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STATISTICAL INFERENCE BASED ON
THE POSSIBILITY AND BELIEF MEASURES

YUAN YAN CHEN

Abstract. In statistical inference, we infer the population parameter based on

the realization of sample statistics. This can be considered in the framework of

inductive inference. We showed, in Chen (1993), that if we measure a parameter

by the possibility (or belief) measure, we can have an inductive inference similar

to the Bayesian inference in belief update. In this article we apply this inference

to statistical estimation and hypotheses evaluation (testing) for some parametric

models, and compare them to the classical statistical inferences for both one-

sample and two-sample problems.

1. Introduction

In statistical inference the treatment of a parameter is always at the center of

debate. The population parameter is a constant. However, on the basis of the

sample statistics the precise value of the parameter cannot be determined with

absolute certainty. If we evaluate the plausible values of the parameter, then we

have the concept of likelihood distribution of the parameter, as stated by Fisher
(1956), "The likelihood supplies a natural order of preference among the pos-

sibilities under consideration." Bayesian inference represents the distribution

of a parameter by a probability function. However, many authors, including

Barnard, Bartlett, and Fisher, concluded that parameters with (fiducial) dis-

tributions cannot be regarded as random variables in KolmogorofFs sense (see

Barnard (1987)). This prompted us to introduce a concept of stationary variable

for an unknown parameter in Chen (1993) to differentiate it from the concept

of random variable, and we propose to measure a stationary variable by the
possibility measure.

Possibility theory as proposed by Zadeh (1978) is derived from the theory

of fuzzy sets. The uncertainty models similar to the possibility theory were

also considered by Shackle (1961), Cohen (1970), and Shafer (1976). The basic
operation of possibility measure is the sup operation, which is considered as a

pseudo-addition (e.g., see Ichihashi et al. (1988)). Since sup and addition have

the same algebraic property, possibility measure, although it is a weaker scale
of measurement, is parallel to probability measure. As a consequence, in statis-

tical inference, every belief representation under Bayesian inference can have a
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counterpart under possibility inference, and vice versa (if we allow the improper

probability function.) Both Bayesian inference and the possibility inference dis-

cussed in this article are based on the principle of inverse inference—the more

plausibly a hypothesis can produce the evidence, the more likely it is to be

true. However, from the logical point of view the inference from the sample

to the population and the inference from the population to the sample are two

different types of reasoning processes; one is an inductive reasoning and the

other is a deductive reasoning. Thus, there is a need for two different kinds of

uncertainty measures for the statistical inference. The calculus of probability
measure has been shown to be not suitable for the logic of inductive support by

many authors, e.g. Popper and Miller (1987). Thus, we opt for the possibility

measure and its conjugate, belief measure, which is considered as an inductive

probability by Cohen (1970), as a basis for statistical estimation and hypothesis
evaluation.

The reasoning for the truth or falsity of a hypothesis is a judgment and not

a decision; a decision is for anticipating an action. Without the measurement

of belief we are obliged to employ decision theory for the hypothesis judgment.

In classical hypothesis testing when we fail to reject a null hypothesis there is a

logical ambiguity: whether we lack the evidence to make a confirmed judgment,

or the null hypothesis is supported, which is very often the interpretation in

statistical practice. As a result, a promising experiment (e.g. clinical trials)
would be regarded as "insignificant" simply because of the shortage of sample

sizes. Thus, we need a theory of support for the statistical inference.

2. Possibility measure, belief measure, and statistical inference

Possibility measure is a fuzzy measure based on evaluation (e.g. see Wang

(1984)); thus the basic operation is sup (and inf ). The possibility and necessity

measures are also a subclass of plausibility and belief (upper and lower proba-
bilities) measures (e.g. see Chen (1993) and Shafer (1976)). In this article we

adopt the notations of plausibility (PI) and belief (Bel) for the possibility and
necessity measures.

Definition. Let ¿% be a Borel a -algebra on Í!. A function PI : 38

possibility measure if

(i)      P1(0) = O, P1(Q)=1,

(2l) (Ü)     A„1A^m(A„)im(A),
' ' (iii)    Pl(A U B) = Pl(A) V Pl(5),  VA,Be¿%,

A n B = 0 (fuzzy additivity),

where V is a sup operator. Note that the condition A n B = 0 in (iii) can also

be dropped. A conjugate measure is a necessity measure or a belief measure,

which is defined by Bel(^) = 1 -Pl(A). Under the belief measure we have

(i)'      Bel(0) = O, Bel(i2) = 1,

(2.2) (ii)'    An I A -» Bel(A„) i Bel(A),

(iii)'    Bel(^ DB) = Bel(A) A Bel(B), VA,Be&,

-[0, 1] is

where A is an inf operator.
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Similarly to the probability measure, the possibility measure can be charac-

terized by a distribution function. Let 1(6) — P1({0}) ; then

(2.3) Pl(^) = sup/(f7).
eeA

The function 1(6) is called the likelihood function in Chen (1993). Note that
the likelihood function plays a role similar to that of the probability function

and the operator sup or V acts as / or ¿^ in probability measure.

Under the possibility model, if we believe A is true, but we are not absolutely

certain, then we have Bel(A) = s, 0 < 5 < 1, where s is the confidence level.

The rest of the belief or doubt, 1 - s, is attributed to Pl(^4). Since by (iii)'

and (iii) we have Bel(^4) = 0 and Pl(A) = 1, these two values do not need to

be specified. Thus, although the possibility model belongs to the class of upper

and lower probabilities model, it is actually a single-value "probability" model

in disguise. There is no need to embed a probability measure in between belief

and possibility measures.

For the statistical inference under possibility and belief measures we state a
few theorems from Chen (1993).

Theorem 2.1 (Chen (1993)). 7/X,, ... , Xn\6 ~ i.i.d. P(x\6), and 1(6) is prior
belief for 6, then the posterior belief for 6\x\, ... , x„ is

(2.4) l(6\Xl ,...,x„) = l(6)p(Xl,..., xn\6)/supl(6)p(xi ,...,xn\6).
d€0

If 1(6) = 1, V0 e 6, which is known as a vacuous belief, then (2.4) reduces to

l(6\x\, ... , x„) = kp(x\, ... , x„\6). Thus, l(6\x\, ... , x„) can be considered

as a normalized "likelihoodfunction", L(6\x\, ... , x„) = p(x\, ... , x„\6).

Theorem 2.2. If 1(6) = 1, VÖ e 8, and g : 6 -»• n is a function onto &, then
l(n) = \, VneS'.

Proof.  l(n) = sup?(e)=„ 1(6) = 1, Vn e 8'.

This theorem indicates that a vacuous likelihood function is still vacuous

under transformation. This property does not hold for a uniform probability

function. Thus, Bayesian inference has difficulty incorporating the concept of

vacuous belief; furthermore, a uniform prior does not always exist in Bayesian
inference.

If we define the weight of evidence in the same way as Shafer (1976),

(2.5) W(H\E) = - log(l - Bel(77|£)),

then this weight of evidence is also equivalent to Bayesian weight of evidence

defined by Good (1950). If Pl(77) = 1, Pl(77) = 1 and P(E\H) > P(E\H), by
(2.4) we have

(2.6) log(P(E\H)/P(E\H)) = - log( 1 - Bel(H\E)),

where log(P(E\H)JP(E\H)) is Good's definition of weight of evidence. And

if P(E\H) < P(E\H), then by Good's definition, the support of_f7 given E is
negative, which is equivalent to assigning a positive support to H.
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Theorem 2.3 (Chen (1993)). Let X{\6 and X2\6 be independent random vari-
ables with probability function P\(x\\6) andp2(x2\6) respectively, and 1(6) = 1,

V0 6 O. 7/sup0€e/i(0|xi)/2(0|x2) > °- then

(2.7) l(6\xx,x2) = h(6\x2)l2(6\x2)lsuVh(6\xl)l2(6\x2).
see

Equation (2.7) is known as the likelihood rule. Note that (2.7) holds even

if x\ and x2 are vectors. Thus, if we have likelihood functions from two

independent samples, they can also be combined by (2.7). This provides a

simple method for a meta-analysis.

We now look at the likelihood rule from an evidential point of view.

Corollary. Let H and H be two rival hypotheses, and let E\, E2 be two inde-

pendent evidences.

(i) If Ex   and E2  both support 77, then  W(H\EX,E2) = W(H\EX) +

W(H\E2).
(ii) If Ei supports 77, E2 supports_H and W(H\EX) > W(H\E2), then

W(H\EX, E2) = W(H\EX) - W(H\E2).

Proof. By (2.7) Bel(77|£'1) = s, and Bel^Ti^ = s2 => Bel(H\Ex,E2) =
1 - (1 - si)(l - s2), and Bel(H\Ei) = Si, Bel(77|£2) = s2, and s{ > s2 =>•

Bel(H\Ei, E2) = 1 - (1 - si)/(l - s2). So we have the results.

From this corollary we see that a belief update under the likelihood rule

reduces to simple addition or subtraction of weights of evidence.

Remark. Shafer (1976) also suggests measuring a parameter by the possibil-

ity and belief measures, which he called a consonant belief function. But he
thought that dissonant evidence could produce partial supports to rival hypothe-

ses. Thus, he proposed using Dempster's rule to combine the statistical evi-

dence. As a result the combined belief of each sample is not the same as the

belief of the combined sample; this has been much criticized. Smets (1982)
pointed out that if we use the likelihood rule instead of Dempster's rule this

difficulty can be resolved.

3. Comparison of likelihood inferences and classical inferences

In the next two sections we will compare the possibility inferences with the

classical statistical inferences based on decision and sampling theory. We re-

fer to the inference based on (2.4) with vacuous prior as the likelihood infer-

ence since it is close to Fisher's concept of mathematical likelihood, and it also

satisfies the likelihood principles advocated by Birnbaum (1962) and Edwards
(1972), etc. With the likelihood function of possibility measure to portray the

likelihood, we can have joint likelihood, marginal likelihood and prior belief;

thus, many early criticisms of the likelihood inference can now be resolved.
The likelihood inference measures the whole hypothesis space. Several hy-

potheses can be simultaneously entertained; there is no need to set up the null

and alternative hypotheses. However, many problems of classical hypothesis

testing still can be applied. If Bel(/7i ) > 1 - a, and a is small, then it is

logically equivalent to rejecting a null hypothesis in classical hypothesis testing.

But, unlike the classical hypothesis testing, we can also accept 77o as true, if
Bel(77o) > 1 - a, although this seldom holds for a point null hypothesis.



STATISTICAL INFERENCE BASED ON THE POSSIBILITY AND BELIEF MEASURES 1859

The precise location of the true parameter cannot be ascertained from the

likelihood function. However, we have confidence that it lies in a certain region,

which will be called a likelihood interval.

Definition. Let 0 be a stationary variable on 8. A subset A c 8 is a likelihood
interval for 0 with a confidence level 1 - a if

(3.1) A = {6\l{0) > a} .

This kind of interval is equivalent to an a-cut set in fuzzy set theory. From

(3.1) obviously we have Bel(0 e A) > 1 - a. A likelihood interval is a rational

belief on where the parameter is located after the samples are realized, while

a classical confidence interval is a predicted coverage of the parameter before

the samples are selected. A discussion of these conceptual differences can be

found in Hacking (1975). Note that the concept of likelihood interval was also

realized by Fisher (1956).
We first look at the binomial case. Let x be the observed outcome from

a binomial distribution B(n, p). A likelihood interval for p with confidence

level 1 - a is (j>l , Pu), where p¿ and pu are the solutions of

(3.2) px(l -p)"-x{(x/n)x((n -x)/n)n~x}-1 =a.

Table 1 shows a few interval estimates for sample sizes n = 10, 50, and 100.

Table 1. Likelihood limits for binomial p with confidence level 1 - a

«=10 « = 50                « = 10Ó~
a    x     Pl       Pu x     pL      pu x     pl      Pu

.01    1    .0004   .554 5   .018   .273 10   .033   .214

.05          .002      .455 .027    .234           .042    .189

.1           .004     .403 .033   .214           .048   .176

.01    3   .031      .756    15    .135   .560   30   .176   .448

.05 .055     .678 .161    .528 .197   .418

.1 .072     .634 .176   .448 .209   .403

.01    5   .113     .887   25   .295    .705    50   .352   .648

.05 .164      .836 .332    .688 .379    .621

.1 .197     .803 .352   .648 .394   .606

Next, we look at the normal cases. Let x\, ... , x„ be the observed outcome

from a normal distribution N(p, a2). First we assume a is known and p is

to be estimated. Then the likelihood limits for p at confidence level I -a are

the solutions of

(3.3) exp{-n(x-p)2/2o2} = a.

Thus they are

(3.4) x±caa¡\fñ,

where ca = (-2 In a)1/2 .
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Table 2. Coefficients of ca and the corresponding za/2

coefficient   a = .l    a = .05    a = .02   a = .01    a = .005

cQ                 2.146      2.448       2.797       3.035        3.255

za/2_1.645      1.960       2.326       2.576        2.807

Table 2 shows the comparison of the coefficients ca and the corresponding

coefficients za¡2 of the classical method, where za¡2 is the upper a/2 percentile

of the standard normal distribution.

If a is unknown, then both p and a are stationary variables; we need a joint

likelihood function of (p, a). Since the marginal likelihood l(p\x\, ... , xn) =

sup0<(7<00l(p, a\x\, ... , xn), the likelihood limits for p at confidence level
1 - a are the solutions of

(3.5) {(l + (x-p)2)/ô2}-"/2 = a,

where a2 = YH=i(xi - x)2/n is the MLE of a2 . So they are

(3.6) x±(a-2ln-l)x'2ô,

or equivalently

(3.7) x±c„,as/y/ñ,

where 5 = {£"-i(*< -x)2/(n - I)}1'2 and c„,a = {(« - l)(a~2ln - l)}1/2.

Table 3 shows the coefficients of cn,a in comparison with the tn-i,a/2 of

Student's ¿-values. We notice that as n —> oo, Table 2 and Table 3 give the

same result, as expected.

Table 3. Student's ¿-values and the corresponding likelihood coefficients

_n = 5_n = 10_n = 20_n = 30_n —> oo

Q      tn-\   aj2    Cn,a    ¿n-l,a/2    ¿"n,q    ¿n-l,a/2    cn,a    ^w-l,a/2    cn,a    ^n-l,a/2    ¿72,a

.1     2.132 2.459 1.833 2.294 1.729 2.218 1.699 2.194 1.645 2.146

.05   2.776 3.043 2.262 2.718 2.093 2.576 2.045 2.532 1.960 2.448

.02   3.747 3.889 2.821 3.268 2.539 3.016 2.462 2.940 2.326 2.797

.01   4.604 4.609 3.250 3.689 2.861 3.334 2.756 3.228 2.576 3.035

.005 5.595 5.413 3.690 4.119 3.174 3.643 3.038 3.505 2.807 3.255

4. TWO-SAMPLE PROBLEMS

In two-sample statistical inference we are interested in evaluating the rela-

tion between parameters of two populations. Mathematically, a relation can be

considered as a subset of a product space.

Definition. If (6\, 02) is the joint likelihood function of 6\ and 02, and R c
8i x 82 is a relation, then

(4.1) P1((0,, 02) c R) =    sup    /(0!,02)
(6, ,e2)cR

is a likelihood relation between 6\ and 02 with respect to R.
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Let Xu ... ,Xni\6i be i.i.d. ~/7i(x|0i) and Yx, ... , F„2|02 be i.i.d. ~
p2(x\62) ; the X's and F's are independent. If the prior beliefs l(6\) and /(02)
are vacuous, then the joint likelihood function of posterior belief is

l(6\, 02|xi, ... , xn¡, y\, ... , y„2)

(4.2) = Pi(xi, ... , xni\6x)p2(yi, ... , y„2|02)_

suPel6e1,e2ee2/'i(^i> ••• > •*«,IQ\)Pi(y\, ■•■ , v„2|02),

or equivalently

(4.3)
/(0i, 02|xi, ... ,x„t,yi, ... , y„2) = /i(0i|jci, ... ,x„,)/2(02|vi, ... , y„2).

We first look at the binomial case. Let x and y be the observed outcomes

from two independent binomial distributions B(n\, p{) and B(n2, p2) respec-

tively. Then we have

(4.4)   Pl(p, =p2\x,y)=px+y(l -fi)*+**-x-»/0f(l -pxr-xpy2(l -p2)n2~y,

where p = (x + y)/(«i + n2), p\ = xjn\ and p2 = y/n2 .

Remark. Fisher (1956) also derived a formula the same as (4.4) from a likeli-
hood argument.

Next we consider the normal cases. Let Xi,.'.., xff| and y\, ... ,yni be the

observed outcomes from two independent normal distributions N(p\, of) and

N(p2, a2) respectively. First we assume o\ and a2 are known; then we have

(4.5)
P1(j"i = ßi\x\, ... ,xn¡,yi, ... , yni) = exp{-(x - y)2/2(cr12/n1 + a2/n2)},

where x = ¿Zxi/n\, y = ¿Zyj/n2 are the two sample means.
In comparison with the classical two-sample test we have

Bel(px # p2\xi, ... ,xn¡,yi, ... ,y„2)>l-a,

if

(4.6) pc-7| > (-2lna)1'2(a2/m + a¡/n2y2.

Again, in statistical practice, the difference between the likelihood inference
and the classical inference is the constants, ca = (-21na)1/2 versus za¡2 .

If a\ and a2 are unknown, based on the likelihood inference we have

Pl(px = p2\x{, ... ,xni,yi, ... , y„2)

(4-7) = sup{(l + (x - p)2)/ô2}-">'2{(l + (y - p)2)lôl}-^2,
i*

where à\ = ¿Z(x¡ -x)2jn\ and à2 = ¿Z(yj -y)2/n2 are the MLE of a2 and

a2. Note that there is no explicit formula for p. ; however, the supremum of

(4.7) can be obtained by a numerical approximation.

Next let us discuss a simple relationship between the one-sample and two-

sample likelihood inference.

Theorem 4.1. Let 6\ and 62 be two stationary variables on 8. 7/Bel(0i e A) >

\-a, Bel(02 € B) > l-a, and ACiB = 0, then we have Bel(0i ¿ 02) > \-a.

Proof. Since A n B - 0, we have Bel(0i ^ 02) > Bel(^ x 8 n B x 8) =
Bel(^ x 8) A Bel(5 x 8) > 1 - a.
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The previous theorem indicates that if the likelihood intervals with confi-

dence level 1 - a for 0i and 02 do not overlap, then we can infer that 6\

and 02 are not equal with a confidence level at least 1 - a. Note that the
independence assumption of 0i and 02 is not required here.

5. Concluding remarks

It is always an important philosophical issue if there is a mathematical model

of inductive probability, different from the model of mathematical probability.

In this article we show that the possibility and belief measures can be employed

as inductive probability in statistical inference. Although we only address the

parametric models, a similar approach can be applied to a nonparametric model

by considering a population distribution F as a "stationary process"; we can
obtain an inference similar to Ferguson (1973).

Fisher promoted the tests of significance, but he held the viewpoint that

statistical inference is a part of the inductive inference. In Fisher (1935) he

stated, "The inferences of classical theory of probability are all deductive in

character....mathematical likelihood appear[s] to take its place as a measure
of rational belief when we reason from the sample to the population." He

anticipated an uncertainty model of mathematical likelihood different from the
model of mathematical probability (see also Fisher (1936), (1956)). Although
he never developed a rigorous theory for the mathematical likelihood, he did
derive some results similar to the likelihood inference discussed in this article.

References

G. A. Barnard (1987), R. A. Fisher—a true Bayesian?, Internat. Statist. Rev. 55, 183-189.

A. Birnbaum (1962), On the foundations of statistical inference, J. Amer. Statist. Assoc. 57,

269-326.

Y. Y. Chen (1993), Bernoulli trials: from a fuzzy measure point of view, J. Math. Anal. Appl.

175, 392-404.

L. J. Cohen (1970), The implications of induction, Methuen, London.

A. W. F. Edwards (1972), Likelihood, Cambridge Univ. Press, Cambridge.

T. S. Ferguson (1973), A Bayesian analysis of some nonparametric problems, Ann. Statist. 1,

209-230.

R. A. Fisher (1935), The logic of inductive inference, J. Roy. Statist. Soc. 98, 39-54.

_(1936), Uncertain inference, Proc. Amer. Acad. Arts and Sciences 71, 245-258.

_(1956), Statistical methods and scientific inference, Oliver & Boyd, Edinburgh.

I. J. Good (1950), Probability and the weighing of evidence, Griffin, London.

I. Hacking (1975), The emergence of probability, Cambridge Univ. Press, Cambridge.

H. Ichihashi, H. Tanaka, and K. Asai (1988), Fuzzy integrals based on pseudo-additions and

multiplications, J. Math. Anal. Appl. 130, 354-364.

K. Popper and D. W. Miller (1987), Why probabilistic support is not inductive, Philos. Trans.

Roy. Soc. London Ser. A 321, 569-591.

G. L. S. Shackle (1961), Decision, order and time in human affairs, Cambridge Univ. Press,

Cambridge.

G. Shafer (1976), A mathematical theory of evidence, Princeton Univ. Press, Princeton, NJ.

P. Smets (1982), Discussion of 'Belieffunctions and parametric models', J. Roy. Statist. Soc. Ser.
B 44 343.



STATISTICAL INFERENCE BASED ON THE POSSIBILITY AND BELIEF MEASURES 1863

Z. Wang (1984), Fuzzy measure and measure of fuzziness, J. Math. Anal. Appl. 104, 589-601.

L. A. Zadeh (1978), Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1,

3—28.

U.S. Army Concept Analysis Agency, Bethesda, Maryland 20814-2797
E-mail address : chenQcaa. army. mil


