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ON THE LITTLEWOOD-PALEY-STEIN g-FUNCTION

STEFANO MEDA

Abstract. We consider semigroups (Tt), which are contractive on LP(M) for

all P € [q, q'] and ?£[1,2). We give an example (on symmetric spaces of
the noncompact type) which shows that the Littlewood-Paley-Stein ^-function

associated to the infinitesimal generator of (Tt) may be unbounded on Li(M)

and on L9 (M). We prove that variants of the g-function are bounded on

these Lebesgue spaces.

In this paper we present some new results concerning the LP boundedness of

the Littlewood-Paley-Stein ^-function. Suppose that (Tt) is a Co semigroup
of operators on LP(M), where M is a a -finite measure space, and let a £ N.

The Littlewood-Paley-Stein function ga associated to the given semigroup is
defined by the rule

\(tATTtf\2^

for all / for which the right-hand side makes sense. In classical cases, where

(Tt) is the Poisson semigroup acting on Z7(R) or L^T), the ^-function is an

important tool in Fourier analysis. For instance, it is frequently used to prove

multiplier theorems and pointwise convergence results: the reader is referred to

[ 11 ] for a survey of its role. In a general context, the ^-function was considered

by E. M. Stein; he proved that if (Tt) is a symmetric diffusion semigroup, then
ga satisfies the estimate

(1) 4,11/11, <||&(/)||,<WII*    VfeL?(M),

whenever p G (1, oo). A proof of this result can be found in [10]; a simpler

and more general approach, via transference techniques, is presented in [2]. A

third proof is in [4 and 5]. It is of an entirely different nature, in that it is based
on the fact that generators of symmetric diffusion semigroups (and even more

general semigroups [3]) have an H°° functional calculus.

One of the interesting applications of ^-functions is to functional calculus for
infinitesimal generators of Co semigroups. Stein proved a Marcinkiewicz-type

result for those as a corollary of the theory he developed for the ^-function.

The relationship between ^-functions and functional calculus for the infinites-

imal generator of (Tt) was investigated in [4 and 5]. Our treatment here owes
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much to the point of view of [3, 4, and 5]. The motivation for our investiga-

tion comes from an interesting example. Suppose that M is a symmetric space

of noncompact type, and let (Tt) denote the heat semigroup generated by the

Laplace-Beltrami operator on M. For any 8 £ (0, 1 ) we consider the modified

semigroup (Tue) defined by the rule Tt>e = e6btTt, where b denotes the bot-

tom of the L2-spectrum of the generator. These semigroups have been studied

in detail in [1, 6, and 7]. It is well known (see, for instance, [9 or 16] for a proof

of this fact) that Tu6 is contractive on LP(M) if and only if p G [pe, Pß],

where pg = 2/((l - d)xl2 + 1). J. Ph. Anker [1] proved that the standard g-

function associated to T, e is bounded on LP(M) if p g (pe, p'e), by using

pointwise estimates for the heat kernel. An interesting question left open is to

determine whether the g-function is bounded also on LPe(M) and Lpi>(M).

We remark that the results in the literature do not give any information about

this limiting case. Here we give a negative answer to this question. Also, we

remark that Anker's result is a simple consequence of the theory developed in

[4 and 5], which shows that the result does not depend on the symmetric space

structure nor on estimates of the "kernel" of the heat operator.

Our paper is organized as follows. Section 1 contains some results about the

^-function in an abstract setting. In §2, we specialize to symmetric spaces of

the noncompact type.

We wish to express our gratitude to Michael Cowling for several helpful dis-

cussions on the subject of this paper, and for his warm hospitality at the Uni-

versity of New South Wales, where this paper was initiated.

1. General results

Suppose that A is a positive selfadjoint operator on L2(M), where M is a

(T-finite measure space, and let Pi be the spectral resolution of the identity for

which
/•oo

A= /    kdPk.
Jo

Assume that the family (Tt) of operators defined on L2(M) by the rule

/•OO

TJ = /    e~a dPxf   V/ G L2(M)
Jo

satisfies the estimate

l|7;/l|p<||/||p   Vf£Lp(M)nL2(M),

whenever p G [q, q'], where q £ [1, 2) and q' denotes the index conjugate

to q . We recall the definition of the Mellin transform on the group R+ . If

m £ L'(R+) with respect to the Haar measure ^ , define its Mellin transform

(Jim) by the rule

f°° d2
(J?m)(u)= /    m(X)k-iu^   VmgR.

Jo *

For every i/eR define the operator A'u by the rule

/•OO

A'uf= /    X'udPj   V/GL2(M).
Jo



THE LITTLEWOOD-PALEY-STEIN  g-FUNCTION 2203

Notice that by spectral theory and the Plancherel formula for the Mellin trans-

form

uf)=or\w*tj\2t)
1/2

= (2n)-x'2 (J \T(a - iu)A'"f\2du\      ,

for all / G L2(M). Since T is a meromorphic function with simple poles at

the points 0,-1,-2,...  and

(2) |r(a - iu)\ ~ e-nM/2\u\a-x/2V2ñ

as |w| —> oo, it is easy to check that the integral above makes sense for all
complex a such that Re(a) is not in {0,-1,-2,...}. We call this set the

"admissible set". Thus, it is reasonable to define ga , for all a in the admissible

set, by the rule

ga(f) = (27T)-'/2 Qf \T(a - iu)Aiuf\2 du^j      ,

for all / G L2(M). By spectral theory, it is clear that

\\ga(f)\\22 = (27t)~l j \Y(a-iu)\2\\A'uf\\2du = Ca2||/||2,
Jr.

where C2 = (2n)~x /R |T(a - iu)\2 du. It is well known that if q = 1, i.e., the

semigroup is contractive on LP(M) for all p G [1, oo], then ga is bounded

on LP(M) for all p G (1, oo) and a > 0. For a an integer, this result was

proved by Stein [ 10] for symmetric diffusion semigroups and extended (with a

simpler proof) to more general semigroups by R. R. Coifman, R. Rochberg, and

G. Weiss [2]. For a positive real a (and still another proof) the result is due to

M. G. Cowling [4]. Also, it is not hard to see that in general ga is unbounded

on LX(M) and L°°(M) for all positive real a.
We assume that q g ( 1, 2) and the semigroup is subpositive and contractive

on LP(M) for all p G [q, q']. Under these hypotheses, the imaginary powers

of A are bounded on LP(M) for all p G [q, q'], and the following estimate of

their operator norm holds

IIM'lIp < Cp(l + |w|)CT/2exp(7t<7|w|/2)   V« G R,

where o = \l/p - l/2\/(l/q - 1/2). Indeed, if p = q, this estimate is a
consequence of the transference result [3, Theorem 1]. Since |||^'"|||2 = 1 for

all u £ R, the required estimate follows immediately by interpolation.

We present a simple proof of the right-hand inequality of ( 1 ) for p G [2, q'].

Theorem 1.1. Suppose that p £ [2, q']. For every a in the admissible set, define

Ca,P by the formula

Clp = (2n)~x [\T(a-iu)\2\\\A%du.
Jr

Then we have that

\\ga(f)\\P<CaM\\p      V/€l'(M).
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Proof. The case p = 2 is elementary; thus we may assume p > 2. Let r be

the index conjugate to p/2 and <j> the function in U(M) such that \\4>\\r = 1

and ||ga(/)2||p/2 = <Sa(/)2,</>>.Then

\\ga(f)\\2p = \\ga(f)2\\P,2 = {ga(f)2,<f>)

= (27r)-' Í \T(a-iu)\2(\Aiuf\2,<f>)du
Jr

<(2n)-xU\\r f \T(a-iu)\2\\Aiuf\\2pdu
Jr

<cl— ̂ a,p\\J lip '

as required.   D

Corollary 1.2. The following hold:
(i) ga is bounded on Lq' (M) ifRe(a) < -1/2 and a is admissible,

(ii) if p £ [2, q'), then ga is bounded on LP(M) for all admissible a.

Proof. By the asymptotics (2) for the T-function

C2a p < C ¡(I + \u\)2Kt^-x+aexo(-n\u\(l-o))du,
Jr

where a = (1/2 - l/p)/(l/2 - l/q'). This integral is finite if p G [2, q') or if
p = q' and Re(a) < -1/2, as required.   D

Unfortunately, we do not have such an elementary proof for the case where

p G [q, 2). However, we have a reasonably simple proof, which is modelled

over the proof of [5, Theorem 6.8]. We need first a couple of lemmata. The

first is a randomization lemma; for the proof, the reader may consult [10 or 5].

Lemma 1.3. Suppose that 1 < p < oo and that (f)jez is a sequence of functions

in LP(M). Then

1/2

E \fj\
U = -oo

< C sup
l«yl<l

E «it
_/ = -CO

Let yK/2 be the set {z g C : Re(z) > 0}, and denote by Sn/2 the strip
{z £ C : |Im(z)| < it¡2}. Let h be a smooth, compactly supported function

on the real line; and for every k in Z, define hk by the rule hk(u) = h(u - k)

for every u £ R. Choose h such that

Y hk(u) = 1    VmgR.
k=—oo

For every j and k in Z define the function bjk by the formula

bjk(0 = [ hk(u)T(a - iu)e-iJ"Ciu du   V£ G yn/2.
Jr

Notice that for every a in the admissible set, b¡k is holomorphic and bounded

in the set yn¡2. For every j and k in Z, let Bjk be the function defined by

the rule

Bjk(y) = lim+bjk(x + iy)

for almost every y in R.
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Lemma 1.4. Let (a7)./€Z be a sequence of complex numbers such that supy-|a7| <

1. Then the function mk : R —► C defined by the rule

mk =   Y   aJBJk
/—oo

is an LP multiplier for every p £ (1, oo) and for every e > 0 satisfies the

estimate

\\mk\Up{R) < Cp<eyk(Re(a) + e),

where yk : R —► R+ is defined by the formula

yk(to) = (l + \k\riog2(2 + \k\).
Proof. In order to obtain cleaner formulae, the following definition is useful:

to- = Re(a) - 1 ¡2   and   w+ = Re(a) + 1/2.

Also, let tp(u) = |r(a - iu)\ + \Y'(a - iu)\ + \T"(a - iu)\. We remark that

tp(u) < C(l + \u\)w° log2(2 + \u\)e~n^l2   V« G R,

by elementary analytic function theory. We shall prove that mk satisfies the

hypotheses of the Hörmander multiplier theorem. Indeed, for every x in R

we have that

\Bjk(ex)\ = \bjk(ex+i*'2)\ =   [ hk(u)T(a - iu)ei{x+i*'2-j)u du
\Jr

r-k+2

< / \T(a - iu)\e*WI2 du
J-k-2

-k+2

<C [      (1 \-\u\)w°du
J-k-2

<C(l + \k\)m¿

\Bjk(ex)\ = u ^r / 4-ï{hk(u)T(a- iuVe'W'2-»"du-x)2 JRdu2K kK '  v "

r      r~k+2
^TT^TTi <p{u)enWdu

\J - x\    J-k-2
C r-k+2

< , .      ,, /        (I+ \u\)a° log2(2+ \u\)du
\J ~x\    J-k-2

<c

Moreover,

(l + |/c|r«log2(2 + |/c|)

\j - A2

J II/*

^-(Bjkoe*r))(x)\ =   / hk(u)Y(a - iu)iuei{x+in'2-j)u du
dx |     |yR

r-k+2

< /        \Y(a - iu)\\u\enWI2 du
J-k-2

r-k+2

<C (l + \u\)<du
J-k-2

<C(1 + |A:|)^
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-^(Bjkoexp)(x) ah? L è(MM)r(Q - »))£**™du

< c
■  \j-x\2 J_k_2

r-k+2

/        <p(u)\u\enlul/2 du
J-k-2

<
\J

<c

- x\2 J_

-k+2

k-2
;i + |M|)<l0g2(2 + |w|)úfw

We claim that

(l + |/c|)<log2(2 + |fe|)

\j-x\2

U   \mk(y)\2^)
\jR/2

1/2
■

(fR\ym'k(y)\di)    <cyk«) vz<gr+
\Jr/2 y )

Indeed,

dyx
7M|wfcw|2Ti1/2=(r ( s+ s u%w
^*/2 ^ / \/Ä/2    VU-logy^l     \j-\o%y\>\) J

<c
r2R

JR/2

(1 + |t|)„r+   E   (' + ̂ g + w>
l>-iogy|>i

U-logvp

2 \   l/2

< Cyk(to~)   f
2«

R/2

1

^      |/' — log v|:
L/-iog>>|>i u        6"

2 \><

/

<Cyk(toa),

and, similarly,

•/Ä'2    \|;-logy|<l      \j-logy\>l

2 \  !/2

y

<c (í2R(i+\k\)<+ y (1+lT:,log2(r|/:|)

2        \  '/2

dy"

" )

< Cyk(to,

<Cyk(to+a),

\Jr/2
'+  2 1

U-lo$y\>\
\j - logy|2

2        \  !/2

dy

y
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as claimed. If n is a smooth compactly supported function on R+ , supported

in [1, 4] and equal to 1 in [2, 3], then this calculation implies that

and

sup\\n(\-\)mk(R-)\\Lim < Cyk(toa
R>0

sup \\n(\ • \)mk(R • )ll/y(R) < Cyk(to+),
R>0

where Hx (R) denotes the usual Sobolev space on the real line. By interpolation,

we obtain that for every e > 0

sup \\n(\ • \)mk(R • )||//./2+£(R) < Cyk(Re(a) + s) ;
R>0

now, by (a refined version of) the Hörmander multiplier theorem, this estimate

implies that

\\mk\Up(R) < Cpj£^(Re(a) + e),

as required.   D

Theorem 1.5. The following hold:
(i) ga is bounded on Lq(M) ifRe(a)<-l and a is admissible,

(ii) if p G (q, 2], then ga is bounded on LP(M) for all admissible a.

Proof. We first prove (i).   The idea of the proof is taken from [5, Theorem

6.8]. By applying Minkowski's inequality followed by PlancherePs formula, we

obtain that

1/21
\hk(u)T(a - iu)Alu f\2 du\ga(f)\\q<   Y

k=—oo

oc
1/2

E  \bjk(A)f?
U = -oo

Now, by Lemma 1.3 the last expression is dominated by a constant times

E   SUP
^-ool^1

E   aJbJk(A)f
J = — oo

We apply the transference result of Cowling [3, Theorem 1 and Lemma 1.4]

and obtain that the operator mk(A), defined by the formula

OO

mk(A) =  Y akbjk(A)f,
j=-oo

satisfies the estimate

\\\mk(A)\\\(1<Cq,£yk(Re(a) + e),

so that
OO

ll&(/)H?<C,,e||/||fl  Y  y*(Re(a) + e).
k=—oo

The last series converges provided that Re(a) < -1 - e, as required.   This

concludes the proof of (i).
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We now prove (ii). Observe that, by spectral theory,

|||mfc(^)|||2 = sup|mJt(A)|.
A>0

By an argument similar to that of the lemma, we deduce that

|||/nt(^)|||2 < Clog2(2 + |fc|)(l + |Â:|)Re(Q)+£exp(-7r|Â:|/2)   Vfc G Z;

therefore, by the Riesz-Thorin interpolation theorem we may conclude that if

p G (q, 2), then

\\\mk(A)\\\2 < Clog2a(2+\k\)(l + \k\)°(Re^exv(-07i\k\/2),

where o — (l/q - l/p)/(l/q - 1/2). Thus, arguing as in (i), we obtain that

oo

\\ga(f)\\P < C\\f\\p  Y (Ä(Re(a) + £)rexp(-<77r|fc|/2);
k=—oo

the last series converges for all admissible a, thereby concluding the proof of

(ii).
The proof of the theorem is now complete.   D

2. Symmetric spaces

In this section M will denote a symmetric space of the noncompact type.

More explicitly, let G and K be a connected noncompact semisimple Lie group

with finite center and a maximal compact subgroup thereof, and consider the

symmetric space G/K, also denoted by M. There is a canonical invariant
Riemannian metric on M ; denote by -=So the associated Laplace-Beltrami

operator. By general nonsense, 3§ is positive and essentially selfadjoint on

C£°(M) ; let S? be the unique selfadjoint extension of -2<j and {Px} the spec-

tral resolution of the identity for which
roo

&f= \    XdPJ   V/GDom(^),
Jh

where the bottom of the spectrum, b, is equal to (p, p), p being the usual

half-sum of the positive roots. Consider the heat semigroup generated by &,

namely
/»OO/»oo

Ttf=j    exo(-tk)dPJ.

For every 8 £ (0, 1 ) we consider the modified semigroup T¡ e defined by the

rule Tty0 = eeb'T,. Clearly, Tt<g is generated by 5fe , where Sfe = Sf - db .
For any admissible a, let gQ, e be defined by the rule

1 /?

gaAf) = (2n)-1'2 y \T(a - iu)5?e'uf\2 du^      .

Anker [ 1 ] proved that if a is a positive integer, then ga ,e is bounded on LP(M)

if p G (pe, p'e). Apparently, his methods do not give any information about

the boundedness of ga on LPe(M) and Lp'e(M). Our aim is to prove some

endpoint results for ga, e .
We first recall some basic facts about the semigroup (T,g) and its generator

2Cq . It is well known (see, for example, [6] for a proof of this fact) that T, g is
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contractive on LP(M) if and only if p£[pe,p'e], where pe = 2¡ ((l-8)xl2 + 1).

Also, 2g possesses a holomorphic functional calculus as illustrated by the fol-

lowing result, which was proved in [6] and is included here for the reader's

convenience.

Theorem 2.1. Suppose that 0 < 6 < 1 and that pe < p < p'g and 1 < p < oo.
Suppose also that m is holomorphic and bounded in the right half-plane, and

denote by M the nontangential limit of m at the imaginary axis, i.e., M(y) =

lim^o-i- m(x + iy) for almost every y in R.

(i) If M is an LP(R)-Eourier multiplier of norm B, then the operator m(¿¿g)

is bounded on LP(X). Moreover, \\\m(S?e)\\\p < B.

(ii) If n is a smooth, compactly supported function on R+ , supported in [ 1,

4] and equal to 1 in [2, 3], and if there exists a constant B such that

\\n(-)M(R-)\\A¡n¡{R)<B   VZ* g R+

(where A2',(R) denotes the usual Besov-Lipschitz space on the real line), then

the operator m(J¿?g) is bounded on LP(X). Moreover, \\\m(3g)\\\p <CB.

It was proved in [6] that there exist constant Ce and C'e such that

Qexp(K|w|/2) < |||-2?'B|||Pí < C¿(1 + \u\)x'2 exp(n\u\/2)   Vw G R.

Since Hl-Sg "|||2 = 1, we get by interpolation and duality that for all p £ (pg, p'e)

lll^'llp < Ce,p(\ + Mr/2exp(7ra|M|/2)   Vw G R,

where a = |l/p - l/2|/(l/p0 - 1/2).
In order to make the proof of the main result of this section readable, we

have to introduce more notation. However, to avoid wasting space, we shall be

very concise. The reader who is familiar with the subject will find our notation

standard; the reader who is not an expert is urged to consult the treatise [8] or,

for a more concise exposition, [6, §2].

Let G be a noncompact semisimple Lie group with finite centre, write g =

t @ p for a Cartan decomposition of the Lie algebra q of G, and let a be

a maximal abelian subspace of p. Recall that the Killing form B( • , • ) is a

nondegenerate bilinear form on g, which is positive definite when restricted to

o. Given A in a*, define HA to be the unique element in a such that

B(HA,H) = A(H)   VZZGa

and then an inner product ( • , • ) on a* by the rule

(A,A')=B(HA,HA,)   VA, A'G a*.

The inner product on a* extends to a bilinear form, also denoted ( • , • ), on

the complexification a£ of a*. For every 6 £ [0, 1 ], we define the quadratic

function Qe on a£ by the rule

Qe(A) = (A,A) + (l-6)(p,p)   VAgo£.

For any (complex-valued) linear form A on o, let <f>A denote the correspon-

dence elementary spherical function. Recall that <j>A is an eigenfunction for the

(modified) Laplace-Beltrami operator and

-% = ße(A)^A   VA G a£   V0 G [0, 1].
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Let Wi be the interior of the convex hull in o* of the images of p under the

Weyl group  W of (0, a).  For ô in (0, 1), we denote by W<$ and T¿ the
dilate of W¿ by ô and the tube over the polygon W¿ , i.e., Tg = a* + ¡iWi .

If A lies in T» , then <f>A is bounded. Moreover, let p G ( 1, 2) and denote

ô(p) = 2/p - 1 ; then if A lies in Ta(p), then <f>A is in Lq(M), for all q £

(p', 00). The spherical Fourier transform / of an L'(G)-function / is defined

by the formula

/(A)=  f f(x)4>-A(x)dx   VA G a*.
Jg

The main result of this section is the following.

Theorem 2.2. Let 9 £ (0, 1) and a be admissible. Then the following hold:
(i) if Re(a) < -I, then ga<e ¿* bounded on LP(X) for all p £[Pe , Pg]',

(ii) if Re(a) > 0, then ga<e is not bounded on LPe(X) and on Lp's(X) ;

(iii) ga,e is bounded on LP(X) for all p £ (pe, p'e).

Proof. The statements (i) and (iii) are an easy consequence of Corollary 1.2

and Theorem 1.5.
We now prove (ii).  First, we show that ga,e is not bounded on LP'»(X).

Note that for every A in the tube Ts(Pe) > we have

\g<*,8 ll„'  > ga,e
<Pa

Ha\\p>

(2n) -1/2 a\T(a - iu)\¿\Qe(A)-'"\¿ du
1/2

which implies, say,

\ga,e\h >   SUP  (27trx/2 (J\r(a-iu )\2\Qe(Ar'"\2 du
1/2

sup   Aa,e(A).
A6T,Hps)

Choose A = Ai + i[ô(pg) - (h , Ax)]p, where A) G a* (recall that ô(pe) =
2/Pe - 1 ). A simple calculation shows that

Qe(A) = |A, |2( 1 + 2ö(pe)b - \AX \2b) + 2i[Ô(pe) - |A, |2](A!, p).

Set Ai = kp. Assume, for instance, that A —> 0+. Recall that we have to

estimate the integral JR |T(a - iü)\2\Qe(A)iu\2 du from below. With our choice

of the parameter A the integrand is just

2(ô(Pg)-k2b)
\Y(a - /w)|2exp

When u —> -00, it behaves like

-2«arctan

exr)(-n\u\)\u\2Re{a)-x exp -2u I n

k(l + 2S(pe)b-k2b2)

k(l+2ô(pe)b-k2b2)
¡2 - arctan

2(ô(pe)-k2b)

i.e.,

|M|2Re(a)-lexp 2u arctan
k(l + 2S(pe)b-k2b2)

2(S(pe)-k2b)
= Ba,e(u, ^)>
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say. By the monotone convergence theorem we have that
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thus

lim   / Ba g(u, k)du — +00 ;

\ga,e\\L =   sup   Aa¡g(A) > C lim  / Ba<g(u, k)du
Ps       A6T,,,.., ^0+yRAeTJ(;_

= +00,

as required.

We now prove that gaS is not bounded on LPe(X). For the rest of the

proof we shall denote by A the operator Jz^ . For every function y/ in the

Schwartz space <9*(R) such that ||^||2 < 1 we have that

\\ga,e(f)\\Pe > \¡n<*-iu)AiufW(u)du
\\Jr Pe

*   I dx$TT- Í Y^a ' iu)Aiuf(x)¥(u) du
Jx       II0aIIp¿ Jr

whenever A is in the tube Ts(Pe).   Now, we may interchange the order of

integration. Indeed, since A is bounded on LPe(X),

ISJx Jr
-T(a-iu)A,uf(x)y/(u) dudx

<

\\ga,e(f)\\pe >

Ua\\p'9

i' \T{a-iu)w(u)\UiwJ%tdu
Jr

<C\\f\\p, j ^(a-iu^mWA^du
Jr

<C\\f\\Pe   /|^(M)|(l + |M|)°rfM<00.
Jr

Thus, by interchanging the order of integration, we obtain that

[r(a-iu)W(u)(A'uf,1rp±r)du
Jr \ \\<PA\\p'e I

= lß^-\ Í T(a- iu)Qe(A)'"W(u)du  .
\\<PA\\p'e Ur

We now take the supremum over all functions y/ in the Schwartz space ^(R)

such that ||^||2 < 1. We obtain that

\\ga,e(f)\\Ps > j^nr ( [ \r(a- iu)\2\Qe(A)'"\2du)      .
\\Mpl \Jr /

Recall that for every A in the tube T¿{Pe) the continuous linear functional on

LPe(X) defined by the rule / ^ /(A) is represented by the spherical function

(f>A , which is in Lp'e(X). Therefore

sup   |/(A)| = ||0A||p¿.
11/11,, = .
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Let fA denote the (unique) function in LPe(X) which has norm one and "re-

alizes" the norm of the functional, namely

I/a(A)I = Ha\\p'6-

Then this particular function fA satisfies the following inequality

Hä»,*(/a)IU > (^|r(a-/M)|2|oe(AH2¿")

so that

HI&.ellL *   sup   \\ga,e(f)\\Pe >   sup   ||&,ö(/a)IIp,
II/IIp. = 1 AelW,,

>   sup
A€Ta0>9

^\r(a-iu)\2\Qe(A)iu\2du^      .

We have already proved that this supremum equals +00, thereby concluding
the proof of (ii).

The proof of the theorem is now complete.   D
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