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SOME INEQUALITIES OF ALGEBRAIC POLYNOMIALS
WITH NONNEGATIVE COEFFICIENTS

WEIYU CHEN

Abstract. Let S„ be the collection of all algebraic polynomials of degree < n

with nonnegative coefficients. In this paper we discuss the extremal problem

tf(p'n(x))2w(x)dx

P„Wes„   ¡bapl(x)o)(x)dx

where u>(x) is a positive and integrable function. This problem is solved com-

pletely in the cases

(i) [a,b] = [-l, 1], ca(jc) = (1 - x2)" , a>-l;
(ii) [a, b) = [0, co), a>(x) = xae~x , a > -1 ;

(iii)  (a, b) = (-co, oo), (o(x) = e~ax  , a>0.

The second case was solved by Varma for some values of a and by Milovanovic

completely. We provide a new proof here in this case.

1. Introduction

In this paper we investigate the following extremal problem

b,
:i) sup     Ia(Pn(x))2CO(x)dx

Pn(x)es„   fa p2(x)co(x)dx

where

Sn = <Pn(x): pn(x) = ^2a¡x', a, >0, 0<i<n\,

and co(x): (a, b) -> R is a positive and integrable function.
In the case [a, b) — [0, oo), co(x) - xae~x , a > -1, the extremal problem

(1) was initiated and solved by Varma [10] in the cases 0 < a < 1/2 and

(\/5- l)/2 < a < oo. Later, it was solved completely by Milovanovic [4] for

— 1 < a < oo .

In this note we consider the above extremal problem ( 1 ) for different weight

functions on different intervals. Throughout this paper, we denote S„ the col-

lection of all algebraic polynomials of degree < n with nonnegative coefficients.

In Section 2, we provide the complete answer to the case [a, b] = [-1, 1],

co(x) = (1 - x2)" , a > -1 . In the case a = 0, this result is an analogue of a
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theorem of Lorentz [3] in the L^ norm. Indeed, that theorem holds for a wider

class (Lorentz class) of polynomials, which was studied extensively by Scheick

[7]. For some subsets of Lorentz class of polynomials, the extremal problem (1)

was discussed by Milovanovic and Petkovic [5] for the Jacobi weight.

In Section 3, we give a new proof of Milovanovic's Theorem [4]. In our last

section, Section 4, we consider the weight function co(x) = e~ax , a > 0, on

the interval (-00, oo).

The corresponding extremal problem for the unrestricted polynomials was

discussed in Dörfler [1], [2], Mirsky [6] and Turan [8], which are Markov type

inequalities in L2 norm.

2. The weight co(x) = (1 - x2)a

In this section, we discuss the extremal problem in the L2 norm under the

weight function co(x) = (1 - x2)a, a > -1, on [-1, 1]. For some special

values of a, we obtain several corollaries corresponding to some classic weight

functions. The main result in this section is the following theorem.

Theorem 2.1. Let p„(x) £ S„, a > -1 ; then

(2)       jX(p'n(x))2(l-x2Tdx < 2" + 2_Q + Xn2 fñ(x)(l -x2Tdx

with equality when pn(x) — x" .

Proof. Since pn(x) £ Sn , we can write
n

Pn(x) = 2^aiX'
¡=0

with a, > 0, 0 < i < n . Then
n

P'Ax) = Y\iaixi-x
i=X

and
-1 n     n .X

[  p2n(x)(l - x2)adx = ¿T>«j /   xi+J(l - x2)adx,
J~x mm,       J~x

f (p'n(x))2(l -x2)adx = T¿ W7 /   xi+>-2(l -x2)adx.

Let

bij= f  xi+j(l-x2)adx

(i±lA Ä
\      * /

l-(-l)i+^B(i + j + l

2

where B(x, y) is the Beta function and

Cij = ij Í  xi+j~2(l - x2)adx

l-(-l)i+i+x D(i + j-l
= ij-"-^-B

(^i,«+.)
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for 1 < i, j < n , Cij = 0 if i = 0 or j = 0. Now denote

B = (bij)o<i,j<n ,      C = (Cij)o<i,j<n >

and

a = (cto, ax, ... , an)J;

then we can derive that

n     n

P2n(x)(i - x2rdx = Y,Y, a¡aJbu =aTßa >
1 i=0 j=0

.1 n     n

(Perfil - X2)adx = Y,Y, a'aJC'J * aTCa-

I
I 1 ,=0 j=0

Now it suffices to consider the following extremal problem:

a Ca
3 sup  ^=—

aeK+l aTBa

where Rl+X = {a : a = (a0, ax, ... , a„)T , a, > 0, 0 < / < «}. Or find the least
X such that

%¿f-<X,    for all a £ Rl+X,
a' Ba

which is

(4) aT(XB-C)a>0,    for all a € Z^+1.

Observe that b¡j > 0, c¡j > 0, 0 < i, j < n. If we can find a smallest

X such that all the elements of XB - C are nonnegative, then we obtain (4)

automatically. Notice also that the matrices B and C have the same structure;
thus it suffices to find X such that

Xbjj - Cij > 0,    when b¡j ^ 0,

i.e.,
c¡L=ijV + j + 2a+l) ,<;,,•<,,

0,7 I + J - 1

If we consider Cy/by as a function of two continuous variables i and 7 , then
we have

d_ (ij(i + j + 2a+l)\      j[fi + (j-l)(2i + j + 2a+l)]

di\      i + j-l      J' d + j-l)2

and similarly

d_ //;(/+ j +2a+1)\ _ /[/2 + (/-l)(2/ + / + 2a+l)]

öA        i + j-l        J (i + j-l)2

thus this is an increasing function of / and /', and we can pick up

k= ij(i + j + 2a+l)
i + j-l

2n + 2a+l   ,
nL.

i=n,j=n 2"-1

To see that X is the best one, we can consider p„(x) = x" or a1 — (0, 0,

0,1). This completes the proof of the theorem.   D

For some special values of a, we have the following corollaries.
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Corollary 2.2. Let p„(x) £ Sn; then

(5) f (p'n(x))2dx < 2±±ln2 Ç p2n(x)dx

with equality when pn(x) = x" .

Corollary 2.3. Let p„(x) £ Sn; then

(6) Jlyn(x))2(l-x2)-x'2dx < ^-n2J pl(x)(\ -x2rx'2dx

with equality when pn(x) — xn .

Corollary 2.4. Let pn(x) £ S„; then

(7) /   ip'n W)2(l - X2)-X'2dx < ^«2 j ( p2n(x)(l - X2)-l'2dx

with equality when pn(x) - x" .

In the case a = 1, a similar result was proved by Varma [9] for polynomials
having real roots.

3. The weight co(x) = xae~x

We give a new proof of Milovanovic's Theorem [4] in this section. Indeed we

use the same argument as was used in the proof of Theorem 2.1. This time, we
consider the weight function co(x) - xae~x , a > -1, on the interval [0, oc).

Theorem 3.1. Let pn(x) £ Sn , a > -1 ; then

/•OO /-oo

(8) /   (p'„(x))2xae~xdx < Cn(a) /   p2n(x)xae-xdx
Jo Jo

where
C(a) = i l/[(2 + «)(l+«)]. -l<a<a„,

ifl2/[(2«+a)(2il + a-l)],        an<a<oo,

and
an = i(« + 1)-'[(17«2 + 2n+ l)1/2 - 3« + 1].

Moreover, Cn(a) is the best possible constant.

Proof. Let pn(x) = ¿Zl^o a¡x' > a¡>0, 0<i<n, then

,00 n     n .00

/    p2(x)xae~x dx = y^Taiüj       xi+i+ae~x dx

7 J:°
= ¿¿a,aA; = aT5a

(=0 j=0

where

r°°
bij = /   x'+J+ae-xdx = T(i + j + a+l),

Jo

B = (bu)o<i,j<n.
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And similarly, we have

n     n

/    (p'n(x))2xae-xdx = VV OidjCy = aTCa
Jo ~k~k

Í ijl

10,

i=0 j=0

where

ijY(i + j + a-l),        l<i,j<n,

i = 0 or j = 0,

C = (cij)o<i,j<n-

Therefore, we need to find the least X such that

Xbjj - Cij > 0,    for 1 < i, j < n.

That is, the maximum value of the function

W, j) := ¥ =by      (i + j + a)(i +j + a-l)'

Let k - i + j ; then

Uf(i,j)
(i + j + a)(i + j + a- 1)

i(k - i)
-.g(i,k).

(k + a)(k + a-l)

If we consider g as a function of two continuous variables i and k, then we

have
dg(i,k) k-2i

di (k + a)(k + a - 1)'

Therefore, g(i,k) takes on its maximum value at i = k/2 if we fix k (consider

it as a function of i alone). Now it suffices to consider the maximum value of

the function

h{k):=8(^k) = 4(k + a)fk + a-lY

Following the exactly same argument of Milovanovic [4, p. 425], we can see

that the best possible value of X is Cn(a). We omit the details. This completes

the proof.   D

Remark. The same idea also seems to work for other Lp norms when p is
an integer, but they become more and more complicated as p is bigger and
bigger. We will not formulate them here. However, for the Lx norm, the result

is simple.

Theorem 3.2. Let pn(x) £ Sn , a > -1; then

(9) /   p'n(x)xae-xdx<Xn(a)      pn(x)xae~xdx
Jo Jo

where
-1 <a<0,2   (   ï       J  1/(1+Q)'

Xn(a) = <
{ n/(n + a),

Moreover, X„ (a) is the best possible constant.

0<a<oo.
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4. The weight co(x) = e~axl

In this section we discuss the weight function co(x) = e~axl, a > 0, on the

whole real line. The corresponding result is the following theorem.

Theorem 4.1. Let p„(x) £ S„ , a > 0 ; then

(p'n(x))2e-*x dx < T—rn2 /    p2n(x)e-ax dx
-oo ^"        *        J — oo

with equality when pn(x) = x" .

Proof. Let p„(x) = ¿Z"=oaix' e S" '■>tnen

i:
p2n(x)e ax2dx = YU2aiaJbU = <?Ba

' i=0 ;=0

where
/»OO

bu=  /    xi+je~ax2dx
« ■ /•J — OO

= (1 -(-l),+/+1)(l' + /- l)!!2-C'+^2-1a-(,+>+1»/2^,

•^ — (bij)o<i,j<n •

and

/:
(p;(x))2e—2¿* = X) E a¡aJc'j =aTCa

' 1=0 j=0

where

/oo

-oo

= (1 - (-l)'+'+1)//(/ + / - 3)!!2-(/+^2a-('+J-1^2v/^,

r — (r~  \
^  — \Cij)0<i,j<n-

For i + ;' even, let

f(i,j):=£il = 2alJ_ 1 </,;<«;
"»7 * + J     i

then considering / as a function of two continuous variables i and y", we can

obtain

9i (i + j - I)2

and
9/(/,7)       2ai(i-l)   ^.       .     . ^ .    . ^

dj      = u + j-l)2 -0'     forl<'^<"-

Therefore, /(/, 7) attains its maximum value at i = n , j = n , which implies

the desired result.   D

Added in Proof. After this manuscript was written, the author learned that Pro-

fessor A. K. Varma [11] had written a paper on the same subject. There are

some overlaps between his results and our results in §§2 and 3, but we do use

different methods.
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