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BOUNDED POINT EVALUATION IN C"

R. M. RANGE AND M. I. STESSIN

Abstract. A positive Borel measure fi ona domain Cl c C is said to be in

âl(Çl), if point evaluations at every p 6 Í2 are locally uniformly bounded in

L2(/i)-norm. It is proved that the multiplication of a measure in 3l(Q) by a

function decreasing no faster than a power of a holomorphic function produces

a measure in 31(0.). Some applications to classical Hardy and Bergman spaces

are given.

0. Introduction

Let Q be a bounded domain in C" and let p be a finite positive Borel

measure on Q. Following standard notation we denote by tf(Q) the set of

functions holomorphic in the closed domain Q. In_this paper we focus on the

Hubert space L2(Q, p) which is the closure of tf(Q) in L2(Q, ß). (Note that

the inclusion tf(Q) c L2(Q, ß) holds because ß is finite.) A point w £ Q is

called a bounded point evaluation for ß if the linear functional / .-» f(w) is

bounded on L2(Q, ß). The Riesz-Fischer Theorem then implies that there is

an element kw £ L2(Q, ß) such that

/»= f_f(z)hj(z)dß(z)
Jci

for / £ L2(Q, ß). Let bpe(p) denote the set of bounded point evaluations

for ß. If wo £ int(bpe(ß)), and if for all z £ Q, kw(z) depends on w

antianalytically in a neighborhood of w0 , then wq is called analytic bounded

point evaluation. The set of all such points is denoted by abpe(ß).
The following proposition may be found in [2, p. 63]. It was proved there in

the case n = 1, but the proof is valid for an arbitrary n if we replace rational

functions in [1] by functions from tf(Q).

Proposition A. If w £ bpe(p), then w £ abpe(p) if and only if there is a

number r > 0 such that the ball of radius r centered at w is in bpe(ß) and

sup{||/:,||Lj(n(il): \z-w\ < r} < oo.

In the last two decades questions related to bounded point evaluations were

intensively investigated in the case n = 1, that is, in the case when the mea-

sure lives on a subset of the complex plane.  The monograph [2] of John B.
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Conway is an excellent reference on the subject. It contains both elementary

facts and the most recent achievements in the field. It also contains a detailed

bibliography. The corresponding theory for n > 1 is still in its infancy. Con-

cepts and problems generalize naturally to arbitrary dimension, though proofs

will generally rely on techniques from multidimensional complex analysis, and

thus will not just involve routine generalizations. Moreover, new phenomena

are bound to appear in higher dimensions. For example, characterizations of

abpe(p), where ß = dV\n , should be related to information about the envelope

of holomorphy of Q. Operator-theoretic interpretations, analogous to known

results in the case n = 1, will lead to new classes of operators with interesting
properties, which, in turn, may stimulate further questions and investigations.

One of the basic and still unanswered questions in the theory of analytic

bounded point evaluations is the following: Is it true that int(bpe(p)) =

abpe(p)?
In many cases the answer is positive. That is the case, for instance, if Q is

a polynomially convex subset of C. This and some other results can be found

in [8] (see also [2]).
In this paper we consider a related question. We say that the measure ß

belongs to the class 3l(Q) if Q c abpe(p). The natural question is: given a

measure ß from 31 (Q), describe perturbations of this measure which leave the

resulting measure in the same class. We prove that multiplication by a function

decreasing no faster than analytically (more precisely than the absolute value

of a function analytic in Q) satisfies this condition. The same method allows

to prove an analogous local result. Namely, if ß satisfies some additional local

conditions (see section 1 below), then multiplying ß by some function which

locally does not decrease faster than a power of the absolute value of a germ of

an analytic function leaves the resulting measure in the same class 31 (Q).

The last section contains some applications to the case when ß is the

Lebesgue measure on Q or surface measure on 9ii.

1. Statement of results

Let ß £ 3t(Q) and let v be a finite nonnegative Borel measure on Q. We

denote by vß the absolute continuous part of v with respect to ß, so that

u^ = v^(w)dß(w), where u"(w) £ LX(Q, p).

Theorem 1. If ß £ 3?(Q) and a finite nonnegative Borel measure v satisfies

(1) ess inf -—p-rf- > 0
weñ\v(w)\a

for some holomorphic function y/ in Q and some a>0, then v£3ê(Q).

As a direct corollary we obtain the following result.

Corollary. For every tp £ tf(Q) and a > 0 there is a symmetric reproducing

kernel K£(z, w) with the weight \<p(z)\a, that is, K9(z, w) is holomorphic in

z and antiholomorphic in w and

[_K°(z , w)f(z)\<p(z)\a dp(z) = f(w)
Ja

for every f£L2(Q,p).
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To formulate the local version of Theorem 1 we introduce some additional

conditions.
For a compact set K c Q we use the traditional notation K^^ for the

¿f (Q)-convex hull of K :

k^m = {z € Q: \f(z)\ < max|/(tü)| for all / G tf(Q)}.
w€K

We denote by abpe¡oc(p) the subset of abpe(ß) consisting of all points w £

abpe(ß) for which there is a basis of neighborhoods of w , {f4(w)}°51 , such

that ß\Uk(w)£3e(Uk(w)) for k= 1,2, ... .
Note that abpe¡oc(p) may be empty even if ß £ 32(Q). For example, if dQ

is smooth and ß is a (2« - l)-Hausdorff measure on dQ, then L2(Q, ß) —

H2(Q) and ß £ 3?(Q) but abpeloc(p) = 0 .
We introduce the following condition on a measure ß :

(A) For every point w £ Q there are a neighborhood Uw and a compact

set Mw c abpe¡oc(p) such that

Uw c (Mu^n).

It follows from Proposition A that if a measure ß satisfies the condition (A),

then ß is in 31 (Q).
Now we state the local variant of Theorem 1.

Theorem 2. Let ß satisfy the condition (A) and let v satisfy the following con-

dition. There is a compact set DcQ (depending on v) such that for every point
z £ Q\D there are a neighborhood Uz, an analytic function in Uz, which we

denote by <pz, and a positive number az satisfying (1) in Uz, that is,

v>i(w)       n
ess sup -.—r^-r-— > 0.

weu2 \<Pz(w)\a*

Then v satisfies condition (A).

2. Auxiliary proposition

From now on we denote by B(w , r) the ball of radius r centered at w :

B(w, r) = {z € C": \z - w\ < r}.

We denote by K(z, w) the reproducing kernel for the measure p £ 31 (Q). It is

well known that K(z, w) is Hermitian symmetric in the sense that K(z, w) =

K(w, z).

Proposition 1. Let ß £ 3?(Q). Then for every wq £ Q we have the inclusion

d\m\
—ñ¡K(z, w)\w=Wo £ L¿a(Q, ß)   for any multi-index m = (mx, ... , mn).

Proof. By Proposition A there is a ball B(w0, r) and a constant M > 0 such

that
IIM^n,,) = (K(z, z))'/2 < M

for all \z - w0\ < r. It means that

sup{|/(z)|: \z - tüo| = j}< M\\f\\Li{ilß).
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If rx satisfies the condition

1
A(wo, rx) = {z£Cn: \z¡ - (w0)¡\ < rx ,i= 1,...,«} C B I w0, ^r ) ,

then the Cauchy inequality shows that

Q\m\f
(2) dzr'

z=w0

M
< jiï\\\fhua,ii)

for every multi-index m = (mx.m„) (here we use the common notation

H = mx + ■ ■ ■ + m„ , ^i- = flmf""'{m„) • The relation (2) means that / ^ ^f
C7Zj    •••OZm

is a bounded linear functional on L2(Q, ß). To prove the required assertion

it suffices to prove this functional is generated by  a   g^'w^\w=w0 ■   We use

induction in \m\. Let wk -+ wo as k —► oo be a sequence such that

(i) (w*)/= Oo)/, /= 1, ... , n- 1;
(Ü)   (lü¿)„ jé (Wo)n ■

Consider the following functional on Lj(Q, p)

{k,f)= (wk)n-(Wo)n

Q\m\-\f d\m\-\f

dz^---dz"n
m„-\

z=wk
dz m i

dz"n
m„-\

z=w0

and

</,/>
ôl«l/

dz"
Z=Wt¡

(without loss of generality we may assume that m„ ^ 0 in all cases except

| m | = 0 where the assertion in question follows from the definition of the

kernel).
We obviously have lk —> / weakly as k —► oo . By induction, the representa-

tive L2(Q, /¿)-element for lk is

(3)

tpk(z) =
1

(wk)n - w0n

d\m\-xK(z,w)

aw™1 ■■■awm„-\

dW~xK(z,w)

w=wk
dw?1 ■ ■ ■ dwnn

m„-l

W=U¡oJ

00

Let us denote by <p(z) the representative L\(Q, ß) element for /. Weak con-

vergence of lk as k —► oo implies that for every x £ Q

_K(z, x)cpk(z)dß(z) -* / K(z, x)tp(z)dß(z)   as k -
Jii Jn

or, equivalently,

Vkit) -* <P(r)   as /c -» oo

for all x £ Q.   Since <pk(x) -+ 9 "g^l'w^\w=w0  pointwise, we conclude that

9   &vß'W^\w=wo is the E2(Q, ß)-representative element for /.

It follows directly from the proof of this proposition (relation (2)) and general

properties of duality that the L2a(Q, /¿)-norm of a "g^l'w^ is locally uniformly

bounded. More precisely, the following corollary was, in fact, proved.
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Corollary. If ß £ 31 (Q), then for every point z0 £ Q and every natural number

k there is a neighborhood of zq , WZQ, and a positive constant M(zq , k) such

that

" dXmXK(z,w)\
dwr

W=Wq

<M(z0,k)

Lj(il,ß)

for all wq £ WZo and all \m\ <k.

3. Proof of theorems

Proof of Theorem I. It is easily seen that it is sufficient to prove that the measure

vx = \y/(z)\2dß(z) is in 3î(Q). By Proposition A it is enough to prove that for

every zq £ Q there is a neighborhood WZo of zo and a constant M such that

\f(z)\<M\\f\\Li{QiVl)

for all z £ WZo. First, let us consider the case y/(z0) ^ 0. Then, in a small

neighborhood WZo, ip(z) does not vanish, and we have

W(z)f(z)\ = I [_W7z-)¥(x)f(x)dß(x)
\Ja

<\\K(-,z)\\Li{(1^y\\f\\L¡{n!l/¡).

Therefore,

By the Corollary to Proposition 1 of the preceding section the maximum in the

right-hand side of the last relation is bounded.

Now, let y/(zo) = 0. To simplify the notation we assume that zo = 0. With-

out loss of generality we may also assume that y/(0', zn) ^ 0 as a function of

z„ . By the Weierstrass Preparation Theorem [4, p. 4], there are a neighborhood

U of the origin and a Weierstrass polynomial Q(z) — z\ + ax(z')z^~x + ■ ■ ■ +

ak(z') such that for zee/, y/(z) = Q(z) • x(z), where x(z) does not vanish
in U.

Now let us consider the following difference operator. Given (m + 1) points

wx, ... , wm+x satisfying

(4)
(i)      (Wi)n¿(Wj)n,Í¿j;

(ii)   (w¡)i = (Wj)i for alll <i, j <m+ 1,1 = I, ... ,n

we define the operator 2m(wx, ... , wm+x) by induction

1

1,

(5)

2x(wx,w2)(f) =

2tm(wx,...,wm+x)

1

j-Y[f(wx)-f(w2)],
wx)„ - (w2)„

\3m-x(wx,...,wm)(f)-3¡m-x(w2,
(wx)n-(wm+x)

This operator approximates ^y ̂  in the following sense.

wm+l )]•
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For every tuo £ Q and every e > 0 there is a neighborhood  Ve  of Wo

such that for every (m + l)-tuple wx, ... , wm+x £ Ve satisfying (4) and every

f£L2a(Q,ß)

(6)
dmf

dzi
-&m(wx,...,wm+x)(f)

Z=W\

<e Ll(Cl,ßY

It follows directly from the easily checked equality

{0 if k < m,

2Z,l>o,...,im+l>o(m)!n---(wm+x)'n^    ifk>m.
l,+--+lm+i=k-m

Passing, if necessary, to a smaller neighborhood, we assume that the neighbor-

hood U satisfies

(7) dzk
> a > 0   for all z £ U

. For each wx £ U letand, moreover, that (6) holds in U with e = ¿rar-

us denote To.... , xk+x the roots of

(8) Q(w[, zn) = z* + ax(w[)zkn-x + ■■■ + ak(w[) = 0

and define

(9) wl = (w'l,Tl), l = 2,...,k + l.

It is well known [4, p. 36] that the set of w' £ C"~x such that (8) has a multiple

root is a set of zero Lebesgue measure. Let w[ not belong to this discriminant

set. Note that the operator 2¡k(wx, ... , wk+x) may be written in the form

fc+i

&k(wx, ... , wk+x)(f) = ^d¡(wx, ... , wk+x)f(w¡)
i=i

where d¡(wx, ... , wk+x) are functions of (wx)„ , ... , (wk+x)n . The relation

(6) implies that

(10)
fc+i

Y^d¡(wx, ... ,wk+x)K(z,w¡)
i=i L¡(a,M)

dkK(z,w)

dwk
W=W]

a
+ 4-

Ll(il,ß)

Since y/(w2) = ••• = ip(wk+x) = 0, we have for f £ L2(Q, ß)

k+l

3!k(wx, ... ,wk+x)(fy/) = J2d,(wx, ... , wk+x)f(w¡)y/(w,)
i=[

(11) *+i

By (6) and (7)

(12)

f(wx)Y^d¡(wx, ... , wk+x)y/¡(w¡)
i=i

f(wx)-3ik(wx, ... ,wk+x)(y).

\3tk(wx,...,wk+x)(y)\>
3a
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Thus (11) implies

\f(wx)\ < Ya\2!k(wx

(13)

wk+x)(fy/)\

wk+x)f(w,)y/(w,)

wk+x)K(z,w¡)   f(z)y/(z)dß(z)

wk+x)K(-,w¡) \Ll(íl,vx)

Ll(Sï,fi)

Ll(ïl,v&

Ll(a,ß)

By the Corollary to Proposition 1, the right-hand side in the last relation is
bounded. The estimate (13) holds for all w £ U except for a set of Lebesgue

measure 0. Hence it holds everywhere in U.

The proof of the corollary to this theorem is straightforward.

Proof of Theorem 2. We prove this theorem by reduction to Theorem 1. It is

enough to prove that v* satisfies the condition (A). To this end it suffices to

prove that point evaluation is locally uniformly bounded in terms of L2(Q, v>*)

on abpeioc(p) \ D where D is the compact set from the hypothesis of this

theorem. Particularly, if we prove that abpe¡0C(p)\D c abpeioc(u''), the result

will follow.
Let w £ abpe¡oc \ D and let Uw be a neighborhood of w satisfying both the

hypothesis of the theorem about the estimation of v* in terms of \y/w(z)\aw

• dp(w) and local apbe, that is, p\Uw £ 3?(UW). By Theorem 1 uß\Uw £

3l(Uw). Since the L\(Q, i^)-norm dominates the norm in L2(UW , i^|ty„,) for

every L2(Q, /¿)-function, it means that Uw c abpe^^v^).

Remark. Following the standard notation we denote by A°°(Q) the collection

of C°°(Q) functions which are analytic in Q. If we denote by L2A(Q, dp) the

closure of ^°°(Í2) in L2(Q, p), and by 3lA(Q) the corresponding space of

measures (defined analogously to 3?(Q) in case of L^(Q)), the analysis of the

proof of Theorems 1 and 2 shows that both of them hold in L2A(Q, p) if the

function y/ in (1) is in A°°(Q) and p is in 32A(Q).

4. Some applications

In this section we consider the case when ß is either the Lebesgue measure

on Q, dV, or surface measure on bQ, do. There are three important cases.

1. If Q is a smoothly bounded pseudoconvex domain, then it was proved in

[3] that
L2A(Q, dV) = tfL2(Q) = tf(Q) n L2(Q, dV).

2. Suppose that Q is smoothly bounded and strictly pseudoconvex. Then it

is known that

L2a(Q,dV) = L2(Q,dV)=tfL2(Q)

(see [5, p. 306, Theorem 6.4]).
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Thus we obtain the following result.

Corollary 2. In the above cases, for any y £ A°° (Q)

\\p(z)\adV(z)£3lA(Q)   for all a > 0.

3. Let Q be a domain in C with smooth boundary bQ and da be the

surface measure on bQ. It is well known that do £ 3lA(Q). If Q is convex,

for example a ball, then it is trivial that LA(Q, do) agrees with the classical

Hardy space H2(Q, do). So we obtain

Corollary 3. Let ilcC" be convex with smooth boundary and suppose y/ £

A°°(Q) anda>0. Then \\p\a do £ 3lA(Q).

The classical Hardy space H2(Q, do) can be introduced on an arbitrary

smoothly bounded domain flcC" (see [7]).

As we already noticed, the proof of Theorem 1 goes through in the case of

L\(Q,ß).

Proposition 2. Let ii ce C" be a smoothly bounded pseudoconvex domain.

Then H2(Q,do) is the closure in L2(bQ,do) ofA°°(Q).

Corollary 4. Corollary 3 holds for arbitrary smoothly bounded pseudoconvex

domains.

Proposition 2 does not seem to be stated explicitly in the literature. However

its proof is readily obtained by standard techniques from the following result.

Theorem. Let Q be a smoothly bounded pseudoconvex domain on C" , n > 1.

For every 5 = 0,1,2,... there exists a constant Cs such that for every (0, 1)-

form a on bQ with coefficients on the Sobolev space Ws(bQ), which satisfies

dba = 0   ifn>2

or, if n = 2,

f  aA0=O
JbO.

for every d-closed (2, 0)-form on Q which extends continuously to Q, there

exists u£Ws(bQ), such that

d^u — a   and   \\u\\w < Cs\\a\\w^

For n > 3, the theorem was proved by M. C. Shaw [6] (see the remark in [1]

for n = 3), while the case n = 2 was proved by H. P. Boas and M. S. Shaw

[1].
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