from (3.10) T(Va) = 0 on W and so Va is an eigenvector of

S with associated eigenvalue -nea . If (Va, Va) = Va(a) = 0, from (1.3) we

could write ^(Va) = n(k-nea2)Va; then n(k-nea2) should be an eigenvalue

of A and a must be locally constant on W, which cannot hold. Therefore,

we can choose a local orthonormal frame {E\, ... , En} with E\ parallel to

Va such that

AE\ — n(k - nea2)E\ - nE\(a)N,

AE¡ = n(aSEi + kE¡), i — 2, ... , n ,

AN = -nee\Ei(a)Ei + <-i-e|5|2 > TV- nkeax,

Ax = -naN + nkx.

Since SE¡ € span{7?2,... ,EH}, i = 2, ... , n , we may write S* for the endo-

morphism S restricted to span{i?2» ..., En} . Working on the characteristic

polynomials, from the above equations we can deduce that

pA(t) = (nay-iq(t)ps.(^¡^y

where q(t) is a polynomial of degree three. Let {n , ... , r„} be the possibly

complex roots of ps(t), with rx = -nea and {r2, ... , r„} the roots of Ps>(t).
Then the functions nk + nar¡, j = 2, ... , n , are roots of Pa(í) and therefore

they are locally constant on W. Thus from the formula Y!]=2^nk + narj) —

n(n - \)k + naYTj=2ri = nin ~ l)k + na(trS - r{) = n(n - l)k + 2en2a, we

obtain that a is locally constant on W, which is a contradiction.

Summarizing, we have that W has to be empty; i.e., M" has constant mean

curvature.

4. Main results

We have just proved that the hypersurfaces Afs" of Mv satisfying the

condition (1.2) have constant mean curvature. In this section, we wish to give

a classification theorem of such a class of hypersurfaces. To do that, we recall

the following definition. A hypersurface M" is said to be isoparametric if the
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characteristic polynomial Ps(t) of its shape operator S is the same at all points
of A/j" . When S is diagonalizable (for example, in the definite case) that means

that the principal curvatures of Af/1, as well as its multiplicities, are constant.
Our first main result reads as follows.

Theorem 4.1. Let x : M? -* Mv be an isometric immersion satisfying Ax =

Ax + B. Then M£ is a minimal or an isoparametric hypersurface.

Proof. Let M" be a hypersurface of Af"     satisfying (1.2).  By Proposition

3.2 we can assume that the mean curvature a of M? in M„ is a nonzero

constant and so equation (3.3) works here. If M" is not totally umbilical in

Mv , then we have (B, x) = 0 and, as in Lemma 3.1, B = 0. Now, from

(1.3), (1.4), and (1.5) we get

AX = n(aSX + kX),

(4.1) AN = e\S\2N - nkeax,

Ax = -naN + nkx.

Working again on the characteristic polynomials Pa(í) and Ps(t), as in §3, we
deduce that ps(t) is constant on A//1 and the proof finishes.

Next with the aim of getting a complete classification of those hypersurfaces

A/j" of Mv satisfying (1.2), some easy computations are needed. From The-

orem 4.1, Af/1 is an isoparametric hypersurface provided that the (constant)

mean curvature a is not zero, and thus \S\2 is also constant. Taking the

covariant derivative in the expression of AN in (4.1) we have Vx(AN) -

-e\S\2SX-nkeaX and VX(AN) = A(VXN) = -n(aS2X + kSX), from which
we obtain

(4.2) S2+nk~elSl2S-keI = 0,
na

where I stands for the identity operator on the tangent bundle of M? . We have

just seen that if A/J1 is not totally umbilical, then B = 0 and thus equations
(4.1) and (4.2) allow us to write

(4.3) A2 - {e\S\2 + kn)A + nek{\S\2 - na2)In+2 = 0,

and furthermore, from (4.1), A is a selfadjoint endomorphism of R"+2 . If S

is diagonalizable, from (4.2), Mg has exactly two constant principal curvatures.

By using now similar arguments as in Theorem 2.5 of [11] and Lemma 2 of [8],

we deduce that A/J1 is an open piece of a pseudo-Riemannian product of two

nonflat totally umbilical submanifolds. If S is not diagonalizable, from (4.3),

the minimal polynomial p.A(t) of A is given by //^(O = t2 + at + b, with

a — -(e|5|2 + kn) and b = nek(\S\2 - na2). Since (Ax, x) — n is constant

on Af/1 and ßA(kn) — -n2a2ek / 0, then M" is an open piece of a quadratic
hypersurface as in example 2.4. Summing up, we have proved the following
theorem.

Theorem 4.2. Let x : M? —> Mv be an isometric immersion. Then Ax =

Ax + B if and only if M" is an open piece of one of the following hypersurfaces

in Mv    ;
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( 1 ) a minimal hypersurface,

(2) a totally umbilical hypersurface,

(3) a pseudo-Riemannian nonminimal standard product,

(4) a quadratic hypersurface as in example 2.4, with nondiagonalizable shape

operator (a2 - Ab < 0).

As a consequence, we obtain the classification theorem for hypersurfaces in
S"+1 and H"+1, which generalizes Theorem 1.3 in [10].

Corollary 4.3. Let x : M" —► M      be a nonminimal hypersurface. Then Ax —

Ax + B if and only if Mn is an open piece of one of the following hypersurfaces:

( 1 ) a totally umbilical hypersurface,

(2) a product Mp(r{) x S"-"(r2).
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