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INEQUALITIES FOR ZERO-BALANCED
HYPERGEOMETRIC FUNCTIONS

G. D. ANDERSON, R. W. BARNARD, K. C. RICHARDS,
M. K. VAMANAMURTHY, AND M. VUORINEN

Abstract. The authors study certain monotoneity and convexity properties of

the Gaussian hypergeometric function and those of the Euler gamma function.

1. Introduction

The Gaussian hypergeometric function is defined by

i\ w T7i     u \      p/     u ^    Y2, (a>n)(b, n)x"
(1.1) F(a,b;c;x) = 2Fx(a,b;c;x) = 2^      ,      ,    --r,

for x G (-1, 1), where (a, n) denotes the shifted factorial function (a, n) —
a(a + l)---(a + n - I), « = 1,2,..., and (a, 0) = 1 for a ^ 0. The sum
is well defined at least when (c, n) ^ 0, i.e., when c ^ 0, -I, -2, ... . This

function has found frequent applications in various fields of the mathematical
and natural sciences [Ask2]. Many elementary transcendental functions are
special cases or limiting cases of F (a, b ; c ; x) ; for an extensive list see [AS, pp.

556-566], [PBM, pp. 430-615]. Two important special cases are the complete
elliptic integrals

(1.2) Jf(x) = \F (I, I ; 1 ; x2) ,        W{x) = \f {-\, \ ; 1 ; x2) .

As a function of its parameters a, b, c the function F (a ,b;c;x) is

smooth, and it is thus natural to expect that the properties of Jf(x) extend also

to F(a,b;c; x2) for (a, b, c) close to (\ , \, 1). Recall that F(a, b; c; x)
is called zero-balanced if c = a + b. We obtain several results for the zero-

balanced F (a, b; a + b; x), a, b > 0, extending well-known properties of
JT(x).

1.3.   Theorem.  (1) For a, b G (0, oo) the function

l-F(a,b;a + b;x)
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is strictly increasing from (0, 1) onto (ab/(a + b), l/B), where B = B(a, b)
is the Euler beta function.

(2) For a, b e (0, oo) the function

g(x) = BF(a, b; a + b; x) + log( 1 -x)

is strictly decreasing from (0, 1) onto (R,B), where

R = -¥(a) - *¥(b) - 2y.

Here ^(a) = V(a)/T(a), and y is the Euler-Mascheroni constant.

1.4.   Theorem. For a, b e (0, oo), let

f(x) = xF(a,b; a + b; x)/log(l/(l - x))

on (0, 1) and let B,R be as in Theorem 1.3.
( 1 ) If a, b G (0, 1 ), then f is decreasing with range (l/B, 1 ).
(2) If a, b e (I, oo), then f is increasing with range (1, l/B).

{3)Ifa = b=l, then f(x) - 1 for all x e (0, 1).
(4) If a, b G (0, 1) the function gx(x) = BF(a, b; a+b; x)+(l/x)log(l-x)

is increasing from (0,1) onto (B - 1, R).
(5) If a, b e (I, oo), then gx is decreasing from (0, 1) onto (R, B - 1).

Here Theorem 1.3(1) generalizes the fact that ((2/n)3f(x) - l)/log(l/x')

is increasing from (0,1) onto (1/2, 2/7r) ; 1.3(2) generalizes the well-known

fact that ^(x)+logx' is decreasing from (0, 1) onto (log4, n/2) (cf. [AW1,

Theorem 2.2(2)]); and 1.4(1) generalizes the result that x2^(x)/log(l/x') is
decreasing from (0, 1) onto (1,7t) [AW3, Theorem 2(19)].

The asymptotic relation

(1.5) F{a,b;a + b;x)~-      *      log(l-s)

as x —> 1 is due to Gauss, and its refined form

(1.6) B(a, b)F(a,b;a + b;x) + log(l -x) = R + 0((l -x)log(l -x))

as x -> 1, with R — -*P(a) - ^(b) - 2y, is due to S. Ramanujan [Ev, p. 553],
[Be, p. 71]. Theorems 1.3 and 1.4 are refinements of these classical relations.

Ramanujan also gave extensions of ( 1.6) to the generalized hypergeometric func-
tion pFq for certain values of p and q [Ev, pp. 553-558], [Be, pp. 12, 71].
Formulas (1.5) and (1.6) follow from the identity in [AS, 15.3.10], which has
been generalized recently in [B, p. 152].

1.7.   Theorem. For each a, b e(0, oo) the function

f(x) = (l-x)i^F(a,b;a + b;x)

is a strictly decreasing automorphism of (0, 1) if and only if 4ab <a + b.

While studying relationships between the arithmetic-geometric mean and
some other means, J. and P. Borwein [BB2, (2.9)] recently proved that

(1.8) F (^, ^; I; I - xc^j < F (^-0, l- + S; I; I - xd^j

for all x G (0, 1), with c = 2, d = 3 , S = \.
We obtain the following generalization.
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1.9.   Theorem. For c,d e (0,oo),4c < %d, inequality (1.8)  holds for all

x e (0, 1) and for all ô e (0, S0), where 60 = ((dn - 4c) /'(4nd))]I2.

We conclude the paper by proving some inequalities for the gamma func-

tion.   Our notation is mostly standard.   For x G [0,1], we often denote

x' = v"l-x2.

2. Proofs

For many important properties of the functions F (a, b; c; x), Jf(x), and

f(x) see [AS, pp. 556-566, 589-626], [C, Chapters 2, 9], [PBM, pp. 430-615].
Some algorithms for computing these functions are given in [Ba, pp. 345-372,
416-424], [M, Chapter 7], [PNB, p. 249], and [PT, pp. 404-426]. Various
aspects of the theory of special functions are surveyed in [Askl], [Ask2], [AW3],

[LO, 5.3, 5.5].
We shall give here a proof of the Gauss asymptotic formula (1.5), since we

have been unable to find a proof in the recent literature or in the standard texts.

Various generalizations of (1.5) appear in [Ev, pp. 553-558], [B, p. 152].

2.1.   Lemma.   (1) For a, b G (0, oo), the sequence

/(„)-      (a,n)(b,n)
(a + b, n)(n - l)\

is increasing to the limit l/B(a, b), as n —> oo.

(2) For a, b e (0, I), the sequence

= (a , n)(b , n)(n + I)

g{ ]~       (a + b,n)n\

is decreasing to the limit l/B(a, b), as n —> oo.

(3) For a, be (1, oo), the sequence g(n) is increasing to the limit l/B(a,b),

as n —> oo.

In particular, for each positive integer n,

(4) aTb^f^<B^b)   forall a,be(0,oo),

(5) ^<g(n)<-^b   forall a,be(0,I),

(6) a^Tb ̂  g{n) K Bjahb)   f^ ^ a,b e(l, oo),

where the weak inequalities reduce to equality if and only if n = 1.

Proof. Part (1) is proved in [AW3, Theorem 6(4)]. For (2) and (3),

g(n + l)     (a + n)(b + n)(n + 2)

g(n) (a + b + n)(n + I)2
< 1

iff wx = ((a + b + n)n + ab)(n + 2) < w2 = (a + b + n)(n + I)2, which is true
since w2 - wx = (a + b - 2ab) + n(l - ab) is positive if a, b e (0, I), and
negative if a, b e (1, oo). The limiting values follow form Stirling's formula

[C, p. 24], [Mi, p. 184].   D
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2.2.   Remark. The following inequalities due to Wallis appear in [Mi, p. 192]:

1 <íL_ü)<    1

\l^{n + \) m s/nn

Since B(\, \) = n, the result in Lemma 2.1(4) generalizes the second Wallis
inequality here.

2.3. Lemma (Gauss). For a, b e (0, oo), the relation (1.5) holds.

Proof. Let B = B(a, b). From Lemma 2.1, we have

r^/     l i.     x    v-> (<z, ")(è, n)   „     ,    Ä 1 x"     .      1 .    .,       ,
F(a,Z>;a + ft;x) = >   )       !K   \  ,x" < 1 + >   -5— = 1 --log(l -x).

v y    t-*'(a + b, n)n\ ¿-"t B n B
n=0 n=l

Hence
.. F(a, b;a + b;x)^ 1
hmsup -rr-^ < -.

x^i       log(l/(l-x)) B

Next, fix e G (0, l/B). Then by Lemma 2.1 there exists a positive integer n0

such that (a, n)(b, n)/((a + b, n)(n- 1)!) > (l/B) -e, for all n > n0 . Hence,

F(a,b;a+b;x)>Fno+(±-e)   ¿   -£• = Fno- (^ - e) (log(l-x)+5„J,
n=n0+l

where

_A(fl>n)(ft,/i) _f>x^
^"¿-(a + è,«)«!* '    a*-2- „•

n=l  v ' 7i=l

Dividing by log(l/(l - x)) and letting x -» 1, since e G (0, l/B) is arbi-
trary, we get

,.„.jff(fl,f>;a + f);x)      1
hm int —-———-rr— > -=•,

x-»l log(l/(l-x)) 5

so that the limit is l/B.   G

2.4. Proof of Theorem 1.3. (1) The limiting value as x —> 0 follows from

series expansions, while the one as x -► 1 follows from Lemma 2.3. Next, let
g(x) = F(a,b;a+b;x)-l and h(x) = log(l/(l-x)). Then g(0) = A(0) = 0,
and by the monotone l'Hôpital rule [AVV4, Lemma 2.2] it is enough to show

that g'(x)/h'(x) is strictly increasing. Now [WW, p. 281]

l^ = ^-x)F{a+l,b+l;a + b+l;x)

ab   fi+^f(a+l,n + l)(b+l,n + l)
a + b .

\        n=0

y,((a+l,n+l)(b+l,n + l

f^\ (a + b+l,n + l)(n + l)\

(a+l,n)(b+l,n)\x

(a + b+l,n)n\   )

The coefficient of x"+1 here is positive if and only if (a + 1 + n)(b + 1 + n) >

(a + b + n + l)(n + I), which holds if and only if ab + (a + b)(n + 1) + (n + I)2 >
(a + b)(n + I) + (n + I)2 , which is true.



INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC FUNCTIONS 1717

(2) The limiting values are clear from (1.6). Next, by series expansion,

„(rï    R    yfp    (a,n)(b,n) \ x"
g(x) -B - ^ ^(fl + if|f)(B_1)! - 1 ) -,

so that all coefficients are negative by Lemma 2.1(4).   D

2.5.   Proof of Theorem 1.4. For (1), let g(x) — xF(a, b; c; x), c — a + b ,
and h(x) = log(l/(l -x)). Then g(0) = h(0) = 0 and

g'(x)     ,.       s (t.,     ■ x    abx
^ = (l-x)(F(a,b;c;x) + —(l-x)[F(a,b;c;x) +-F(a + 1, b + 1 ; c + 1;*))

(a,n)(b,n)xn     ab ^ (a+I, n)(b + I, n) x= (i-x)rr^/'^"^ + ̂ v
n+1

,„=0      (c,n)      »!       c ^ (c+l,n) «!

oo
ír(fl,#,B)^     ^(a,/i + l)(¿,w+l)x"+1

\¿S   (c'n)   nl   h     (c'« + 1)      «!

_ ^ (a, n)(b, n) xn    ^ i(a,n +l)(b, n + l)     (a, n)(b, n)\ x"+1

~ ¿¿      (c,/i)      n\+±^{        (c,n+l) (c,n)     )   n\

OO

-E
n=0 v   >     / •        n=0

(a,n+l)(b,n + l)xn+2

(c,n+l)       ■   n!  '

Hence

g'jx) (2ab      \       ^(a,n + 2)(b,n + 2)   x"+2

h'(x) \  c        )       ±t (c,n + 2) {n + 1)
/!=0

^(a,n + 2)(b,n + 2)   x"+2       ^ (a, « + 1)(¿>, m + 1) x"+2

+ Zj (c,n + 2) (n + 1)!    ¿j (c,« + l) «!

^(a,«+l)(è,n+l)   x"+2

(c,« + l) (" + 1)!

fr. « 4- 21C/1 + 2
n=0

/2a¿>      \       ^(a,K+l)(/3,W+l

- ^ c       V       ¿Í   (c,« + 2)(« + 2)!

n+2x [(n + l)(ab - 1) + (2ab - a - ¿>)]x

in which all coefficients are negative. Thus g'(x)/h'(x) is decreasing, hence

so is g(x)/h(x), by the monotone l'Hôpital rule [AW4, Lemma 2.2], and (1)

follows.
The proof for (2) is similar, except that all coefficients are positive.

Part (3) follows from (1.1) and the series for log(l/(l - x)).
(4) In the series expansion,

gi{x) - {B -1)=r f ;*' y >"]b --±-Ax»,
*l '    v ¿-"\(a + b,n)n\       n + lj

n=l

all coefficients are positive by Lemma 2.1(5).
(5) The proof is similar to (4), except that all coefficients are negative by

Lemma 2.1(6). The limiting values are clear by (1.6).   D
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2.6. Lemma. For a, b e (0, oc), « = 1,2,3,...,

^(a,k)(b,k)     (a+l,n)(b+l,n)     (a,n)(b,n)

fq'(a + b, k)k\ "     (a + b+l,n)n\        (a + b,n)n\'

Proof. The first inequality follows by induction, and the second one by the

factorial property of (a, n).   D

2.7. Lemma. For a, b e (0, oo) and x e (0, 1) the Maclaurin series of the

functions

j^F(a, b;a + b;x)- F (a + I ,b+1; a + b+l; x)

and

F (a + 1,b+l; a + b + l ;x)- F (a, b; a + b; x)

have constant term zero and all other coefficients strictly positive. In particular,

these functions are increasing and convex on (0,1) and

F (a ,b;a + b;x)< F (a +1,b+l; a + b+l ;x)< -r^F(a, b;a + b;x)

for all xe (0, 1).

Proof. The results follow immediately from Lemma 2.6.   D

2.8. Proof of Theorem 1.7. The limiting value f(0) = 1 is obvious, while
/(1-) = 0 follows from Theorem 1.3(1). Next, for each x G (0, 1) we have

4(l-x)-1/4/'(x) = ^r-F(a+l, b+l; a + b+l; x)-j^— F(a, b ; a + b; x).

If 4ab < a + b, then Lemma 2.7 implies that f'(x) < 0. Conversely, if / is
decreasing, then/'(x) < 0 for all x G (0, 1), and letting x tend to 0 we get

4a¿> < a + b.   D

The special case a = b = \ of Theorem 1.7 is well known. This special

case follows, for instance, from the infinite product formulas for x'/y/x and

(2/n)y/x3?(x) in terms of the Jacobi nome q = exp(-nJ?' /Jf) [WW, p. 488,
Exercise 10] or from [AVV1, Theorem 2.2(3)].

2.9. Remark. It is easy to show that (sfab, n)2 < (a,n)(b,n) <

((a + b)/2, n)2 for all positive a, b and all n = 1,2,..., with equality
if and only if a — b . Thus

(2.10) F(Va~b, 4a~b; c; x) < F(a, b; c; x) < F((a + b)/2, (a + b)/2;c;x)

for a, b, c > 0, x e [0, 1 ), with equality if and only if a = b or x = 0.
Furthermore, for a, c > 0 and for t e (0, a) we see that (a + t, n)(a - t, n)

is a decreasing function of t on [0, a] for n - 1, 2, ... , so that

(2.11) F(a + t2, a-t2;c;x)< F(a + ti ,a-h;c;x)

for x G (0, 1), 0 < tx < t2 < a . The second assertion of Lemma 2.7 also fol-
lows from the fact that (a, n)(b, n)/(a+b, n), a, b > 0, is a strictly increasing
function of a.
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3. The gamma function

We next study some properties of the functions

r(x)= /    tx~le-'dt   and   ¥(*) = -=-logr(x)
To dx

when x is real and positive.

3.1.   Theorem. The function f(x) = x(logx -^(x)) is decreasing and convex

from (0,oo) onto (¡¡, 1).

Proof. From [WW, p. 251, §12.32, Example] it follows that

1     ,    i00 tdtri uL?   f tdt
j(x)-2+zxjo    {(2 + x2){e2nl _ iy

Hence,

tdt .  , f°° tdtm   ,       ̂    f°° tdt „2    r

-2fJo

/0    (t2 + x2)2(e2*> - 1)

t(t2 -x2)dt

(t2 + x2)2(e2*1 - 1)

f      (t2-x2)dt    . y00      /      (t2-x2)dtrx    t    (t2-x2)dt      r

Jo  e2*<-l  (t2 + x2)2        Jx   e2*'-l  (t2 + x2)2'

Since t/(e2nt - 1) is decreasing on (0, oo), we get

ft       2x   r(t2-x2)dt
^X><e2nx_lJ0        (i2+jc2)2-

Substituting t = x tan u, we get

[°°(t2-X2)dt      1   r'2. .2 2   .  ,       .

/0    ~(t2TxW = xJo    (^"-^s«)^ = 0.

Thus we have shown that /(x) is strictly decreasing, so that /(0+) exists. To

obtain this limit we observe first that t/(e2nt - 1) < l/(27r) implies that

r i r°      tdt      ^ i
xllJ$+ZXJ0      (t2 + X2){e2nt _ X)  ^ 2-

Next, fix e G (0, l/(27t)).  Since lim,_0+ t/(e2nt - 1) = 1/(2tc), there exists

S > 0 such that t/(e2nt - 1) > 1/(2tt) - e for all î G (0, â). Thus

^    r°            í^í                ^   /" 1        \  fS     dt         - ( 1        \ <5
2x /     -n-... , ,—TT >2x [■=-e    /   -s-r = 2-e   arctan —.

Jo (t2+x2)(e2"'-1)      \27T   yy0 '2+*2    V27T   y      x

Now letting first x, then e, tend to zero gives

f0 trfr 1
xl™+zxJ0    (t2 + x2)(e2*t - I) - 2'

For 0 < a < è < oo denote

r
I(a,b)= /

tdt
(t2 + x2)(e2*< - I)'
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Then, since t/(e2nt - 1) < 1/(2^),

2x7(0, 1) < -arctan-,
n x

while

roo    te-ntdtui   w  i   r tdt     i   r

+^2)ii

oo

dt

i    2sinh(7ri)

1

-27t(l+x2)yi 2tt2(1+x2)"

Hence lim^oo f(x) = j .
To prove the convexity, let J[g] denote the integral of a function g from

0 to oo . Then, as above, f'(x) — 2J[g(t)h(t, x)], where

g(t) = t/(e2nt - 1)   and   h(t, x) = (t2 -x2)/(t2 + x2)2.

Hence,

dh(t,x)      x2-3t2
f"(x) = 4xJ[g(t)H(t, x)],    where H(t, x) =

dx (r2 + x2)3'

Since g(t) is decreasing, by splitting the integral on (0, oo) into the sum of

an integral on (0, x/%/3) and one on (x/\/3, oo), we get

f"(x)>4xg(x/V3)J[H(t,x)].

Now substituting t = xtanw, we see that J[H(t, x)] = 0. Hence f"(x) > 0

on (0, oo), so that / is convex on (0, oo).   D

3.2. Theorem.  (1)  The function fx(x) = xll2~xexT(x) is decreasing and log-

convex from (0, oo) onto (\/27t,oo).

(2)  The function f2(x) = xx~xexT(x)  is increasing and log-concave from

(0, oo) onto (1, oo).

Proof. (1) The limiting value at 0 follows from the relation T(x + 1) = xT(x),

while the one at oo follows from Stirling's formula. Next,

-x-j^logfx(x) = f(x)--,

where f(x) is as in Theorem 3.1, is clearly positive and decreasing.

(2) The limiting value at 0 follows from the relation T(x+1) = xT(x), while

the one at oo follows from Stirling's formula. Next,

-x^log/2(x) = l-/(x)>0,

where f(x) is as in Theorem 3.1. Moreover, by the monotone l'Hôpital rule

[AW4, §2], it follows that ^log/2(x) is decreasing.   D

3.3. Remark. A result similar to Theorem 3.2 appears in [Lu, p. 17], whereas

in [Mi, 3.6.55, p. 288] a version of Theorem 3.1 is given. In [G, p. 283] it is
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shown that xx¥(x) is convex for x > 0. For some recent results on the gamma

function see [Al].

4. Refinements

A problem of interest is to obtain upper estimates for the complete elliptic

integral

in terms of variants of the type

f(^-ô,^+ô;1;1-x^

for x G (0, 1) and ô e (0, \). Observe initially that the inequality

(4-1) F(l,L1;l_*2)<F(l,l.l;l_*3)

for x G (0, 1) follows immediately from the monotoneity of F(j, \ ; 1 ; x) as

a function of x. We seek a refinement of (4.1).

J. Borwein and P. Borwein [BB2, (2.9)] have shown that

(4.2) f{^,\;1;1-x2)<f{]î-ô,\+ô;1;1-x^

for ô = | and for all x e (0, 1). It has been conjectured recently [AW3, p.

79] that (4.2) holds for all ô e (0, ¿) and for all x G (0, 1). We next obtain
a refinement of (4.2), which also proves the statement of Theorem 1.9.

4.3.   Theorem. Let x e (0, I), c, d e(0, oo), 4c <nd. Then

(4.4) f(^;l;l-/) <f(^-ô0, \ + 3o; 1; l-xd)

(4.5) <FnL-s,± + Ô;l;l-xd\

(4.6) <FQ>1;1;1_^

for all ôe(0,ô0), where ô0 = ((dn - 4c)/(4nd)yi2.

Proof. Let fs(x) be defined by

(4.7) fs(x) =
1 -F(\-ô,'2+ô; 1 ; x)

log(l-x)

It follows from Theorem 1.3 that, for all x G (0, 1) and ô e [0, \),

,4.8)      (H(H<AW<*(w'i+¿>'
where   B(a,b)   is the Euler beta function.    From the reflection formula

T(a)r(l - a) = 7t/sin(a7r) [AS, p. 256], it follows that

(4.9) I -Ô2 < fs(x) < i sin (Q -¿) *)
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for ail x G (0, 1) and ô e [0, {). From (4.9) with ô = 0 it follows that

F(i,I;l;l-x-)-l 1
-io^TTxö--fod-xX-.

Again applying (4.9) with ô e (0, ô0) yields

F(\-ô, { + Ö; 1; l-x")-l _ d

log(l/V) ~ c

F(\-ô, \ + ô; 1; l-xd)

log(l/xrf)

d
>

c g-«k
Therefore, for 0 < S < ô0 and x G (0, 1),

fQ,I;1; l-xc) =l+/0(l-xc)log¿

< 1 + - log —
7T Xe

<l + ^/á(l-xd)log¿

= FQ-ô,\ + ô;l;l-x*),

which establishes (4.4). Inequalities (4.5) and (4.6) are immediate consequences
of (2.11).   G

4.10. Conjectures. (1) For c = 2, rf = 3 the best possible value of So for
which Theorem 4.3 is valid is Sq = (ti - 2arcsin(2/3))/(27t) « 0.268 (see

[AW3, p. 6]).
(2) Theorem 1.4 has a counterpart for the generalized hypergeometric func-

tion pFq(ax, ... , ap;bx, ... ,bq; x) for the case a,> 0, b} > 0, p = q + 1,

when the sum is zero-balanced, i.e. when Yfi=x a, = J2%i b¡. See also [B,

p. 152].
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