SOME INEQUALITIES OF ALGEBRAIC POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS

WEIYU CHEN

ABSTRACT. Let S_n be the collection of all algebraic polynomials of degree $\leq n$ with nonnegative coefficients. In this paper we discuss the extremal problem

$$\sup_{p_n(x)\in S_n}\frac{\int_a^b (p'_n(x))^2 \omega(x) \, dx}{\int_a^b p_n^2(x) \omega(x) \, dx}$$

where $\omega(x)$ is a positive and integrable function. This problem is solved completely in the cases

(i) [a, b] = [-1, 1], $\omega(x) = (1 - x^2)^{\alpha}$, $\alpha > -1$; (ii) $[a, b) = [0, \infty)$, $\omega(x) = x^{\alpha}e^{-x}$, $\alpha > -1$; (iii) $(a, b) = (-\infty, \infty)$, $\omega(x) = e^{-\alpha x^2}$, $\alpha > 0$.

The second case was solved by Varma for some values of α and by Milovanović completely. We provide a new proof here in this case.

1. INTRODUCTION

In this paper we investigate the following extremal problem

(1)
$$\sup_{p_n(x)\in S_n} \frac{\int_a^b (p'_n(x))^2 \omega(x) \, dx}{\int_a^b p_n^2(x) \omega(x) \, dx}$$

where

$$S_n = \left\{ p_n(x) : p_n(x) = \sum_{i=0}^n a_i x^i, \ a_i \ge 0, \ 0 \le i \le n \right\},$$

and $\omega(x): (a, b) \to R$ is a positive and integrable function.

In the case $[a, b) = [0, \infty)$, $\omega(x) = x^{\alpha}e^{-x}$, $\alpha > -1$, the extremal problem (1) was initiated and solved by Varma [10] in the cases $0 \le \alpha \le 1/2$ and $(\sqrt{5}-1)/2 \le \alpha < \infty$. Later, it was solved completely by Milovanović [4] for $-1 < \alpha < \infty$.

In this note we consider the above extremal problem (1) for different weight functions on different intervals. Throughout this paper, we denote S_n the collection of all algebraic polynomials of degree $\leq n$ with nonnegative coefficients. In Section 2, we provide the complete answer to the case [a, b] = [-1, 1], $\omega(x) = (1 - x^2)^{\alpha}$, $\alpha > -1$. In the case $\alpha = 0$, this result is an analogue of a

©1995 American Mathematical Society 0002-9947/95 \$1.00 + \$.25 per page

Received by the editors November 24, 1993; originally communicated to the *Proceedings of the* AMS by Andrew Bruckner.

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A17; Secondary 26C05.

Key words and phrases. Markov inequality, nonnegative coefficients.

theorem of Lorentz [3] in the L_{∞} norm. Indeed, that theorem holds for a wider class (Lorentz class) of polynomials, which was studied extensively by Scheick [7]. For some subsets of Lorentz class of polynomials, the extremal problem (1) was discussed by Milovanović and Petković [5] for the Jacobi weight.

In Section 3, we give a new proof of Milovanović's Theorem [4]. In our last section, Section 4, we consider the weight function $\omega(x) = e^{-\alpha x^2}$, $\alpha > 0$, on the interval $(-\infty, \infty)$.

The corresponding extremal problem for the unrestricted polynomials was discussed in Dörfler [1], [2], Mirsky [6] and Turán [8], which are Markov type inequalities in L_2 norm.

2. The weight
$$\omega(x) = (1 - x^2)^{\alpha}$$

In this section, we discuss the extremal problem in the L_2 norm under the weight function $\omega(x) = (1 - x^2)^{\alpha}$, $\alpha > -1$, on [-1, 1]. For some special values of α , we obtain several corollaries corresponding to some classic weight functions. The main result in this section is the following theorem.

Theorem 2.1. Let $p_n(x) \in S_n$, $\alpha > -1$; then

(2)
$$\int_{-1}^{1} (p'_n(x))^2 (1-x^2)^{\alpha} dx \le \frac{2n+2\alpha+1}{2n-1} n^2 \int_{-1}^{1} p_n^2(x) (1-x^2)^{\alpha} dx$$

with equality when $p_n(x) = x^n$.

Proof. Since $p_n(x) \in S_n$, we can write

$$p_n(x) = \sum_{i=0}^n a_i x^i$$

with $a_i \ge 0$, $0 \le i \le n$. Then

$$p'_n(x) = \sum_{i=1}^n i a_i x^{i-1}$$

and

$$\int_{-1}^{1} p_n^2(x)(1-x^2)^{\alpha} dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j \int_{-1}^{1} x^{i+j}(1-x^2)^{\alpha} dx,$$
$$\int_{-1}^{1} (p_n'(x))^2 (1-x^2)^{\alpha} dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j i j \int_{-1}^{1} x^{i+j-2} (1-x^2)^{\alpha} dx.$$

Let

$$b_{ij} = \int_{-1}^{1} x^{i+j} (1-x^2)^{\alpha} dx$$

= $\frac{1-(-1)^{i+j+1}}{2} B\left(\frac{i+j+1}{2}, \alpha+1\right)$

where B(x, y) is the Beta function and

$$c_{ij} = ij \int_{-1}^{1} x^{i+j-2} (1-x^2)^{\alpha} dx$$

= $ij \frac{1-(-1)^{i+j+1}}{2} B\left(\frac{i+j-1}{2}, \alpha+1\right)$

for
$$1 \le i$$
, $j \le n$, $c_{ij} = 0$ if $i = 0$ or $j = 0$. Now denote

$$B = (b_{ij})_{0 \le i, j \le n}, \quad C = (c_{ij})_{0 \le i, j \le n},$$

and

$$a = (a_0, a_1, \ldots, a_n)$$
;

then we can derive that

$$\int_{-1}^{1} p_n^2(x)(1-x^2)^{\alpha} dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j b_{ij} = a^{\mathsf{T}} B a,$$
$$\int_{-1}^{1} (p_n'(x))^2 (1-x^2)^{\alpha} dx = \sum_{i=0}^{n} \sum_{j=0}^{n} a_i a_j c_{ij} = a^{\mathsf{T}} C a.$$

Now it suffices to consider the following extremal problem:

(3)
$$\sup_{a \in R_1^{n+1}} \frac{a^{\mathsf{T}} C a}{a^{\mathsf{T}} B a}$$

where $R_{+}^{n+1} = \{a : a = (a_0, a_1, ..., a_n)^{\mathsf{T}}, a_i \ge 0, 0 \le i \le n\}$. Or find the least λ such that

$$\frac{a^{\mathsf{T}}Ca}{a^{\mathsf{T}}Ba} \leq \lambda$$
, for all $a \in R^{n+1}_+$,

which is

(4)
$$a^{\mathsf{T}}(\lambda B - C)a \ge 0$$
, for all $a \in \mathbb{R}^{n+1}_+$.

Observe that $b_{ij} \ge 0$, $c_{ij} \ge 0$, $0 \le i, j \le n$. If we can find a smallest λ such that all the elements of $\lambda B - C$ are nonnegative, then we obtain (4) automatically. Notice also that the matrices B and C have the same structure; thus it suffices to find λ such that

$$\lambda b_{ij} - c_{ij} \geq 0$$
, when $b_{ij} \neq 0$,

i.e.,

$$\lambda \geq \frac{c_{ij}}{b_{ij}} = \frac{ij(i+j+2\alpha+1)}{i+j-1}, \qquad 1 \leq i, j \leq n.$$

If we consider c_{ij}/b_{ij} as a function of two continuous variables i and j, then we have

$$\frac{\partial}{\partial i} \left(\frac{ij(i+j+2\alpha+1)}{i+j-1} \right) = \frac{j[i^2 + (j-1)(2i+j+2\alpha+1)]}{(i+j-1)^2} \ge 0$$

and similarly

$$\frac{\partial}{\partial j} \left(\frac{ij(i+j+2\alpha+1)}{i+j-1} \right) = \frac{i[j^2 + (i-1)(2j+i+2\alpha+1)]}{(i+j-1)^2} \ge 0;$$

thus this is an increasing function of i and j, and we can pick up

$$\lambda = \frac{ij(i+j+2\alpha+1)}{i+j-1}\bigg|_{i=n,\,j=n} = \frac{2n+2\alpha+1}{2n-1}n^2.$$

To see that λ is the best one, we can consider $p_n(x) = x^n$ or $a^T = (0, 0, ..., 0, 1)$. This completes the proof of the theorem. \Box

For some special values of α , we have the following corollaries.

Corollary 2.2. Let $p_n(x) \in S_n$; then

(5)
$$\int_{-1}^{1} (p'_n(x))^2 dx \le \frac{2n+1}{2n-1} n^2 \int_{-1}^{1} p_n^2(x) dx$$

with equality when $p_n(x) = x^n$.

Corollary 2.3. Let $p_n(x) \in S_n$; then

(6)
$$\int_{-1}^{1} (p'_n(x))^2 (1-x^2)^{-1/2} dx \le \frac{2n}{2n-1} n^2 \int_{-1}^{1} p_n^2(x) (1-x^2)^{-1/2} dx$$

with equality when $p_n(x) = x^n$.

Corollary 2.4. Let $p_n(x) \in S_n$; then

(7)
$$\int_{-1}^{1} (p'_n(x))^2 (1-x^2)^{-1/2} dx \le \frac{2n+2}{2n-1} n^2 \int_{-1}^{1} p_n^2(x) (1-x^2)^{-1/2} dx$$

with equality when $p_n(x) = x^n$.

In the case $\alpha = 1$, a similar result was proved by Varma [9] for polynomials having real roots.

3. The weight $\omega(x) = x^{\alpha}e^{-x}$

We give a new proof of Milovanović's Theorem [4] in this section. Indeed we use the same argument as was used in the proof of Theorem 2.1. This time, we consider the weight function $\omega(x) = x^{\alpha}e^{-x}$, $\alpha > -1$, on the interval $[0, \infty)$.

Theorem 3.1. Let $p_n(x) \in S_n$, $\alpha > -1$; then

(8)
$$\int_0^\infty (p'_n(x))^2 x^\alpha e^{-x} dx \leq C_n(\alpha) \int_0^\infty p_n^2(x) x^\alpha e^{-x} dx$$

where

$$C_n(\alpha) = \begin{cases} 1/[(2+\alpha)(1+\alpha)], & -1 < \alpha \le \alpha_n, \\ n^2/[(2n+\alpha)(2n+\alpha-1)], & \alpha_n \le \alpha < \infty, \end{cases}$$

and

$$\alpha_n = \frac{1}{2}(n+1)^{-1}[(17n^2 + 2n + 1)^{1/2} - 3n + 1].$$

Moreover, $C_n(\alpha)$ is the best possible constant. Proof. Let $p_n(x) = \sum_{i=0}^n a_i x^i$, $a_i \ge 0$, $0 \le i \le n$, then

$$\int_0^\infty p_n^2(x) x^\alpha e^{-x} \, dx = \sum_{i=0}^n \sum_{j=0}^n a_i a_j \int_0^\infty x^{i+j+\alpha} e^{-x} \, dx$$
$$= \sum_{i=0}^n \sum_{j=0}^n a_i a_j b_{ij} = a^{\mathsf{T}} B a$$

where

$$b_{ij} = \int_0^\infty x^{i+j+\alpha} e^{-x} dx = \Gamma(i+j+\alpha+1),$$
$$B = (b_{ij})_{0 \le i, j \le n}.$$

And similarly, we have

$$\int_0^\infty (p'_n(x))^2 x^\alpha e^{-x} dx = \sum_{i=0}^n \sum_{j=0}^n a_i a_j c_{ij} = a^{\mathsf{T}} C a$$

where

$$c_{ij} = \begin{cases} ij\Gamma(i+j+\alpha-1), & 1 \le i, \ j \le n, \\ 0, & i = 0 \text{ or } j = 0, \\ C = (c_{ij})_{0 \le i, \ j \le n}. \end{cases}$$

Therefore, we need to find the least λ such that

$$\lambda b_{ij} - c_{ij} \ge 0$$
, for $1 \le i, j \le n$.

That is, the maximum value of the function

$$f(i, j) := \frac{c_{ij}}{b_{ij}} = \frac{ij}{(i+j+\alpha)(i+j+\alpha-1)}.$$

Let k = i + j; then

$$f(i, j) = \frac{ij}{(i+j+\alpha)(i+j+\alpha-1)}$$
$$= \frac{i(k-i)}{(k+\alpha)(k+\alpha-1)} =: g(i, k).$$

If we consider g as a function of two continuous variables i and k, then we have

$$\frac{\partial g(i, k)}{\partial i} = \frac{k - 2i}{(k + \alpha)(k + \alpha - 1)}$$

Therefore, g(i, k) takes on its maximum value at i = k/2 if we fix k (consider it as a function of i alone). Now it suffices to consider the maximum value of the function

$$h(k) := g\left(\frac{k}{2}, k\right) = \frac{k^2}{4(k+\alpha)(k+\alpha-1)}.$$

Following the exactly same argument of Milovanović [4, p. 425], we can see that the best possible value of λ is $C_n(\alpha)$. We omit the details. This completes the proof. \Box

Remark. The same idea also seems to work for other L_p norms when p is an integer, but they become more and more complicated as p is bigger and bigger. We will not formulate them here. However, for the L_1 norm, the result is simple.

Theorem 3.2. Let $p_n(x) \in S_n$, $\alpha > -1$; then

(9)
$$\int_0^\infty p'_n(x) x^\alpha e^{-x} dx \le \lambda_n(\alpha) \int_0^\infty p_n(x) x^\alpha e^{-x} dx$$

where

$$\lambda_n(\alpha) = \begin{cases} 1/(1+\alpha), & -1 < \alpha \leq 0, \\ n/(n+\alpha), & 0 \leq \alpha < \infty. \end{cases}$$

Moreover, $\lambda_n(\alpha)$ is the best possible constant.

4. The weight $\omega(x) = e^{-\alpha x^2}$

In this section we discuss the weight function $\omega(x) = e^{-\alpha x^2}$, $\alpha > 0$, on the whole real line. The corresponding result is the following theorem.

Theorem 4.1. Let $p_n(x) \in S_n$, $\alpha > 0$; then

(10)
$$\int_{-\infty}^{\infty} (p'_n(x))^2 e^{-\alpha x^2} dx \le \frac{2\alpha}{2n-1} n^2 \int_{-\infty}^{\infty} p_n^2(x) e^{-\alpha x^2} dx$$

with equality when $p_n(x) = x^n$. *Proof.* Let $p_n(x) = \sum_{i=0}^n a_i x^i \in S_n$; then

$$\int_{-\infty}^{\infty} p_n^2(x) e^{-\alpha x^2} dx = \sum_{i=0}^n \sum_{j=0}^n a_i a_j b_{ij} = a^{\mathsf{T}} B a_j$$

where

$$b_{ij} = \int_{-\infty}^{\infty} x^{i+j} e^{-\alpha x^2} dx$$

= $(1 - (-1)^{i+j+1})(i+j-1)!! 2^{-(i+j)/2-1} \alpha^{-(i+j+1)/2} \sqrt{\pi}$,
 $B = (b_{ij})_{0 \le i, j \le n}$,

and

$$\int_{-\infty}^{\infty} (p'_n(x))^2 e^{-\alpha x^2} dx = \sum_{i=0}^n \sum_{j=0}^n a_i a_j c_{ij} = a^{\mathsf{T}} C a$$

where

$$c_{ij} = ij \int_{-\infty}^{\infty} x^{i+j-2} e^{-\alpha x^2} dx$$

= $(1 - (-1)^{i+j+1}) ij(i+j-3) !! 2^{-(i+j)/2} \alpha^{-(i+j-1)/2} \sqrt{\pi}$,
 $C = (c_{ij})_{0 \le i, j \le n}$.

For i + j even, let

$$f(i, j) := \frac{c_{ij}}{b_{ij}} = 2\alpha \frac{ij}{i+j-1}, \qquad 1 \le i, j \le n;$$

then considering f as a function of two continuous variables i and j, we can obtain

$$\frac{\partial f(i,j)}{\partial i} = \frac{2\alpha j(j-1)}{(i+j-1)^2} \ge 0 \quad \text{for } 1 \le i, j \le n,$$

and

$$\frac{\partial f(i, j)}{\partial j} = \frac{2\alpha i(i-1)}{(i+j-1)^2} \ge 0, \quad \text{for } 1 \le i, j \le n.$$

Therefore, f(i, j) attains its maximum value at i = n, j = n, which implies the desired result. \Box

Added in Proof. After this manuscript was written, the author learned that Professor A. K. Varma [11] had written a paper on the same subject. There are some overlaps between his results and our results in \S 2 and 3, but we do use different methods.

References

- 1. P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987), 490-494.
- 2. ____, An extremal problem concerning a Markov-type inequality, SIAM J. Math. Anal. 22 (1991), 792–795.
- 3. G. G. Lorentz, Degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251.
- 4. G. V. Milovanović, An extremal problem for polynomials with nonnegative coefficients, Proc. Amer. Math. Soc. 94 (1985), 423-426.
- G. V. Milovanović and M. S. Petković, Extremal problems for Lorentz classes of nonnegative polynomials in L² metric with Jacobi weight, Proc. Amer. Math. Soc. 102 (1988), 283–289.
- L. Mirsky, An inequality of the Markov-Bernstein type for polynomials, SIAM J. Math. Anal. 14 (1983), 1004–1008.
- 7. J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Theory 6 (1972), 354-358.
- 8. P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica 2 (1960), 373-378.
- 9. A. K. Varma, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), 243-250.
- 10. ____, Derivatives of polynomials with positive coefficients, Proc. Amer. Math. Soc. 83 (1981), 107-112.
- 11. ____, Some inequalities of algebraic polynomials, preprint.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1