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AN ACCESS THEOREM FOR ANALYTIC FUNCTIONS

MARVIN ORTEL

Abstract. Suppose that Jl is an analytic manifold, m^^Jf, f : JÍ —> K ,
and / is analytic. Then at least one of the following three statements is true: (1)

mo is a local maximum of /. (2) There is a continuous path a : [0, 1] —> JH

such that fj(0) = mo , f ° a is strictly increasing on [0, 1], and a(\) is a

local maximum of /. (3) There is a continuous path a : [0, 1) —► J! with

these properties: <r(0) = mo; f o a is strictly increasing on [0, 1) ; whenever

K is a compact subset of J? , there is a corresponding number d(K) e [0, 1)

such that (7(f) g # for all t e [d(K), 1).

1. Introduction

Professor W. K. Hayman proposed the main theorem of this paper, and we
thank him for encouraging us to find a proof of it. This theorem is restated

below, using the technical terminology that is subsequently required, and all of

the relevant definitions are given in section 2.

Theorem 1.1. Suppose that Jf is an analytic manifold, mo £ Jf, f : JK —>R,
and f is analytic. Then at least one of the following statements is true:

( 1 )   mo is a local maximum of f.
(2) There is an (Jf, f) path a : [0, 1] -» JÍ such that o(0) = mo

and o (I) is a local maximum of f.

(3) There is an (Jf, f) path a : [0, I) —> Jf such that o(0) = mo and
Cluster!» = 0.

Theorem 1.1 has the following corollary in potential theory:

Suppose that JÍ is an open subset of W ; m§ £ JÍ ; f : Jf —» R ; and
f is nonconstant, analytic, and subharmonic. Then there is an (Jf, f) path
a : [0, 1) -> Jt such that er(0) = mo and Cluster» = 0. (Note that, by
definition, Cluster» is a closed subset of J(.)

This statement, which was previously at issue, is a sharpening of the access
theorem of Hornblower and Thomas for the special case of analytic functions

[H-T; H, pp. 779-784]. These results provide topological information pertaining

to the behavior of subharmonic functions near the boundary of their domains.

Received by the editors May 20, 1991 and, in revised form, March 28, 1994; originally commu-

nicated to the Proceedings of the AMS by Clifford J. Earle, Jr.
1991 Mathematics Subject Classification. Primary 26E05, 32B05, 32C05.
Key words and phrases. Real-analytic functions, analytic manifolds, singularities.

© 1995 American Mathematical Society
0002-9947/95 $1.00+ $.25  per page

2213



2214 MARVIN ORTEL

Theorem 1.1 also distinguishes between the topological features of C°° func-

tions and those of analytic functions. For a local distinction, note that there is

a C°° function / : R —► E with these two properties: (1) zero is not a local

maximum of /. (2) No (R, /) path begins at 0. For a distinction involving

global behavior, consider the following more complicated construction:

There is a C°° function f : R2 —> R that has the following two properties: (1)

Whenever m0 G R2, there is an (R2, /) path a : [0, 1)-»12 with o(0) = m0,

(2) If x is any (R2, /) path, then Cluster(r) Í 0.

The details of this construction will appear in [O].

The proof of Theorem 1.1 is organized as the eight statements of Theorem

3.1 (section 3). The first two of these statements concern local problems, in-

cluding the creation of an (Jf, /) curve originating at a point which is not

a local maximum of /. The remaining statements concern the selection of a

succession of (JH, f) curves whose concatenation will exit the manifold J?.

The local problems are easily solved by reference to the theory of singularities.

The selection process, however, is complicated by the fact that the cluster set of

an (Jf, f) curve may contain more than one point. Because of this, (Jf, f)
curves (which are usually constructed from integral curves of grad / ) must be

modified before they can be joined. Moreover, in order to guarantee that the re-

sulting concatenation will actually exit ^, the selection process must be based

on a certain minimum principle.

We acknowledge, with thanks, the referee's contributions to this work, which

led to several improvements. In particular, the referee gave us the precise ref-

erences (in the theory of semianalytic sets) which lead to the short proofs of

statements (1) and (2) in Theorem 3.1; our original proofs of these two state-

ments were based on the seminal paper [B-C].

2. Notation and terminology

Z is the set of integers, N = {n £ Z : n > 0} , R is the set of real numbers,

and R+ = {x £ R : x > 0}. An interval is a connected set of real numbers con-

taining more than one point. If / is a function, then dmnf = {x : (x, y) £ /}

is the domain of f and im/ = {v : (x, y) £ /} is the image of f. If f is a

function and S is a set, then f\ S = {(s, f(s)) : s £ S n dmn/} denotes the

restriction of f to S. The symbols f : A -* B signify that / is a function,

dmn f = A , and im / c B .
We use the following terminology when (S, x) is a topological space, A c S,

so £ S, and / : S -+ R : The symbols Clos A, Int A, and Bdry A denote,
respectively, the closure, interior, and boundary of A (with respect to t). An

open set containing So is called a neighborhood of so ■ The statement that So is

a local maximum of f means that f(u) < f(so) for all u in a neighborhood
Of 50.

A full discussion of analytic mappings between open subsets of real normed

vector spaces is given in [Fed]. The term analytic manifold is defined in [S, pp.

32-33]; thus, we explicitly assume that manifolds are second countable. If Jf

is an analytic manifold, then J£ isa countable union of relatively compact open

subsets of Jf ; also, the dimension of Jf is denoted dim Jf and we allow the
case dimJf = 0 (hence dim^# G N ). For the definition and general properties

of analytic functions and tensors on analytic manifolds, consult [He] and [S].
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By the imbedding theorem of Morrey [Mor], it is possible to construct an

analytic Riemannian metric on any analytic manifold Jf. Suppose that JÍ is

an analytic manifold and m —► (•, -)m is an analytic Riemannian metric on Jf .

Then we write (•, •) in place of (•, -)m , and we write dist(-, •) to denote the

corresponding distance function on J£ (with the underlying Riemannian metric

determined by context). If / : ̂ # —► R is analytic, then there is a corresponding

analytic vector field, grad/, on Jf such that (grad/(m), v) = df(m) • v

whenever m £jf and v is in the tangent space of Jf at m .

Suppose that Jf is an analytic manifold and V is an analytic vector field on

Jt. If I is an interval of R, y : I —> Jf is continuous, and y(t) — V(y(t)) for

all t £ Int I, then we say that y : I —> Jf is an integral curve of V ; under these

circumstances, y is analytic on IntZ. We say that y is a maximal integral

curve of V if y has the following two properties: ( 1 ) y is an integral curve of

V ; (2) If y is any integral curve of V and y (to) = y (to) for some to £ R, then

there is an interval J such that y = y\ J. If mo G JÍ and to £ R, then there is

one and only one y such that y is a maximal integral curve of V, to £ dmn y,

and y(to) = mo. If y is a maximal integral curve of V, then dmn y is an

open interval. If Jf is compact and y is a maximal integral curve of V, then

dmn y = R (see [L, Theorem 4, p. 65]). We say that a is a terminal integral

curve of V if there exist a, b, c, y such that -oo < a < b < c < +oo,

y : (a, c) —» J( is a maximal integral curve of V, and o = y | [b, c).

Assume that J? is an analytic manifold of dimension K. We say that

3S is an ¿M-ball if there exists mo £/, e g R+, and a coordinate system,

(p : U -> RK , such that m0 G U , <p(m0) = 0, {x £ RK : \x\ < e} c <f)[U], and
38 = {m G J? : \<j>(m)\ < e} . If Q is an open subset of ^#, mo, m» G Í2, and

Wo # m» , then there is an ^#-ball ¿$ such that mo G 3S c Closá? c £1 and
mi ^ Closá? ; moreover, if ^ = Bdryá?, then every continuous path from

mo to mx passes through 5?. If K = dxmJK > 0, / : Jf —> R is analytic,

and á? is an -#-ball, then ^ = Bdryá? is a properly imbedded submanifold

of JÍ with dimJ?" = A" - 1 [S, p. 43]; moreover, g — f\ 5e is an analytic
function and dg(s) = 0 if s £ S? and df(s) = 0.

Finally, in the following two definitions, we introduce the special technical

terms that appear in the statement and proof of Theorem 1.1.

Definition 2.1. We use the following terminology when Jf is an analytic man-

ifold and / : J? —> R is analytic.
( 1 ) We say that y : I —> ¿# is an (J?, f) path if I is an interval, y : I —► J?

is a continuous mapping, and / o y is strictly increasing on Z.

(2) If a, b £ R U {c»}, a < b, and y : [a, b) —* Jf , we define

Cluster(y)=    f|   Clos{y(t) : t £[s, b)}.
se[a,b)

(Thus, Cluster(y) is a closed subset of Jf .)

(3) If A c J(, we define the following sets of critical points and critical
values:

Cútpt(A ,f) = {a£A: df(a) = 0} ;

Critval(/1, /) = {f(a) :a£A and df(a) = 0}.
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(4) We say that (K„)z is an exhaustion of Jf if (K„)z is a family of compact

subsets of Jf, Kn = 0 if n < 0, 0 ^ K„ c lntKn+x  for all « G N, and

The initial empty sets appearing in an exhaustion are a convenience. Every

analytic manifold possesses an exhaustion.

Definition 2.2. When Jf is a analytic manifold, / : Jf —► R is analytic, and

(Kn)i is an exhaustion of Jf, we say that y w a Q', k) path for (Kn)z if the

following five conditions obtain:

( 1 ) There exist a, b £ R such that a < b and y : [a, b] —► •# is an

(,#, /) path.
(2) ;,fceN.
(3) y(a) G (IntÄ,-) ~ (Int *,■_,.) and   y(b) £ (lntKk) ~ (lntKk_x).

(4) f(y(b))£Cntval(Kk,f).
(5) If p GN, p <min{j, k}-3, a < a < ß < b, and {y(t) :t£(a,ß)}c

Int Zip , then y | (a, ß) is an integral curve of grad/.

For each n £ Z, let us refer to the set (IntK„) ~ (IntK„-X) as level n.

Thus, a (j, k) path y starts in level j and terminates in level k. Moreover,

/ increases along y and f(y(b)) is a critical value of / (although y(b) need

not be a critical point of /). Clause (5) of the definition refers to an arc of y
residing at least three levels below the initial and terminal levels of y : such an

arc is required to be an integral curve of grad /.

3. Proof of Theorem 1.1

Since every analytic manifold admits an analytic Riemannian metric, Theo-

rem 1.1 follows from statement (8) of the following Theorem.

Theorem 3.1. Suppose that Jf is an analytic manifold, f : Jt —> R is analytic,

and m —> (•, •) is an analytic Riemannian metric on J£ with corresponding

distance function dist(-, •). Then the following statements are true.

(1) If mo £ Jt and mo is not a local maximum of f, then there is an

(Jf, f) path y : [0, 1] -> .# with y(0) = m0.
(2) If E is a compact subset of Jf, then Critval(Zs, /) is a finite set. Con-

sequently, Critval(^#, /) is a countable set.

(3) Suppose that m £ J?, m $ Critpt(^#, /), and e > 0. Then there
exists 6 £ (0, e) such that the following statement is true: Ify : (A, B) —► Jf
is an integral curve of grad/, A < a < b < B, dist(y(a), m) < ô, and

e < dist(y(6), m), then f(y(b)) > f(m).
(4) If y : [a, b) —► Jf is a terminal integral curve of grad/ and m* £

Cluster(y), then m* £ Critpt (Jf, f).
(5) Suppose that e £ R+ and m* £ J(. For each n £ N suppose that

An <an < s(n) < ßn < Bn , yn: (An , Bn) —* Jf is an integral curve of grad/,

dist(y„(a„), m*) > e, dist(yn(ßn), m*) > e, and f(yn(ßn)) < f(yn+i(an+i)) ■

In addition, suppose that lim„Too yn(s(n)) = m*. Then m* £ Critpt^, /).

(6) Suppose that W is a compact analytic manifold, g :W —► R is analytic,
wq G W, and Wo $. Critpt(^, g). Let y* be the smallest critical value of g
which is greater than g(wo) (y* always exists). Then there is a (W, g) path

p:[0, 1] -> W such that p(0) = w0 and g(p(l)) = y*.
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(7) Suppose that a g R, (Kn)z is an exhaustion of J?, j £ N, m G

(Int AT;) ~ (IntZíy_i), m is not a local maximum of f, and there is no (^#, /)

path a : [0, 1) —» Jf with tr(0) = m and Cluster» = 0. Then there exists

b G (a, oo), k £ N, and y : [a, b] —» J( such that y(a) = m and y is a (j, k)

path for (Kn)z.
(8) Suppose that mo £ JH, mo is not a local maximum of f, and there is

no (Jt, f) path a : [0, 1] —► J? for which tr(Q) — mo and o(l) is a local
maximum of f. Then there exists an (JÍ, f) path y : [0, 1 ) —> Jf such that

y(0) = mo and Cluster(y) = 0.

Proof. (1) It suffices to prove the assertion in the case that n £ {1,2,...},

JÍ is a connected open subset of R" , {x £ R" : ¡jcj < 1} c J?, mo — 0, and

/(0) = 0.
The set W = {x £ Jf : f(x) ± 0, \x\ < 1} is semianalytic and relatively

compact in Jf. Therefore, W has only a finite number of connected compo-
nents (by [Loj, Proposition 2, p. 76]) and each of these components is semian-

alytic (by [Loj, Theorem 2, p. 69]). Therefore, since 0 is not a local maximum

of /, there is a set Q that has the following properties: D. is a connected com-

ponent of W ; 0 G Bdryfi; f(x) > 0 whenever x £ Q; Q is a semianalytic

set.
By the Bruhat-Cartan-Wallace lemma ([Loj, Proposition 2, p. 103]), there

is a function £, a number ö > 0, and a set k with the following properties:

£ : (0, 1 + S) -> Jf is analytic; limtio<i;(0 = 0; k c Cl; k is semianalytic;
and £1(0, 1] is a homeomorphism of (0, 1] onto k. Then, by a version of the

desingularization theorem ([Sus, statement (b), p. 443]), there exists a number

e > 0 and a finite sequence (y>)f=1 of functions such that y/j : (—1—e, 1+e) —>

Jf is analytic whenever j £ {1, 2, ... , J} and k = \JJj=i {y/j(t) : -1 < t < 1} .

It follows that 0 G Uy=i {V0(1)> ¥j{-v)}\ therefore, we may assume that

0 = '/'i(l) • Now define a(t) = y/x(l - t2) whenever t £ (-1, 1). Then a :
(-1, 1) -► Jf is analytic, o(0) = 0, and o(t) g Í2 whenever 0 < |i| < 1. Thus
/o o is analytic on (-1, 1), /o cr(0) = 0, /o a(t) > 0 whenever t £ (0, 1),

and there exists ß £ (0, 1) such that (foo)'(t) > 0 whenever t £ (0, ß]. The

required (Jf, f) path is defined by y (s) = o(sß) whenever 5 g [0, 1].

(2) Since Critpt(^f, /) is a semianalytic subset of J?, it is a locally finite

union of cubic images ([Sus, statement (b), p. 443]). It is immediate that / is
constant on each of these cubic images. Therefore, both parts of statement (2)

are valid.
(3) Fix m and e as in statement (3). For p g R+ define

G(p) s sup {| grad f(m')\ : m' £ Jf, dist(m, m') < p} ,

g(p) = inf{|grad/(m')| :m' £jf, dist(m , m!) < p} ,

A(p) = sup {|/(m') - /(m)| : m' G J?, dist(m, m') < p}.

Choose ex g (0, e) and ö g (0, e») such that

C7(ei)<°c,        g(ex)>0,        g(ex)2G(ex)-x(ex-ô)-A(ô)>0.

Now suppose that y : (A, B) —» JÍ is an integral curve of grad / and

A< a < b < B,    dist(y(a), m) < S,    e < dist(y(b), m),
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and define

t* = min{t £(a, b): dist(y(f), m) = e»}.

Then

e,-r5<dist(y»,y(/*))< /   \y(t)\dt=[   \gradf(y(t))\dt < (t* - a)G(ex)
Ja Ja

and

f(7(b)) - ma)) > mn) - ma)) = J' ^/wo) ¿*

= f (grad f(y(t)),y(t))dt = f \gradf(y(t))\2dt
Ja Ja

>g2(ex)(t*-a)>g2(ex)G(ex)-x(ex-â).

Therefore,

f(7(b)) - f(m) > [f(y(b)) - f(y(a)) ] + [f(y(a)) - f(m) ]

> [f(7(b)) - ma)) ] - A(S) > g2(ex)G(ex)-x(ex - Ó) - A(S) > 0.

(4) We assume that m* £ Critpt(^#, /) and argue to a contradiction.

Since Cluster(y) is not empty, the local existence theorem for integral curves

implies b = oo [L, Theorem 4, p. 65]. Since / o y is strictly increasing on

[a, oo), it follows that f(y(t)) T f(m*) as t } oo.

Now we prove that lim,^ y(t) = m*. If this is not the case, we can construct

e G R+ and sequences »)n, (¿>„)n that has the following three properties:

(1) an < bn < an+x < bn+x for all n £ N; (2) lim„Tooy») = m* ; (3) e <

dist(y(è„), m*) for all n £ N. Therefore, since m* £ Critpt(^#, /), Theorem

3.1 (3) implies that f(y(bn)) > f(m*) for all suitably large n £ N. But this
contradicts the conclusion of the preceding paragraph.

Since limiToo y(t) = m*, we have

lim | grad/(y (i))| = |grad/(m*)|
/Too

and

lim/(y(i))-/(y») = lim f \ grad f(y(s))\2 d s = f(m*) - f(y(a)) < oo.
'Too tlocJa

But this is impossible unless grad/(m*) = 0.

(5) We assume that m* $. Critpt(^#, /) and argue to a contradiction.

Since m*   £  Critpt(^#,/), we can choose ô £ (0, e)  corresponding to

m* = m as indicated in Theorem 3.1 (3). There exists N G N such that

dist(y„(j(«)), m*) < ô whenever n > N. Therefore, by Theorem 3.1 (3),

f(7n(ßn)) > /(m*) whenever n> N. But for each n £ N we have

f(yn(ßn)) < f(yn+x(an+x)) < f(yn+x(s(n + 1))) < f(yn+x(ßn+x))

<lim/(y,(í(/c))) = /(m*).
«Too

(6) The number v* exists because W is compact: indeed, the global maxi-

mum value of g is a critical value of g greater than g(wo) and g has only a

finite number of critical values (by Theorem 3.1 (2)).
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The proof of the main statement is by induction on J = dim(W). The

statement is true when / = 0 because, in that case, every point of W is a

critical point of g. We assume that the statement is true when / = Jo G N

and that W, g, wo , and y* meet the hypotheses of the statement in the case

J = Jo + 1. Since W is compact, there is an analytic map y : (-00, oo) —>W

which is a maximal integral curve of grad g with y(0) = i/Jo . Then Cluster(y) ^

0 (since W is compact). Choose m* g Cluster(y). Then m* G Critpt(^r, g)

(by Theorem 3.1 (4)).
There are two possibilities: (1) limiToo y(t) = m* ; (2) lim^^ y(t) does not

exist.

If limnooy(t) = m*, define a : [0, 1] -> W by the rules a(t) =
y(t/l - t), for t G [0, 1), and o(l) = m*. Then g(w0) = g(tr(0)) < g(o(l)) £
Critval(^, g). Therefore, g(wo) < y* < g(o(l)), and we may form p by

shortening o.

If lim^oo y(t) does not exist, we may choose m** G Cluster(y) with m* ^

m**. Let ^ be a ^"-ball with m* £ & and m** £ Clos«^. Set ^ =
Bdryá?, and define g = /|^. Then S? is an analytic manifold of di-

mension Jo and g '■ & —* R is analytic. Moreover, there is a monotone

sequence (i„)N such that linintoc i„ = oo, y(tn) £ S? for all n £ N, and

lim„Tooy(i'«) = s* £ S?. Hence, Jo > 0 and 5* G Critpt(¿?\ g) (since 5* G

Critpt(^, g) ). Also g(s') = lim„îoo £(y(í„)) = lim„îoo /(y(í„)) = /(m*), and

(g(ï(tn))N is an increasing sequence. Therefore, there exists N £ N such that

y(tN) i Critpt(^, g), and g(y(tN)) > max {y g Critval(^, g) : y < g(s*)} .
By the inductive assumption, there is an (5?, g) path a : [0, 1] —► 5? with

(7(0) = y(tN) and *(ct(1)) = min{y g Critval(^, g) : y > g(y(tN))} = g(s*) =

f(m*). Now define /í(í) = y(2ttN) for ? g [0, 1/2] and p(t) = o(2t - 1) for
t G [1/2, 1]. The path p has the required properties.

(7) We may assume that a = 0. Using Theorem 3.1 ( 1 ) and (2), we construct

an (Jf, f) path t : [0, 1] -► ,# such that t(0) = m , t(1) £ Critpt(^, /),
and {x(t) : t £ [0, 1]} c (IntZi,) ~ ZC7_2. Let p : [1, c) -> ,# be a terminal

integral curve of grad/ with p(l) = t(1) . Define o(t) = x(2t) for / G [0, 1/2]

and o(t) = p(s(t)) for t £ [1/2, 1), where 5 : [1/2, 1) —> [1, c) is any home-
omorphism. By our present hypotheses, we conclude that 0 ^ Cluster» =

Cluster(p). Therefore c = oo [L, Theorem 4, p. 65].

Choose m* G Cluster(p). Let k £ N satisfy m* G (IntZífe) ~ (lntKk_x).
Then m* G CritptiÄ^, /) by Theorem 3.1 (4). There are only two possible

cases: (1) lim,Too p(t) — m* ; (2) lim(too p(t) does not exist. Our proof covers

these cases separately.

Suppose that limitoo p(t) = m*. Let 3§ be an .^f-ball such that m £

Clos^" and m* G ̂  c Clos^ c (Int Kk) ~ Zc¿._2. Set

t* = max{i g [1, oo) : p(t) £ Bdry^"}.

Define y : [0, t* + 1] -► JÍ as follows: y(?) = x(t) for f G [0, 1] ; y(t) = p(í)

for t £ [1, /•] ; y(/) = p(i* + •££■-;) for r € [t*, t* + 1); y(t* + 1) = m*. Note
the following three properties of y :

(i)   {y(t) : t G [0, 1]} c {t(0 : t £ [0, 1]} c (IntZÍ,) ~ Kj-2 ;
(ii)   y | [1, t*] = p | [1, t*] is an integral curve of grad/;

(iii)   \y(t) : t £ [t*, t* + 1]}   =   {m*} U {p(í):í G[/*, oo)}   c   Clos^   c

(IntZCfc) ~ Kk_2.
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With attention to the condition p < min {j, k} - 3 in Definition 2.2 (5), we

conclude that y : [0, t* + 1] -+ •# is a (j, k) path for (K„)z with y(0) = m .
Suppose that lim<Too p(t) does not exist. Then we can choose m** G

Cluster(p) with m** -^ m*, and we can construct an ^#-ball á? satisfying

the following three conditions: m g Clos^ ; m* G ̂  C Clos^" c (lntKk) ~

Kk_2; m** ^ Clos^". Consequently, there is a sequence (í„)n such that

t„ î oo as m î oo, p(f„) G Bdry^ for all n £ N, and lim^oo p(t„) =

s* £ Bdry^. Therefore f(s*) = lim„Too/(p(i„)) = lim,Too/i>(0) = /(m*).
Also, because s* £ Cluster(p) and because of Theorem 3.1 (4), we conclude

s* £ Qritpt(Jf, /).
Define g = f\ Bdry^1. Then g : Bdry^" -* R and g is analytic. More-

over, since s* £ Critpt(^#, /), we have s* £ Critpt(Bdry<^!, g) . The set

Critval(Bdry^', g) is finite because Bdry^1 is compact. Therefore, because

the sequence (g(p(tn)))\s is strictly increasing, we may choose N G N so that

p(tN) $ Critpt(Bdry^', g) and

g(s*) = min {y G Critval(Bdry^, g) : y > g(p(tN))}.

By Theorem 3.1 (6) there is a continuous mapping p : [0, 1] —► Bdryá? such

that gop is strictly increasing on [0, 1], p(0) = p(ín) , and g(p(l)) = g(s*)-

f(s*) = f(m"). Now we define y : [0, tN + 1] -» Jf as follows: y(t) - x(t) for
/G[0, 1]; y(t) = p(t) for t £ [l,tN]; y(t) = p(t - tN) for t£[tN,tN + l].

Note the following three properties of y :

(i)   {y(t) : î G [0, 1]} = {t(0 : t £ [0, 1]} c (IntKj) ~ ^2 ;
(ii)   y | [1, tN] = p | [1, tN] is an integral curve of grad/;

(iii)   {y(í)»'e[íA,/A+l]} = {p(t):t£[0,l]} c Bdry^ c (Int**) ~

Kk-2-

With attention to the condition p < min {j, k} - 3 in Definition 2.2 (5), we

conclude that y : [0, tN + I] -> J? is a (;', k) path for (Zi„)z with y(0) = m .
This completes the proof of Theorem 3.1 (7).

(8) We shall assume that statement (8) is false and argue to a contradiction.

Therefore, we explicitly assume that the following three statements are valid:

(8.1) mo is not a local maximum of /,

(8.2) Whenever y : [a, b] -» Jf is an (JÍ, f) path with y(a) = mo, then
y(b) is not a local maximum of /,

(8.3) Whenever y : [a, b) —» Jf is an (J?, f) path with y(a) = mo , then
Cluster(y) ^ 0.

Let (Kn)z be an exhaustion of Jf ; all (;', k) paths in this proof will be

constructed for this exhaustion.

Now we construct three sequences, (/¡)n , (/c„)N , and ( y„ : [an, b„] —> Jf )n ,

that have the following four properties (note that (iv) is a minimality condition):

(i) y„ : [a„ , b„] — Jf is a (j„ , k„) path for all n £ N.
(ii) y0(a0) = m0 .

(iii) b„ = an+x and y„(b„) = y„+1(a„+i) for all n £ N.
(iv) If « G N, p g N, and p < /c„ - 1, then there is no (j„ , p) path whose

initial point is yn(an) ■

The construction is by induction. By (8.1), (8.3), and Theorem 3.1 (7), we

can construct a (j0, ko) path y0 : [a0, b0] -> J? with yo») = mo and with

/Co as small as possible. Suppose that the construction has been carried out

for all n < N g N.   Then yN(bN)  is not a local maximum of /; because,
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otherwise, the concatenation of yo, yx, ... , y# would end at a local maximum

of /, which would contradict (8.2). Also, every (Jf, f) path beginning at

y(bu) has a non-empty cluster set; because if x : [bx, b) —» JK is an (J?, f)

path with x(b^) = yjv(-^v) and Cluster(i) = 0, then the concatenation of

yo. 7\ > • • • > 7n , ? would also have an empty clusterset, which would contradict

(8.3). Thus, by Theorem 3.1 (7), we can construct the required objects for

n = N + 1 (with /Cjv+i as small as possible). The construction is complete.

Now set [a, b) = U«6n [a>> > °n] and define y : [a, b) -+ Jf so that y| [a„ , b„]

= y„ for all n £ N. Trien y is an (Jf, /) path. Also, Cluster(y) ^ 0 because

y is an (^#, /) path with y») = mo. Choose m* £ Cluster(y). Let k* g N

be such that m* g (IntZí^.) ~ (lntKk._x). Let 3§ be an Jf-oaf\. such that
m* G âS c Clos^ c (IntZí¿.) ~ Kk._2 .

Since the set Critval(Zífc.+3, /) is finite, since f(y(b„)) £ Critval(Ä)t,,, /)

for all « G N, and since f(y(bn)) < f(y(bn+x)) for all n £ N, we conclude

that only a finite number of terms from the sequence (y(bn))n lie in Kk.+i.

Therefore,
(v) y(a„),y(b„) £ Kk.+3  if n is sufficiently large.
Since m* G & c Closá? c (IntZÍ*..) ~ Zi^._2 and m* G Cluster(y), there

exist sequences (tf(«))N and (j(«))n that have the following properties:

(vi) q(n) £ N and q(n) < q(n + 1) for all n £ N.
(vii) s(n) £ (aq(n), *,(„-,) for all « G N.

(viii) y(s(n)) £ & c (IntZi^.) ~ Zv^._2 for all « G N.

(ix) lim„Too y(i(«)) = m*.

Because of (v), we can also require that

(x) y(aq(n)), y(bq{n)) i Kk.+i and   jq(n), fc,(#l) > k* + 3   for all n £ N .
It follows from (viii) and (x) that y(s(n)) £ & and y(aq(„)), y(bq^) £

QXosSS for all n £ N. Therefore, we can construct sequences (o„)n, (A\i)n

that have the following property:

(xi) Whenever n £ N, we have ¿z9(„) < a„ < s(n) < ßn < bq(„) as well as the

inclusions {y(t) : an <t < ß„} c & and y(a„), y(ß„) £ Bdryá? .

Recall that y\ [aq^n),bq{n)] - y?(n) is a (jq(n),kq(n)) path for each n g N.

Moreover, /c* < min {jq(n), K(n)} ~ 3. Therefore, y| (A„,B„) will be an

integral curve of grad/ if « G N and both a„-^„ and B„-ß„ are sufficiently

small positive numbers. Therefore, we can construct sequences (A„)®, (Bn)®

that have the following properties:

(xii) aq{n) <An<an< s(n) < ß„ < B„ < bq(n) for all n £ N.

(xiii) y | (An , Bn) - y?(„) | (An , B„) is an integral curve of grad/ for each
n £ N.

Set e = (l/2){dist(m*, Bdry^)}. By (ix) and (xiii), the hypotheses of
Theorem 3.1 (5) hold with this choice of e , and we conclude that

(xiv) m* G Critpt(^r, /) n Kk. = Critpt(Zí¿., /).
Set W = Bdry^ and g = f\ W, and note that y(ß„) £W for all n £ N.

Since g(y(ßn)) < g(y(ßn+\)) for all n £ N and since Critval(^", g) is a

finite set, there exists /V e N such that g(y(ß„)) i Critval(2F, g) for all

n > N. If y* is the smallest critical value of g greater than g(y(ßN)) • then

y* > lim„Too^(y(y?„)) = f(m*). By Theorem 3.1 (6), there is a (3T, g) path

p : [0, 1] -> W such that p(0) = y(ßN) and g(/i(l)) = y* > f(m*). By
shortening p we may assume that g(p(l)) - f(m*). Also, p is an (Jf, f)
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path. Therefore, the following statement is true:

(xv) There is N g N and an (Jf, /) path ft : {0, 1J —» Jl such that
y(ßN) = p(0), {p(t) : t £ [0, 1]} C Bdry^ c (lntKk.) ~ Kk._2 , and f(p(l))
£ Critval(^, /).

Finally, to produce the contradiction, let N and p be as specified in (xv)

and construct the path Y : [aq(N), ßN + 1] —> Jf defined by

T(t) = I 7"{N)^       f°r ' e ^aq(N) ' ß^ '

\p(t-ßN)   for t £ [ßN, ßN + I].

Also, let K £ N be the unique integer such that T(ßN + I) £ (IntZCK) ~

(IntZCK_i). We prove the following three statements:

(xvi) k = k* or k = k* - 1 ; k = min {jq(N), k} < k*; T is a (jq(N), k)

path with initial point yq(N)(aq(N)) ■

The first statement follows from the fact that Bdry^ c (IntZC^.) ~ Kk._2
(see (xv)). The second statement now follows from (x). It is immediate that Y

meets Definition 2.2 (l)-(4). Thus, with attention to Definition 2.2 (5), suppose

that

PGN,     p</c-3,     aq(N) <a< ß <ßN+ 1,     {T(t) : t £ (a, ß)} eint Kp.

Since {T(t) : t g [ßN, ßN + 1]} c (Int **•) ~ Kfr-2 and p < k - 3 < k* - 3,
we conclude aq(N) < a < ß < /?# • Therefore T\(a, ß) = yq^N) \ (a, ß). Since

p<K-3</c*-3, since k* - 3 < min { jq(N), kq(N) } - 6 (by (x)), and since

yq(N) is a (jq(N)> kq(N)) path, it follows that T\(a, ß) is an integral curve of

grad/. So T meets Definition (2.2) (5) and the proof of (xvi) is complete.
By (iv), there is no (jq(N), P) path with initial point yq(N)(aq(N)) and p <

kq(N) ■ By (xvi), T is a (jq(N), k) path with initial point 7q(N)(ctq(N)) ■ There-
fore,

But, by (xvi) and (x), we also have

kq(N) < K.

k < k* < kq(N) - 3,

which is our contradiction.
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