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ALGEBRAIC FIELD THEORY ON CURVED MANIFOLDS

MARTIN OLESEN

Abstract. In this paper we set up an algebraic framework for the study of

quantum field theory in a class of manifolds, which includes Minkowski space

and the Kruskal spacetime. The formalism provides a unifying framework for

studying problems of Bisognano-Wichmann type, e.g., Hawking radiation in

black hole geometries.

Analogously to flat spacetime, we establish a correspondence between isome-

tries of certain wedge domains of spacetime and the modular structure of the

local algebras. Under an ergodic hypothesis, the wedge algebras are shown to be

type III factors as expected, and we derive a result concerning factorization of

the equilibrium state. This result generalizes a similar one obtained by Sewell

in [Ann. Phys. 141 (1982), 201-224].
Finally an example of a quantum field theory satisfying the basic axioms is

constructed. The local algebras are field algebras of bosonic free field solutions

to the Klein-Gordon equation twisted through a PCT-like conjugation, and we

show that this model realizes the abstract properties developed on the axiomatic

asís.

0. Introduction

Hawking [Ha] in 1975 predicted that particle creation in the vicinity of a

black hole could lead to evaporation of it, and this led several researchers to

formulate rigorous quantum field theories in black hole metrics, e.g., [Da], [U],

[Fu], [Se], [Ka] and references therein. It was discovered that thermalization of

states in quantum field theory by gravitational forces is a general phenomenon

in nonflat metrics.
Sewell [Se] observed the connection of these results with the Bisognano-

Wichmann formalism in Minkowski space and constructed an axiomatic Wight-

mann field theory in a certain class of curved manifolds. In this setting, he was

able to give a rigorous proof of the thermalization properties and to prove ana-

logues of the Reeh-Schlieder, Bisognano-Wichmann, and PCT-theorems.

However, in Sewell's axiomatics, ad hoc axioms, on the analytic behavior of

the fields along certain light cones, had to be introduced. It seems desirable to

construct a simpler framework for deriving structural results, in the setting of
[Se], [Ka] and others.
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The algebraic formulation of quantum field theory (see [H], [HK], [Ho])

provides a conceptually simple general framework, with all the assumptions

reflecting fundamental physical ideas. In this paper we propose a set of axioms

specifically tailored to generalize the usual Haag-Kastler axioms to the class of

spacetimes studied by Sewell [Se]. This class consists of spacetimes of the form
X = R2 x Y, with a metric given by the line element

ds2 = A(t2 - w2, y)(dt2 - dw2) - B(t2 - w2, y)do2(y)

where A and B are smooth, strictly positive functions on X, do2(y) is a

positive definite metric on Y, and (t, w) are canonical coordinates in R2.

Notice that X is globally hyperbolic. We will be especially interested in studying

the two spacetime regions X± , given by

X± — \y± x Y

where W± is the right (resp., left) wedge in R2, given by w > \t\ (resp.,

-w > \t\).
Apart from the Minkowski space, with X± the Rindler wedges, this class

contains several interesting black hole backgrounds. For example, letting Y be
the two-sphere S2, with do2 = d 82 + sin2 8 dcj)2 ; A = exp(-r/2m)l6m2 /r ; and

B — r2, with r determined implicitly from — (r— 2m)exp(r/2m) = t2 - w2, we

obtain the Kruskal manifold, with X± the exterior and interior Schwarzchild

spacetimes respectively. Here m isa parameter, which can be thought of as

the total mass of the black hole.
The paper consists of three sections. In the first we list and discuss our

quantum axioms.

In section II we derive our structural theorems. As mentioned above, the
thermalization effect of gravitation on quantum fields is reminiscent of the

Bisognano-Wichmann formalism [BW]. The natural objects of study are there-

fore the local algebras ^{(X*) of the generalized wedges X± . These regions

carry one-parameter actions of isometries consisting of generalized Lorentz

boosts L. In general it is not possible to assume that the selfadjoint gener-

ator in the unitary representation of L is positive, but if there exist a bicyclic

vector for the wedge-algebras Ü\(X±), modular theory gives alternative analytic

information.

Thus, under the presence of a bicyclic, invariant vector Q for Vi(X+), we
give in Theorem 3 an invariance condition of the unitary group of generalized

Lorentz boosts, characterizing the case in which this group (up to a rescaling)
equals the modular group of the pair (^(X*), Q). Moreover, a slightly stronger

condition proves to be equivalent to duality for the wedge-algebras:

(l) m(x+y = m(x~).

These results are direct analogues of the Bisognano-Wichmann theorem [BW]

and generalize similar results obtained by Rigotti in [R].

We then study the consequences of an ergodic hypothesis, to the effect that the

vector state cocí is the unique invariant state on 9t(X± ). Under this hypothesis,

we are able to prove in Theorem 4 that the wedge-algebras are type III factors.

Moreover, in Theorem 5 we prove that the state coçi has the following product

property coçi(Ao_i/2B) = coçl(A)coii(B), where A £ W(X+), B £ y{(X~), and

o, is the modular group for the pair (ÍR(X+), Q).  This generalizes a result
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of Sewell [Se, Theorem 10], who proved that coq(AB) = coq(A)coçi(B) in the

case where coa is a ground state, i.e., where the unitary group of generalized

Lorentz boosts have a positive generator. In Sewell's case the interpretation

of the result is that the observables in X+ and X~ are mutually uncorrelated

in the state coc¡. In the case where X is the Kruskal manifold and X± the

exterior and interior Schwartzschild spacetimes respectively, this implies that

the event horizon around a Schwartzschild black hole acts as a physical barrier
that prevents correlation between the observables on the two sides of the event

horizon. It would be interesting to get a similar interpretation of the generalized
result, but what that should be is not clear.

Finally, in section III, we construct a model quantum field theory satisfying

the basic axioms of section I. The construction is similar to the one in [D],

however, we show that the model satisfies all the abstract properties proved in

section II.

I. The quantum axioms

The isometry group of X contains a one-parameter group L(x), x 6 R,

which acts as the identity on the Y factor and as Lorentz boosts around the

lu-axis on the R2 factor. L(x) induces a timelike Killing vector field in the

wedgelike regions X± . It is therefore possible to find a time coordinate in these

regions. By carrying out the coordinate transformation w — ¿;coshT, t = £sinhT

with £, > 0(< 0) in X+ (X~) we get

ds2 = A(-e, y)(Ç2dx2 - d?) - B(-e, y)da2(y)

and we see that x is a time coordinate in X±. Furthermore, each L(to)
induces on X± the time translation x -* x + x0 .

We will now formulate the axioms for a quantum field theory in X. The

basic axioms are the following five, which are analogous to the Minkowski space

axioms [Ho]:
(I) There exist a seperable Hubert space 37 and a net cf —> SR(¿f ) of von

Neumann algebras on %?, indexed by precompact open tf c X and directed

by inclusion. The assignment tf -* 9i(tf) is called a net of local observables.
The If*-inductive limit ÍR of the net of local observables is called the global
algebra. We remark that we assume that all the local algebras have a common
unit.

(II) The net of local observables is strongly additive, i.e., if tf = {jieJtfi for

tf,tfi£ B(X), then m(cf) = (lJíeJ W(¿}))" ,
(III) If S is a spacelike Cauchy surface in X, then, for any open neighbor-

hood tf of 5, we have 2r\(tf) — ÍH. This "time-slice axiom" is an expression

of the causal propagation properties of the theory.

(IV) The net of local observables satisfies locality, that is, if tfx c tf[ , then

?r\(tfx) c *R(tf2)'. Here tf[ means the spacelike complement of tf2, i.e. the set
of points in X, which cannot be joined to tf2 with a smooth, nowhere spacelike

curve.

(V) There exist a strongly continuous, unitary representation, also denoted

by L, of L, on ßV, satisfying

(2) L(x)m(tf)L(x)~x =m(L(x)cf),        x£R,cf£B(X+uX-).
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We remark that because of the strong additivity it is consistent to define
fR(tf) = {A £ !R(cfi) | tf¡ £ B(X),tfj c tf}" for unbounded domains tf.

Moreover, as L(x) does not act isometrically on X\(X+ L)X~), we cannot

assume it satisfies (2) on this subspace.
An attempt to generalize the usual Haag-Kastler axioms to a nonflat space-

time runs into the problem that the isometry group is not in general sufficiently

big. Indeed, in the Minkowski space all the really powerful results stem from

the fact that the isometry group of Poincaré transformations acts transitively

on Minkowski space and satisfy the spectrum condition. In our case, we have

the one-parameter isometry group L which does not act transitively on X, or

even on X± . Moreover we cannot demand a spectrum condition on L if we

want the framework to be a genuine generalization of the Haag-Kastler axioms.

Indeed, in Minkowski space, it is well known that the selfadjoint generator H

of L(x) has the entire real line as spectrum; see, e.g., [F]. As the existence of

a positively represented and transitive isometry group is the key ingredient in

proving the Reeh-Schlieder theorem, on the existence of cyclic and separating

vectors for the local algebras, we have to do without this theorem. In this paper

we will be concerned with the structure of the wedge algebras 9l(X± ), and we

propose to introduce the following axiom to give us bicyclic vectors.

(VI) There exist common cyclic vectors for the two algebras 9i(X+)  and

m(x-).
From locality we have ^(X^ c ^(I^)', so we see that this axiom actually

garantees the existence of common bicyclic vectors for the wedge-algebras.

II. THE STRUCTURE OF THE WEDGE-ALGEBRAS

Let w be a normal state of ÍH, and assume that co is invariant with respect

to L.
From axiom (VI) it follows that there exists separating vectors for 9\(X+).

co is therefore a vector state [KR, Theorem 7.2.3], so there exists a unit vector

Q £ ^, such that co = coci\<n (here coçi means the state coc¡(A) = (Q, AQ) ).

Also we remark that it is possible to adjust the unitary implementation of L by

a unitary one-parameter group from 9{(X+uX~)' suchthat Q is L-invariant,

and we will always assume this done. In our later applications 9i(X+) and

9{(X~) will be commuting factors, so L is unique.

With such co, Q, Tomita's Theorem [KR, Theorem 9.2.9] implies the ex-

istence of a conjugate linear isometry J : %? —» ?? and a densely defined,

positive, selfadjoint operator A in %?, such that

JA^AQ = A*Q   for all A £ 0\(X+),

jn(x+)j = n(x+y,

AiTVi(X+)A-iT = V\(X+),

JQ = AQ = Q,

J* = J, JAJ = A~X,

and a strongly continuous unitary one-parameter group oT of automorphisms

of X(X+) given by
at(A) = AixAA~iT.

The pair (/, A) is called a modular pair, and it depends on Q.
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Our first aim is to show that, under a natural invariance condition on

the group representation L(x), the automorphism group adL(27iT), given by

adL(-)(^4) := L(-)AL(>)*, coincides with the modular group ctt on 9<(X+).

This leads to the interpretation of co as a temperature state in X+ (and in

X~ ) of temperature T = h/2nk , with respect to the dynamical group L(t) ,

where k is Boltzmann's constant [HHW]. An observer, travelling along the

worldlines t, = constant, will experience the proper time c~~x(A(—£,2, y))^x.

In cases where the local algebras are field algebras of some quantum field (see

[Ho, Chapter 3]), the observer will see the field as having a temperature of

T = hc/2nk(A(-Ç2, y))i . This yields another formal proof of the fact that a
gravitational field can thermalize a quantum field, something that was suggested

heuristically by Hawking in [Ha].
The key to this result is to study the complexification of the group L(x).

Consider the embedding

X = R2xY^C2xY

with X naturally identified with the set of points (z, z', y) with real z and

z'. On C2 x Y, the complexification L(z), z £ C, of L(t) acts by complex

Lorentz boosts on the C2 factor.

The transformation L(in) has particular interest, since it induces the partial

inversion (t, w , y) —> (-t, -w , y) on X.

If dp(s) denotes the spectral measure of a unitary group U(x) = enii, we

can always extend U to a representation of C by putting

U(z) = [ eizsdp(s)   for all z € C,

although the operators U(z) are then in general unbounded. The following

lemma gives an explicit description of a common core for them.

Lemma 1. Let ÍH be a von Neumann algebra on a Hubert space %?, Q £ %? a

cyclic vector for ÍH; and U(x), x £ R, a strongly continuous unitary group on

%? implementing automorphisms of 9Í. If Q is invariant under U(x) for all

x £ R, then DIQ, is a core for U(z) for all z £ C.

Proof. We show that 3(x) = (1 + U(ix))~xß^, x £ R is a core for all the

operators U(z) with Im z = x. As the domain of U(z) only depends on

Im7, it is enough to consider U(ix). Since spec(f7(iT)) c R+ , the operator

(1 + U(ix)) is invertible, so 3(x) is well defined. We show that (U(ix), 2(x))

is closed. This implies that it is selfadjoint and, as the adjoint have dense

domain, that 3S(x) is a core for U(ix). Let xn —* 0 from 3S(x), and as-

sume that U(ix)x„ -» y . We have (1 + U(ix))x„ = yn —> 0 + y = y . Since

(1 + U(ix))~x is bounded and y„ -> y, we have xn - (I + U(ix))~xyn —»

(1 + U(ix))~ly = 0, so y £ ker(l + U(ix))~x . But as (1 + U(ix))~x is a bi-

jection of %f on 2¡(x), we have y = 0. We conclude that (U(ix), 3¡(x)) is

closed.
Now define Cf = span{/(ZZ)ÍRf21 / € Q°(R)}, where H is the infinitesimal

generator of U(x). Then (1 + U(ix))~x = (1 + exH)~x . We can approximate

the real function f(x) = (I +etx)~x with functions from CC°°(R) in the uni-

form topology. Hence, the spectral theorem gives us a net of the form fp, (H)
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converging strongly to (I + U(ix))~x. It then follows that C/ is dense in all

3(x).
Now observing that if / € CC°°(R) and A £ 9\, then the operator

Af= f f(x)U(x)AU(x)~xdx

belongs to ÍK, and AfQ = f(H)AQ. As Q is cyclic for SH, ÍKQ is a dense
subspace of %? and it follows from the above considerations that SHQ is a core

for U(ix).   O

The key to the proof that L(2nx) implements the modular group of the

dynamical system (^(X*), Q), with Q bicyclic for 9\(X+), is the observation

that the invariance properties of the core 9{(X+)Q of L(in) determines L.

This is the result of the next lemma, which proves a result of [R] under slightly

weaker assumptions.

Lemma 2. Let 9Í be a von Neumann algebra on a Hubert space %?, with a

bicyclic vector Q £ %?. Let U(t), t £ R, be a strongly continuous unitary group

such that U(t)Q = Q and U(t)mU(t)* = m.for all t£R. If the subspace SHfi
is invariant under U(in) (= enK with K the infinitesimal generator of U(t)),

then U(t) = 1 for all isR.

Proof. Assume that A £ Ü\ is selfadjoint. If U(in)9\Q c ÍRQ, there is a C e fK
such that U(in)AQ = CQ.

Let S i-> E(S), S c spec (K) a Borel subset, be the projection-valued spec-

tral measure of K . Then for any xe/ and y £ ÍHQ we have

(x,e*Ky) = Je"*dpx,y(X)

where px¡y(S) = (x, E(S)y). In particular, putting x = Q, y = AQ we obtain

ßa,ASi(S) = (AE(S)Q, Q) for any Borel set S C spec(Z(). Thus dpa¡Aa(X)
is a real-valued measure, and

(A, U(in)AQ) = (Q, CQ) £ R.

So (Q, (C - C*)Q) = 0, and, as Q is seperable, C - C* = 0, so C is
selfadjoint. Thus the double cone iHsaQ in %? is invariant under U(in). Here

fHsa means the selfadjoint elements of ÍH.

Now assume A £ fH'sa and B £ 9tsa. From Lemma 1, ÍKQ is a core for

U(z) for all z e C. So we can define the function

f(z) = (AQ,U(z)BQ),        0<Imz<7T,

which is then continuous and bounded on the strip 0 < Im z < n and analytic

in the interior of this strip.
From this point on the argument is identical to [R, Lemma 2]. Indeed,

noticing that / is real on the real axis and on the line Im z = n , so f extends

by analytic reflection to a bounded entire function which is then constant. So

(AQ, U(t)BQ) = (AQ,BQ)

for all t £ R. As Q is cyclic and separating for ift, this implies that U(t) =
I.   D

These lemmas lead to the first important result, whose proof is analogous to

[R, Theorem 4].
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Theorem 3. Let a field theory in X satisfy axioms (I)-(VI), and let co be an

invariant, normal state on the global algebra 9t implemented by an L-invariant

bicyclic vector Q. Then L(2nx), T6R, is the modular group of the state co on

m(X+) if and only if

(3) L(in)9i(X+)Q c X(X+)'Q.

Moreover, the duality (1) is satisfied, and the modular groups of 9i(X+) and
9i(X~) are each other's inverses if and only if

(4) L(in)Vr\(X+)Qc9K(X-)Q.

Sketch of proof. We remark first that since 9\.(X+)Q is a core for L(in) from

Lemma 1, the two conditions on this operator make sense.
Assume first (3), and consider the unitary group

U(x) = A~iT/2nexp(ixH)

Then co and SH+ are {7-invariant, and, from Lemma 1, 9\(X+)Q c 3¡(L(iit)).
So U(in) satisfies

U(i7t)ft(X+)Q c M(X+)Q.

From Lemma 2, exp(ixH) = A'r/2iz.

Now, assume (4). The duality would follow from Rieffel-van Deale's com-
mutation theorem [RvD] if, for £ £ %? and all A £ m(X+)sa and B £ m(X~)sa

we knew that Im(£, AQ) = Re(¿;, BQ) = 0 implies Ç = 0. But this fol-
lows from the application of complex function techniques analogous to those

in Lemma 2.   D

In Minkowski space it follows from the basic postulates of the theory of

local observables that there exists a unique vacuum state. Generalizing this,
Sewell in [Se] studied some consequences of assuming the existence of a unique

ground state in X. However, in general there does not exist ground states

for (^(X*), L(t)) and we must assume that the spectrum of the infinitesimal

generator H of L(t) is two-sided. It is therefore interesting to assume that

there exist a unique L-invariant state on ^(X*) but dropping the positivity
assumption on H. Theorem 5 below shows that Theorem 10 of [Se] can be

generalized to this situation. First, however, we show that the above ergodic

hypothesis implies that the wedge algebras are type III factors.

Theorem 4. Let afield theory in X satisfy axioms (I)-(VI), (3) and (4) for a
bicyclic vector Q for the wedge algebras ^{(X*). If coa is the only temperature

state on 9t(X+), then the wedge algebras are type III factors.

Proof. Let us first show that ÍR(X+) is a factor under the hypothesis of the the-

orem. From Theorem 3, L(x) implements the modular group of (9\(X+), Q).

Thus, if we denote the corresponding modular pair by (A, J),

A^BQ = JB*Q   forallZíeíR*

If A £ 9t(X+) n«(A-), this implies AQ £ 3r(Ai) n^(A"i), and we get

A^AQ = A~^AQ or AAQ = AQ. If H is the selfadjoint infinitesimal generator
of L(t) , this equation implies that AQ is an eigenvector for H with eigenvalue

0 and hence that AQ is invariant under L(t) .   But as coçi was the unique
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invariant state, AQ = XQ, and, as Q is seperating for ÍH(X+), we get A = XI.

Hence ÍH(X+) is a factor.
To show that this factor is of type III, we remark that Stornier in [St] proved

that in our setting, either 9t(X+) is of type III or toa is a trace state. Pedersen

and Takesaki in [PT, Theorem 3.6] characterized the fixpoint algebra 9t(X+)A

of the action of the modular group on 9î(X+) as

<K(X+)A = {A £ <K(X+) I (Q, ABQ) = (Q, BAQ),VB £ <R(X+)}.

If («c. is a trace state, it follows that ?H(X+) = ÍH(X+)A and as Q is cyclic for

ÍH(X+) that A" = 1. But this contradicts the ergodicity assumption. Hence

5R(X+) is of type III. As a von Neumann algebra is a factor of type III if and

only this also holds for the commutant we also obtain that 9i(X~) is a type III

factor.   D

It is interesting that, in contrast to the situation in Minkowski space [F], our

framework does not allow us to conclude that the wedge algebras are of type

III i . In fact, it is possible to construct examples of field theories satisfying

all the axioms (I)-(VI) and whose wedge algebras are of type III/ for any
X £]0, 1 [. As a rule this will be a sign that the spacetime lacks asymptotic

regions in some direction, e.g., if it has a compact factor, see [O].

The following result shows that the state coçi factorizes, up to an action of

0Ï/2 •

Theorems. Let a field theory in X satisfy axioms (I)-(VI) and (3) for a bicyclic

vector Q for the wedge algebras 0\(X±), and let at be the modular group for
(ÍH(X+), £2). If coçi is the only temperature state on 9\(X+), then this state has

the following product property :
For all elements A £ 9t(X+) and B £ 9t(X~) which are entire analytic for

the modular group we have

(5) œa(o-i/2(A)B) = (ûQ{Aoil2{B)) = con(A)con(B).

Proof. Note that coq(Ao_í/2(B)) - (Q, AA~^BQ), where the modular opera-

tor A = enK.

The first goal is to apply the KMS-condition to this matrix element, but to

do this we must eliminate the A^ operator and rewrite in terms of operators

from m(X+).
Using the theory of von Neumann algebras in standard form one can show,

as in [BR, Proposition 2.5.26], that in %? there is a self-dual positive cone &

given by _    _

A*m(X+)+Q = A~L*m(X+)'+Q

where <K+ denotes the cone of positive elements in the von Neumann algebra

We first assume that A, B > 0 and that B £ <H(X+) is such that there is a

B' £ m(X+)', B' > 0, with the property AaB'Q = A~*BQ.
The resolvent equation of [BR, Lemma 2.5.12] implies that there are opera-

tors 5,Be5H(X+) suchthat

(A+i)zrn = zî'Q,

(A+ l)Ê*Q = BQ.
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Before continuing, we remark that B and Ê can be taken selfadjoint. This

follows from the relation

JBJ = AÍEA~ i +A-*ZÍAÍ

on 3f(Al2)n3f(A-L2) [BR, Lemma 2.5.13]. Writing B = H + iK with H, K

selfadjoint we see from the positivity of JBJ that the form A2ZÍ A~2 +A~iKAi

vanishes on %?. Thus (A + l)KQ — 0 and we can choose K = 0 in (6).

Similarly we can argue for B . Then this gives us

(Q,AAÍBQ) = (Q,AB'Q)
= (Q, AËQ) + (Q, AAÊQ)

= (£2, AËQ) + (AÍAQ,AÍBQ)

= (Q, ABQ) + (JAiAQ, JAÍBQ)

= (Q,AÊQ) + {Q,AÊQ).

As B £ 9i(X+), we can apply the KMS-condition on both the terms. This

gives us two complex functions, which add up to a F , analytic in the strip

Z = {zeC| lmz€]0, 1[ }

and bounded and continuous on 7, and satisfying for all real /

F(t) = (Q, ÉA-¡'AQ) + (Q, AA-"BQ)

and
F(t + i) = (Q, BAUAQ) + (Q, AAilÊQ)

We see that F satisfies F(t) = F(-t + i) = F(-t).

Claim.  F is real on the real axis: Consider the term

(Q, BA-t'AQ) = (Q, BA-tQ)

where we put At = A"AA~". Then A-t > 0 and we calculate

(Q,BA-tQ) = (ÊQ,A-,Q)

= (JBQ, AiA-,a)

= (A* JBQ, A*A-tQ)
(7) -_-_

= (/A-i(A+ l)-1^'^, AU_,Q)

= </Ai(A+ 1)-'ZÍQ, ÁU_,fl)

= (A-*(JÊJ)Q, aU.(í2) > 0.

In the last step we used again the self duality of the cone ¿P which means exactly

that the scalar product is positive (since A-, £ fH(X+) and JBJ £ ÍH(X+)' ).

Similarly one shows that the second term in F(t) is real for any t.

Using Schwarz reflection, we extend F analytically to -I by G(z) — F'(z),

z £l. We see that G(t-i) = F(t + i) = F(t+ i). Thus G(z + 2i) is an analytic
function on I + i which coincides with F on the common boundary Im z = /'.
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Thus, by a simple version of the edge-of-the-wedge theorem, G(z + 2i) is an

analytic continuation of F . If we also denote by F the new bounded analytic

function on 2Z, we see that the process can be repeated arbitrarily often to give

us an entire bounded function, which is then constant by Liouville's theorem.

Hence F(0) = F(t) for all / e R. So

(£2, AA-iBQ) m (Q, ËAQ) + (Q, ABQ)

= (Q, BA-UAQ) + (Q, AA^'BQ).

Backtracing the steps with A, £ <H(X+) substituted for A , this equality yields
the following equation, which extends to all A £ 9t(X+) by linearity:

(AtQ, A~ÍBQ) = (A*Q,A~iBQ).

As B is positive, the functional cob(') = {Q, •A~iBQ)/(Q, A"ißQ) is
linear, positive (this is proved like in (7)) and satisfies cob(I) = 1 ; hence it

is a state on ÍH(X+) which is invariant under the modular group ot. By the

hypothesis coB = coa ; and we obtain the conclusion

(£2, AA-iBQ) = coB(A)(Q, BQ)

= ft>£i(^)(í2,zín)

= (Q,AQ){Q,BQ).

Now consider the case where B > 0 is an arbitrary analytic element for a .

The mapping C i-> A~*CQ is an order isomorphism from 9t(X+)+ with the

ultra-weak topology to & with the weak topology [BR, Lemma 2.5.40]. We can

find a net (Ba) c ÍH(X+)' of positive, entire analytic elements for a, which

converges ultra-weakly to B, and each having the property that there exist a

B'a £ 5H(X+)+ with A*B'aQ = A~*BaQ. Thus we have the factorization (5) for
each of the elements Ba and we obtain

(Q, ^A-^ZiQ) = (A-iAQ,A~*BQ)

= lim (A" ±^£2, A-*BaQ)
a

= lim(£2,,4A-2-ZiQ£2)
a

= lim(£2,,4£2)(£2,ZU2)

= (Q,AQ)(Q, BQ).

Now noting that any B £ ÍH(X~) can be written in the form B = (Hx -

H2) + i(Kx - K2) with Hx, H2, Kx, and K2 positive operators from <H(X~),
the above factorization of coa readily extends to all B £ SH(X~ ).   D

, III. A CONCRETE MODEL

In this section we obtain a model satisfying the axioms (I)-(VI), the assump-
tions (3), (4), and ergodicity by certain modifications of the constructions in

[D]. Thus this model will satisfy the conclusions of Theorems 3, 4, and 5.
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We start by considering the classical Klein-Gordon equation (0 + m2)u — 0,

where the d'Alembertian is D = v"v„ and m2 > 0 a mass-parameter. We

notice that the Klein-Gordon equation is L(T)-covariant.
The solution theory of the Klein-Gordon equation on a globally hyperbolic

manifold is well established and [D] gives an overview. There exist continuous

fundamental solutions E± : i?(X)' -* 3S'(X) where 2'(X) denotes the space

of distributions on X and l?'(X) the space of distributions with compact
support. We put E — E+ - E~ and have E* = -E. Ef solves the Klein-
Gordon equation for any / £ CC°°(X).

We can also give a description of the solution theory in terms of data on a

given Cauchy surface S c X. Let p0 : C°°(X) -> C°°(S) be the restriction
mapping, and let px : C°°(X) —> Cco(S) be the forward normal derivative in

S. Then for any set of data uo, ux £ C£°(S) there exists a unique solution

u £ C°°(X) with (D + m2)u = 0, po(u) = uo, and px(u) = ux. If p'0, p[ :
¿&'(S) —> 21'(X) denote the adjoints of po and px respectively, then Ep'0

and Ep\ restrict continuously to operators from C£°(S) to C°°(X), and the

difference

(8) u = Ep'0ux-Ep'xuo

is the solution to the Cauchy problem with data (uq, ux). The connection

between the two formulations is provided by the lemma

Lemma 6 [D]. Let u be a solution to (D + m2)u = 0, and let po(u) and px(u)
have support in a compact subset N c S. Then, for any open neighborhood tf

of N, there exists f £ Q°(X) such that supp/ c tf and u = Ef.

Consider the Cauchy surface S — {x = (t, w, y) £ X \ t = 0} , and put S* =
{x = (t, w, y) £ X | w £ R±}. We introduce an involution Z on C°°(X) by

(Zf)(l, w, y) = if(t, -w , y). Z restricts to an isomorphism between C£°(S+)
and C£°(S~). The symmetry w i-> -w of X implies that Z commutes with

Po, P\, and E. Using 3 we set

o((hx,h'x),(h2,h'2)) = (hx, Zh'2) - (h2, Zh\ )

to obtain a nondegenerate symplectic form on Cc°°(5) © Q°(S).
We construct the net of local observables by specifying a representation of

the symplectic space (Q° © Q°(X), a) on the standard Fock space. Let us

start by describing this.
We let %o = C and let %?x denote the completion of Cf(S) with respect to

the inner product

(9) (h,h')= f hh'dS.

Let ß?„ = <S>sym ^î be tne symmetric tensor product of n copies of %?x, and let

& — ©^to ^ oe me symmetrized Fock space. Using the annihilation operators

a(h) and the creation operators a(h)*, we define the symmetric operators

8(h) = (a*(h) + a(h))/V2,

7t(h) = i(a*(h)-a(h))/V2
-,

which then satisfy [8(h), n(h')] = (h, h). Putting

W(h, h') = emh)-*{Zh'))
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we obtain a representation of the canonical commutator relations over S. W

is a twisting of the Fock representation by the involution Z and satisfies the

Weyl relation

(10) W(hx,h'x)W(h2,hl2) = W(hx + h2, h'x + h'2)e-ia{{h"h')'{h2'h'^/2.

We define the net of local observables by setting

m(tf) = {W(pxEf, poEZf) I / 6 Q°(X, R), supp/ C tf}"

for a region tf c X. Here C£°(X, R) denotes the real subspace of real-valued

functions in Q°(X).
The wedge-algebras ÍH(X+) (resp. $K(X-)) can be described as the von

Neumann algebra generated by the W(h, Zh') with h, h' £ C?°(S+ , R) (resp.
C¡?°(S~, R) ). This is a consequence of Lemma 6, from which we conclude

that for (h, h') e Q°(S+) © Q°(5+), we can choose a function / with

(Epxf, EpoZf) - (h, Zh'), such that / is supported in X+ .
We then obtain the main theorem of this section.

Theorem 7. The net tf —► ?h\(tf) satisfies the axioms (I)-(VI), the assumptions
(3) and (4), and ergodicity.

Proof. Axiom (I) is a simple consequence of the support properties of functions.

To show axiom (II), let a region tf c X satisfy tf = \Ji€Jtfi, tf¡ £ B(X).

From axiom (I), we get the inclusion ({JieJ 9t(tf¡)) c 9K(tf). To see the other

inclusion, let / £ CC°°(X), with supp/ c tf. As supp/ is compact, we can

choose a finite subcovering {tf¡k} of supp/ from {0¡}. Let {h¡k} be a smooth

partition of unity, subordinate to the covering {tf¡k} . Then f =J2hjkf. Using

(10) we get

W(pxEf, poEZf) = W(Y,PiE(hikf), Y,PoE(hlkZf))

= kW(pxE(hxf), PoE(hxZf))■ ■ ■ W(pxE(hikf), PoE(hikZf))

where k is a complex number. From this it follows that 9\(tf) c (Ujgy^^))   ■

To see that the time-slice axiom (III) is fulfilled we notice that the global

algebra is generated by the unitaries  W(h, h'), with h,h' £ Cq°(S) .   Now

apply Lemma 6.
For the locality axiom (IV), we first remark that (8) implies

(piEfi, PoEf2) - (pxEf2, poEf) = (/i, -Epx'poEf2) - {-Ep0'pxEf2, f)

= (/,, (E - Epo'PxE)f2) + (Epo'PxEf2, /,)

= (fx,Ef2) + 2RQ(fx,Epo'pxEf2)

This equation together with the one with fx and f2 interchanged and ( 10) gives

W(pxEfx, PoEZfiW(pxEf2,pQEZf2)

= W(pxEf2,poEZf2)W(pxEf , poEZf)ei{ñ'Eh).

If tfx and tf2 are given spacelike separated regions with supp/i c Ox and
supp f2 c tf2, then the two supports cannot be joined by a causal curve. By the

causal propagation properties of E we have (fx, Ef2) = 0, so that

[W(pxEfx, poEZf), W(pxEf2, poEZfi)} = 0.
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As these unitaries generate ^K(tfx) and 9i(tf2) respectively, we get y\(tfx) c

?r\(tf2)' proving axiom (IV).

To show the L(t) covariance of axiom (V), we first remark that we have

automorphisms L(x)* : Q°(X+ U X") -> Q°(X+ u X~) given by (L(x)*f)(x)
= f(L(x)x). Furthermore, since the Klein-Gordon equation on X is L(t)-

covariant, it easily follows that

L(x)*EPif = EpiL(x)f   for all / e C0°°(X) and i = 0, 1

Thus L(t)* induce Bogoljubov transformations L(t) on £K(X+UX~) by

L(x)W(pxEf, poEZf) = W(pxEL(x)*f, p0EL(x)*Zf).

But standard second quantization techniques then yield that L(t) is strongly

continuous and is unitarily implemented on 9t(X+uX~)£2 by the unitaries
L(t) defined by

L(x)(AQ) = (L(x)A)Q   for A £ 9l(X+ U X").

As C¡?°(S+ U S~) is dense in C^°(S) in the norm given by (9), £2 is a cyclic

vector for 9K(X+ U X~ ). Thus the definition above yields a strongly continuous

unitary group on all of J*7.

To show axiom (VI), we remark that the real linear subspace

Jf = C™(S+, R) © iC?>{S- , R)

of %fx has the property that 3? + i3? is dense in %[. Thus by a theorem of
Araki [A], £2 is cyclic for the von Neumann algebra generated by the CCR over

J? . But this algebra is exactly ÍK(X+) as remarked after the definition of the

local algebras. Since a similar argument yields that £2 is cyclic for *H(X~ ), we

have verified axiom (VI). In fact [A] gives us more. Since 3¡f n iS? = {0} , the

duality (1) is fulfilled, and thus also (4) (and by locality (3)). So L(2ni) is the
modular operator for (ÍK(X+), £2) by Theorem 3.

We finally show that C and £2 are precisely the L(T)-invariant vectors in

%?. As remarked in the beginning of section II we can always take a normal

state on ÍH(X+) to be implemented by a unit vector when there exist bicyclic

vectors for ÍH(X+). Thus this is equivalent to the ergodicity hypothesis.

Assume first that for all t e R, L(x)*g¡ = g¡ for g¡ £ C0X(S), i = 0, 1. By
Lemma 6, there exist a / 6 Cc°° (X) such that u = Ef solves the Klein-Gordon

equation and g¡ = p¡(u). Thus p¡EL(x)*f - p¡Ef or p¡(u - L(x)*u) = 0. As
the Klein-Gordon equation is covariant, u- L(x)*u solves it, and we get from

uniqueness of solutions that u = L(x)*u for all x £ R. Thus u is independent

of t and ü = u \s solves the reduced wave equation (As + m2)u = 0 on

S. As ü is smooth on 5, V = supp ü has smooth boundary. So « solves

the Dirichlet problem (As + m2)u = 0 on S, w = 0,Vù = 0 on dV. This
implies that ü = 0 (this uniqueness theorem follows, e.g., from the variational

techniques in [KS]). As u is x independent, u - 0 and go = g\ = 0. So no
nonzero vector in hx is invariant under L(x)*, and we conclude as wanted that

C£2 is the subspace of invariant vectors for L(t) .   D
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