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THE CONNES SPECTRUM OF GROUP ACTIONS
AND GROUP GRADINGS FOR CERTAIN QUOTIENT RINGS

JAMES OSTERBURG AND XUE YAO

Abstract. Let H be a finite-dimensional, semisimple Hopf algebra over an

algebraically closed field K where H is either commutative or cocommutative.

We let A be an //-module algebra which is semiprime right Goldie. We show

that the Connes spectrum of H acting on A is the Connes spectrum of H

acting on the classical quotient ring of A. In our last section, we define a

symmetric quotient ring and show that the Connes spectrum of the ring and its

quotient ring are the same. Finally, we apply our results to finite group actions

and group gradings.

1. Introduction

This paper basically concerns finite group actions and group gradings, and

we use a Hopf algebra setting to provide a unified proof of both situations. We

begin by discussing some special cases of our results. Let K be an algebraically

closed field; and assume A is a semiprime, Goldie AT-algebra with quotient

ring Q. Let G be a finite group that acts as AT-automorphisms on A, where

the order of G is nonzero in AT, or let G grade A. Then G acts as K-

automorphims on Q or G grades Q. It is clear that the action or the grading

of G on A is very similar to the action or the grading of G on Q. These

situations have been studied in several papers.

From [OPQ], the Connes spectrum of a group action consists of certain ir-

reducible representations of G and the Connes spectrum of a group grading

consists of certain group elements of G. In broad terms, the Connes spectrum

of a group action or a group grading is a measure of the amount of the action or

the amount of the grading. A major purpose of this paper is to prove that the

Connes spectrum of G acting on A is the Connes spectrum of G acting on Q

and to show the Connes spectrum of a G grading A is the Connes spectrum of

G grading Q. This precisely quantifies the feeling that the action or the grading

of G on A is very similar to the action or the grading of G on Q.
_
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We are able to extend our results to cocommutative or commutative Hopf

algebra actions. In fact, a consequence of Theorems 2.5 and 2.8 is

Theorem A. Assume H is a finite-dimensional, semisimple Hopf algebra over

an algebraically closed field K. Let H be either commutative or cocommuta-

tive. Let A be a semiprime H-module algebra with identity. Assume A is a

semiprime right Goldie ring with quotient ring Q. Then the Connes spectrum of

H acting on A is the Connes spectrum of H acting on Q. Furthermore, the

smash product A#H is prime if and only if Q#H is simple.

There are advantages to working in the classical quotient ring. For example,

the hereditary subalgebras of Q are of the form eQe, where e2 = e and e

is fixed under the action of H. In the group action case, the Connes spectrum

is full precisely when the action of G is Galois on each hereditary subalgebra.

This is called an hereditarily saturated action in [Ph]. We extend this notion to

Hopf algebra actions in Theorem 2.9.
We let A be a commutative domain with a finite group G acting on A.

We let W be the subgroup of G that acts trivially on A. We show that the

Connes spectrum of G acting on A is the irreducible representation of G/ W.

Thus the Connes spectrum consists of the trivial representation if and only if

the action of G on A is trivial and the spectrum is full precisely when the

action is faithful. This result is not true for matrix rings over A , see [OP2].

For Goldie rings, a major difficulty in the general Hopf case is extending the

action of H to the quotient ring. In the second part of this paper, we study a

Martindale type of quotient ring where the action can always be extended. By

[MS, Theorem 3.9] the action can be extended to this quotient ring when the

antipode is bijective. Thus for commutative or cocommutative Hopf algebras,

the action on A can be extended to the //-symmetric quotient ring of A, Qh.

See also [C, M2]. A consequence of Corollary 3.4 is

Theorem B. Let H be a finite-dimensional, semisimple commutative or cocom-

mutative Hopf algebra over an algebraically closed field K. Let A be an H-

module algebra, and assume A is an H-semiprime ring. Then A#H is prime

if and only if Qh#H is prime.

We conclude by applying our results to finite-dimensional pointed cocommu-

tative Hopf algebra actions. In this case, Qh{A) = Q{A), where Q(A) is the
symmetric quotient ring. See [MS, Example 3.5]. As is well known, cocommu-

tative Hopf algebras over algebraically closed fields are pointed, see [MS, §5.6].

So the next result follows easily from Theorem B.

Theorem C. Let H be a finite-dimensional, semisimple cocommutative Hopf

algebra over an algebraically closed field K. Let A be an H-module algebra,

and assume A is an H-semiprime ring. Then A#H is prime if and only if Q#H

is prime.

Because group algebras of finite groups are pointed cocommutative Hopf al-

gebras, the above result basically extends a result of D. S. Passman [P2, Theorem

15.9]. See also Corollary 3.5 below.

2. Hopf algebra actions on Goldie rings

We will briefly introduce the Connes spectrum for a Hopf algebra action, but

the reader is referred to [OPQ] for more information. We let H be a finite-



THE CONNES SPECTRUM OF QUOTIENT RINGS 2265

dimensional Hopf AT-algebra, where K isa splitting field of H. We assume H

is strongly semiprime, as in [OPQJ. In particular, strongly semiprime algebras

are semisimple. Let A be an //-module AT-algebra with identity. We denote

the action of h e H on a e A by h • a. Let J be a nonzero ideal of the fixed
algebra AH, where

A" - {a € A | h • a - e(h)a for all h € //}.

Any subalgebra of the form JAJ is called a hereditary subalgebra of A. By

[OPQ, Lemma 4.5], if A is //-semiprime and B is of this form, then B reg B,
which means that the left and right annihilators of B in B are zero. Note

that H acts on any matrix algebra over B by acting on the coordinates, i.e.

h.(bi,j) = (h'birj).
Let ti : H —» Mjx (K) be an irreducible representation of H. We denote the

set of irreducible representations of H by Irr(//). Let S be the antipode of

H and e denote the counit. We use the summation notation. The following
definitions are the central ones.

B? = {Xe Mdn{B) | e(h)X = £n{h){h ■ X)n(S-l(h2))},
(h)

Bl±{XeMdK(B)\mx*'En(hi)(ñi'X)},

Brn = {Xe Md,(B) | e(h)X = £(A, • X)n{S-\h2)) },
(h)

where the right-hand formulas hold for all h e //. As is shown in [OPQ], B%

is a ring and BlnBrn is a two-sided ideal of this ring. We define the Connes

spectrum of H on A to be

CS(A ,H) = {ne Itt(H) | B'nBrn reg B™ for all B }.

Paper [OPQ, Theorem 1.6] goes on to prove that the smash product A#H is

prime precisely when A is //-prime and CS( A, H )=Irr( H ).
We let e denote the principal idempotent of H. In other words, Ke is

the complement of the kernel of the counit. We let Tr(a) = e • a and note

Tr : A -* AH. If A#H is semiprime, then Tx(R) ^ 0 for any nonzero //-stable
right ideal R of A. See [OPQ, Propostion 4.3].

Our next result is similar to unpublished results of D. Fischman. Our proof

is modeled on [P2, Theorem 26.9]. Let us note that if A is semiprime and H

is strongly semiprime, then A#H is semiprime, by definition.

Theorem 2.1. Assume H is a finite-dimensional, strongly semiprime Hopf al-
gebra over a splitting field K. Let A be a semiprime H-module algebra with

identity. If A is a right Goldie ring , then AH is a right Goldie ring. Further-
more, if every essential right ideal of A contains an essential H-stable right ideal

of A, then the classical quotient ring of A, Q(A), is AT"1, where T is the

set of regular elements in AH and Q{AH) = Q{A)H.

Proof. We assume A is Goldie. Since AH ç A C Q(A) and Q{A) satisfies the
maximum condition, we can conclude that AH satisfies the maximum condition

on right annihilators of A. Let R\ -i-V Rn be a direct sum of right ideals of

AH . Then R¡A for 1 < i < n is certainly an //-stable right ideal of A .
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Now

Tt(R¡a n y" R¡A) ç (Ri n V Ri) = 0.

Thus RiA n Y^jti RJA = 0 by [OPQ, Lemma 4.3]. We have shown that AH is

right Goldie.
To show Q(A) = AT'1 we verify the conditions of [P, Lemma 26.8] hold.

To this end, let t e T. We show tA ess A or tA is essential in A. Since A is

Goldie, this is equivalent to showing t is regular in A [GW, Proposition 5.9].

Let L be the left annihilator of / in A. Then L is an //-stable ideal with
Tr(L) = 0 and so L — 0. Similarly the right annihilator of t is zero. Thus t

is regular in A.
Let E be an essential right ideal of A with Ë an essential //-stable right

ideal of A contained in E. We will show E n T ^ 0. This will follow if
we show E n AH ess AH, since AH is Goldie and E n AH ç E n AH. Let
0 ¿ W be a right ideal of .4", then WM n £ ¿ 0. So 0 # Tr(WA n E) c
WAH n Tr(£) ç W n (£ n ^H). Thus £ n ^ ess yl" , so £nI/0. Thus the
conditions of [P2, Lemma 26.8] hold .   □

Extending the action of H to Q{A). We extend the action of H from A to

AT~X as follows:
h ■ (arx) = (h ■ a)rx

for a e A , t e T, and h £ H. In fact, this is the only way to extend the action.

To see this, let □ be an action of H on A T~ ' such that hBa = h-a for aë/4

and h G H. Let /e 7\ then e(/z)l = A-l =/!□(«-') = £(a>(ai Bt)(h2Brl) =

Y,{h)e(hi)t{h2Brl) = ¿(AHr1). Thus we have shown hBrx =e(/z)r' . Hence

for aeA, hB{at-x) = Y,(h){h-a){t-x).

When Q(A) = AT~X. Let // be as in Theorem 1, and assume A is semiprime

Goldie and an //-module algebra. Then if the classical quotient ring of A is

AT~X , every essential right ideal E of A contains an //-stable essential ideal

E. To see this, note E contains a regular element s e A. So i"1 = at~x for

some a e A, t e T. Thus tA ç s A ç E and Z>4 is //-stable since t e AH.
The next two lemmas concern the passage between hereditary subalgebras of

A and Q(A) and the components of the Connes spectrum.

Lemma 2.2. Let A be a right Goldie ring with quotient ring Q{A), and assume

the other hypotheses of Theorem 1 hold. Then:

(1) If J is a nonzero ideal of AH,  then J = JT~X  is a nonzero ideal of

Q{A)H.
(2) Let A be semiprime, Goldie with quotient ring Q(A). Let 0 ^ J be an

ideal of Q(A)H. Then J = J n A is a nonzero ideal of AH .

(3) If B = JAJ and B = JQ{A)J,  then B CÊ.
(4) Let s,t £T; then t(Ê'n)s C Bln, and t{B'n)s ç Bln,   t(Ê^)s C Brn and

t{Brn)s ç Brn and t(Ê»)s ç B% and t{B™)s ç B™.

Proof.    ( 1 ) See [GW, Theorem 9.17(b)].
(2) See [GW, Theorem 9.17(a)].

(3) This follows because J cJ.
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(4) These follow because J and J are ideals and the definitions of BlK,
Brn , and J5™.    G

Lemma 2.3. Assume H is a finite-dimensional, strongly semiprime Hopf algebra

over a splitting field K. Let A be an H-semiprime H-module algebra with

identity. Let n : H -» Mdn(K) be an irreducible representation of H.

(1) Let J be a nonzero ideal of AH, and let B = JAJ. Then B% is nonzero

and semiprime. Thus the left and right annihilators of B'nBrn in B™ are equal.

(1) Assume A is right Goldie with quotient ring Q. Let J be a nonzero ideal

of QH, and let B = JQJ. Then B™ is nonzero and semiprime. Thus the left

and right annihilators of BlnÊrn in B™ are equal.

Proof. We will just prove (1), because the proof of (2) is similar. To begin, J1

when viewed as diagonal matrices is contained in B™ and thus B™ ̂  0. Now

B is semiprime and B#H is semiprime by [OPQ, Proposition 4.3 and Lemma

4.4]. Thus (B#H)H is semiprime by [OPQ, Proposition 4.3], but (B#H)H ~

© ¿7teirr(//) B% by [OPQ, Lemma 2.5 and Lemma 5.2]. Since a direct summand

of a semiprime ring is semiprime, the proof is finished.   D

The consequences of the next result are some of the main results of this

paper.

Theorem 2.4. Assume H is a finite-dimensional, strongly semiprime Hopf al-

gebra over a splitting field K. Let A be a semiprime H-module algebra with

identity, such that A is a right Goldie ring. Assume that every essential right ideal

of A contains an H-stable essential right ideal. Then CS{A, //) = CS(^4, H) =
CS(Q{A), H), where Q{A) is the classical quotient ring of A.

Proof. Let Q = Q{A). Assume n £ CS(ß(yi), //) ; so by Lemma 3 there is a

Ê = JQJ with J ¿ 0 an ideal of QH, such that ann6mÊlnÊrn / 0. Denote this

annihilator by X, and let 0 / z e I.
Since QH is semisimple, there is a central idempotent / g Qh such that

J = QHf We let J = J n A and note there is a t e T such that 0 ¿ ft =
tf G J. Thus by Lemma 2 and the regularity of t, we have that 0 ^ tz e B™

and note that tz is a matrix with entries from JQf. Say tz = (q¡jf) with

Qijf = Y^kJkQk-' where j^ G J, q% G Q. The entries q£ have a common
denominator s e T ,by [GW, Lemma 9.2(b)]. Thus q¡jfs G JA.

Now we consider tzst and note it is nonzero because st is regular. But

tzst = ([qlJf2]st) = ([qlJfs][ft]).

Note we have used that / commutes with s, t e T ç QH. Since q¡jfs G JA

and ft G J, we see that 0 ^ tzst e B™ .

Now by Lemma 2, B'Bi c Ê'ÊL and so

tzstB'nBrn ç tzÊlKBrn = 0.

Thus n $ CS{A,H).
Conversely, we assume % £ CS(A, //). So by Lemma 3, there exists 0^7

an ideal of A" such that if B = JAJ, then Z = annB^BlnBrn ̂  0.   Let

0/zeZ.
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Let J = JT~X and B = JQ(A)J. Then by Lemma 2, B is a hereditary

subalgebra of Q(A). Let x e BlK and y e Brn. There is an sei such that

xs g 5¿ and s-'y eîj, by Lemma 2. Now find t g F such that s~xyt G 5£ .
Then

xyt m [xs][s'xyt] G B'nBrn.

Since z annihilates this from the left and t is regular, we have zxy = 0. Thus

ann¿mÍ?i/?£ ^ 0 and hence 7t £ CS(ß(/i), //).    D

The above result will provide a single proof of the equality of the Connes

spectra for commutative and cocommutative Hopf algebra actions after we ver-

ify the hypotheses of Theorem 2.4 for these actions. We do this in the following
result, and we use the structure theory of semisimple, commutative, or cocom-

mutative Hopf algebras.

Theorem 2.5. Let H be a finite-dimensional, semisimple Hopf algebra over a
splitting field K. We assume H is either commutative or cocommutative. In

the cocommutative situation, we assume K is a perfect field. Let A bean H-
module algebra with an identity that is a semiprime, right Goldie ring. Then

CS(/i, H) = CS(ß(^4), //), where Q{A) is the classical quotient ring of A.

Proof. In both cases, we must show two things. The first is that commutative

and cocommutative Hopf algebras are strongly semiprime and that an essential

right ideal of A, E contains an //-stable, essential right ideal E. We denote

Q(A) by Q.
Step 1 (the graded case). Let H = KG*. Because E is essential, there is

a regular element s e E [GW, Proposition 5.9]. But ß = AT~X where T

consists of the regular elements of A\ [CR, Theorem 1.7]. So s~x = at~x for

t G T, a G A. Thus tA C saA ç E and tA is essential because / is regular in

A [CR, Corollary 1.18]. Since t G Ax, we have tA is H = KG*-stable.
Step 2 (// is commutative). By [M3, Theorem 2.3.1] H = KG*. Thus Step

1 shows essential right ideals contain //-stable essential right ideals. Also H is

strongly semiprime by [P2, Theorem 4.8].

Step 3 (// = KP*#KG). The characteristic of K is p > 0, P is a finite
p-group, and U = KP*. So U is the dual of a group algebra. Also G is a finite

group with p\\G\ and V = KG. So F is a group algebra and H = U#V. We
will show the condition on essential ideals holds by using the following ideas

from [C]. Let / be a right ideal of A , and define

(/ : H) = {a e A\h • a G / for all h G H}.

It is easily checked that (/ : //) is a //-stable right ideal of A and (/ : H) ç /,
since a = 1 • a e I. It is also easily checked that ((/ : U) : V) = (I : H).

Let E be an essential right ideal of A. Then by Step 1, E' C E where E'
is an {/-stable essential right ideal. But E' c(E : U). So (E : U) is fZ-stable
and essential as a right ideal.

Now E" = f]geG[(E : U)]g is essential, since G is a finite group. We note

E" ç {{E : U) : V) since E" is F-stable. Thus N = ((E : U) : V) is essential.
Since N = (E : H), we have shown that essential right ideals of A contain

essential //-stable right ideals.
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Step 4 (K perfect, L a finite field extension of K). We know that L is

separable. Thus H = H ®K L is semisimple [PI, Theorem 7.3.9] and L splits
H.

Let Ä = A ®k L, which we show is semiprime, Goldie by proving Ä is a

right order in ß = Q®kL [GW, p. 87]. We begin by noting ß is semisimple,

since L is perfect. We let x G Ä be regular and assume x is a zero divisor

in Q. Say xy = 0 for 0 ^ y G ß. Then by [GW, Lemma 5.1] there is b
regular in A such that Q ̂  z = y(b®\) e Ä. Thus x is not regular in Ä. This

contradiction shows x is regular in ß, but regular elements are invertible in

semisimple rings.

Next we must show that if q G ß, then q - ab for ä G ^ and some

regular ¿ g ^4. But this follows from [GW, Lemma 5.1]. Thus Ä is a right

order in ß and so by [GW, Theorem 5.10] Ä is a semiprime, Goldie ring.

Step 5 (// cocommutative). We verify that H is strongly semiprime with

[C, Theorem 2]. Also by [C, Theorem 1] there is a finite extension field L of

K such that fi = H ®ç L = LP*#LG which have been described in Step 3.
Now we let H act on Ä as follows

(h ® I) • (a ® I') = h • a ® IV

for he H,   I, /' g L, and a e A. See [BC].
Let £ be an essential right ideal of A. Since £ contains a regular element,

£ = E®kL is an essential right ideal of .4. By Step 3, £ contains an ^-stable,

essential right ideal T of Ä. Let {Wi, ... , um } be a Ä^-basis of L. Let

m

E,■■ = { a G £ | for some /' G £' with t' = ^ a, ® My, a,- = a },

;=i

for each 1 < i < m. In other words, £ is the right ideal of coefficients of u¡

in V. For each i, £ is an //-stable right ideal of A by the definition of the

action of H on Ä. We let
m

£ = 53 £.
i=i

Now Ë ç E and £ is an //-stable right ideal of A. We show £ is essential

by noting

T <zE®LçzE®L = Ë.

Thus £ <8> L is essential in Ä. Let O^iî be a right ideal of A. Then (/? ®
L) n (£ <g> L) ^ 0. By comparing coefficients of «, 's, we see £ n R / 0. Thus
£ is an essential //-stable right ideal of A contained in £.    D

Of course, group algebras are cocommutative Hopf algebras and the above

result applies. However, the assumption that the field is perfect is not needed

for group algebras . We do not know if the assumption that K is perfect is

really needed for cocommutative actions.

Corollary 2.6 (Group Actions). Let A be a K-algebra where K is afield. Let

G be a finite group that acts on A, as K-automorphisms. Assume the order

of G is nonzero in K and K is a splitting field for G. Let A be semiprime
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and right Goldie; then CS{A, KG) = CS(ß(^), KG) where Q{A) is the right
classical quotient ring of A.

Proof. Finite group actions are KG actions, where KG is the group algebra. If
KG is semisimple, then it is strongly semiprime [P2, Theorem 4.4]. Let A be

a ATG-module algebra. If £ is an essential right ideal of A , let £ = f]geG E8 ■

Then £ is a KG stable essential right ideal of A contained in £.    G

In our next lemma, we make the same assumptions about A and H, as we

did in Theorem 1. Recall an algebra is called //-prime if the product of nonzero

//-stable ideals is nonzero.

Lemma 2.7.  A is H-prime if and only if Q(A) is H-prime.

Proof. Assume A is //-prime; and let J, L be //-stable ideals of Q(A) with

JL = 0. Let J = J r\A and L = L n A . Then J and L are //-stable ideals
of A with JL = 0. Thus J = 0 or L = 0.

Conversely, if ß(^4) is //-prime with J and L are //-stable ideals of A

with JL = 0, then LT~X is an //-stable ideal of ß(^4). Now we note the
left annihilator of LT~X is //-stable [OPQ, Lemma 1.4]. Since / annihilates

LT~X, we have J = 0 or L = 0.   G

Our next result combines the main result of [OPQ, Theorem 1.6] and Theo-

rem 5.

Theorem 2.8. Assume H is a finite-dimensional, semisimple Hopf algebra over

a splitting field K. Let H be either commutative or cocommutative. If H is

cocommutative, we assume K is a perfect field. Let A be a semiprime H-
module algebra with identity. Let A be a right Goldie ring with quotient ring

Q. Then A#H is prime if and only if Q#H is simple.

Proof. Assume A#H is prime. Thus by the main result of [OPQ], CS(^, H) =

Itt(H) and A is //-prime. Now we use the results of this paper to show

CS(ß, //) = Irr(//) and ß is //-prime. So the main result of [OPQ] shows

Q#H is prime. Since ß#// is Artinian, we have that it is simple. The converse

follows by reversing the steps of this argument,   a

The group action case. For finite group actions, we have the following. Let A

be a /C-algebra where AT is a field. Let G be a finite group that acts on A,

as ASautomorphisms. Assume the order of G is nonzero in K and K is a

splitting field for G. Then if A is semiprime and right Goldie, A#H is prime

if and only if Q#H is simple, where ß is the right classical quotient ring of

A and H = KG.

Theorem 2.9. Assume H is a strongly semiprime, finite-dimensional Hopf K-

algebra, where K is a splitting field. Let Q be semisimple Artinian, and let Q

bean H-module algebra. Then the hereditary subalgebras of Q are of the form

fQf, where f2 = f& QH. Furthermore, if Q is H-simple, then CS(ß, //) =
Irr(//) if and only if BIBH is H*-Galois for every hereditary subalgebra B of

Q-
Proof. We show QH is semisimple, Artinian, which is equivalent to showing

there are no proper essential right ideals. Since QH is Goldie, by Theorem 5,
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we need to show that regular elements of QH are invertible. Let t be regular in

QH. Then there is an s G ß such that ts = st = I. Now 1 = Tr(s)t = fTr(s).

Thus t is invertible in QH.
It is well known that ideals in semisimple, Artinian rings are generated by

central idempotents. Let / ^ 0 be an ideal of QH, say J = QHf for a central

idempotent / G QH. Note B = JQJ = fQf, so each hereditary subalgebra
has an identity. The //'-Galois condition follows from [OPQ, Theorem 4.9]

and [Ml, Theorem 2.1].   a

We close this section with some remarks about finite group actions, and we

show that the Connes spectrum for such actions on commutative domains is

completely determined by the kernel of the action and vice versa. We let G be

a finite group and A" be a splitting field for G, with the order of G invertible

in K. Let A be a K- algebra, and assume A is prime. We say G acts on A

if there is a group homomorphism

t : G —» Autfc(A),

where Aulx (A) denotes the A'-automorphisms of A. We let W be the kernel

of t. Now let CS(A, G) = {n\ ■ ■ ■ nt} , and let N = f|'=i ker(^/), where ker(^,)
denotes the kernel of n¡.

Lemma 2.10.   W ç N.

Proof. Let n G CS(A, G) and X G A'n. Then forweW, X = w(X) =
n(w)X. So / - n(w) = 0 by [OP2, Theorem 5.7]. Thus w G N.    G

Now G/W acts on A and by [OP2, Lemma 3.6], we have

CS{A, G/W) = CS(A, G) n ln{G/W).

Also [OQ, Theorem 7], shows CS(A, G) = lrr(G/N). For the definition of
X-outer see [P2].

Theorem 2.11. Assume G/W acts as X-outer automorphisms on A. Then W =
N.

Proof. We apply [OP2, Theorem 4.6] and conclude that CS{A,G/W) =
Itt{G/W). Thus Itt(G/W) = Irr(G//V) and hence W = N.    D

The domain case. Now we assume, in addition to the above, that A is a com-

mutative domain with quotient field Q. Then G/W is an X-outer action of

Q. So we have that the Connes spectrum is Irr( G/W). We note the spectrum

is full if and only if the action is faithful and the spectrum is trivial if and only

if the action is trivial.

3. The Connes spectrum of the //-symmetric quotient ring

In papers [Co], [M2], and [MS], an //-symmetric quotient ring Qh{A) is,

constructed and the action H on A is extended (when the antipode is bijective)

to Qh{A) to make it an //-module algebra.

We begin by describing some of the results of papers [M2] and [MS]. We

let H be a commutative or cocommutative finite-dimensional semisimple, Hopf

algebra over a splitting field K. We note the antipode is bijective [M3, Corollary
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5.2.11]. Also H is strongly semiprime, if H is semisimple; see [P2, Theorem

4.8] and [MS, Corollary 7.13]. Let A be an //-semiprime //-module algebra,

and let &h denote the set of two-sided //-stable ideals of A that are regular

in A. The left //-Martindale quotient ring of A is

Q!H(A)= hm Hom(IA,AA).

le?«

In particular, for all q G QlH{A) there is / G £?~h such that ql ç A. Now let

Qh(A) = {qe Qh(A) I  there is / G ̂ k with Iq C A}.

This ring is called the //-symmetric quotient ring; see [Co], [M2], and [MS].

We next extend the action of H to Qh{A) . Let q : I -> A for / G SFH and
h G H. Then

h-q(a) = Y,hi-[q(S(h2)-a)]
(h)

for all a e I. Papers [Co, Proposition 6] and [M2, Corollary 3.5] shows that

Qh(A) is an //-module algebra.
The following lemma is known, but we include it in the precise form we need.

Lemma 3.1. Assume AH is prime.

(1) Then A is H-prime.
(2) Let J be a nonzero ideal of AH . Then J is regular in A.

(3) Let z G Qh{A) , and assume Jz = 0 or zJ = 0 for some nonzero ideal

J of AH. Then z = 0.

Proof. Let /, / be //-stable ideals of A suchthat IJ = 0. Then Tr(/)Tr(7) =
0 and thus / = 0 or / = 0 by [OPQ, Proposition 4.3].

(2) The left or right annihilator of J in A is //-stable. Since AH is prime,

the trace of the left or right annihilator must be zero.

(3) Assume zJ = 0 and find / G S?n with Iz ç A. Then (Iz)J = 0 and
by the first part of this lemma Iz - 0. Hence z = 0. If Jz = 0 the proof is

similar.   G

Lemma 3.2. Let H be a finite-dimensional, semisimple commutative or cocom-

mutative Hopf algebra over a splitting field K ; and let A be an H-module

algebra with 1. Assume that A is H-semiprime. If 0 / / is an ideal of AH

and B = JAJ, n G Irr(//), and C = n(H), then the following are equivalent:

(1) /^reg/?™.

(2) /^reg(/?®C).
/1\     l /r>/\ /-> ,„,<
(3) lmnB.(B'n) = 0 = T.annB¡P(Brn).

(4) l.ann(A8C)(£¿) = ° = r.ann^c)^)-

Proof. In the cocommutative case this is [OP2, Theorem 5.7]. So we assume

H is commutative. We begin by noting C = K, so B®C = B. It is also easily

seen that B™ = BH. We show B!n and Brn are //-stable. Let b G B'n ç B and

z g H. Then for any h G H, £(A) n{h2){hx • (z • b)) = z • (£(A) n{h2){hx ■ b)) =

z-(e(h)b) = e(h)(z-b). Thus Bln is //-stable, and the proof for B'n is similar.

(1) implies (2). Clearly BlnBrn is //-stable, so / = l.annB(£¿^) is //-stable.

But InBH = 0, thus / = 0, by [OPQ, Propostion 4.3(H)]. The proof for the
right annihilator is similar.
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(2) implies (3). Clear.
(3) implies (4). Now / = larmB(B'Jt) is //-stable [OPQ, Lemma 1.4]. But

B™ = BH.

(4) implies (1). Let z G B™ such that zBlnBrn = 0; then J = BrnzBln is an

ideal of BH, by [OPQ, Lemma 5.1]. We note J2 = 0 and BH is semiprime,
thus 7 = 0. Now ( 1 ) follows.   G

Theorem 3.3. Let H be a commutative or cocommutative, finite-dimensional,

semisimple Hopf algebra over a splitting field K. Let A be H-module algebra

such that AH is prime. Then CS{A, H) = CS{QH{A), //).

Proof. We will let ß denote Qh(A) , and we note ß is //-semiprime. This

follows because A is //-semiprime and aO/ //-stable ideal of ß intersects

A in an //-stable, nonzero ideal of A.

Let n $ CS(ß, H). Then by Lemma 2.3, there is J ^ 0 an ideal of QH

and B = JQJ such that ann¿„ (£££;;) ^ 0. Let 0 ^ z G annÈ„(BlnÊrn).

Let J = J f)A, and note J is a nonzero ideal of AH. We let B — JAJ. So

BCÊ. Thus

(B<nB'n)z ç (ÊlnÊ'n)z = 0.

Now there is an / G ^k such that 0/ z/ ç Mn(A). Let u; G ß be a

nonzero element of the dn x ¿4 matrix z. Now by Lemma 3.1, JwIH J ^ 0

and we note 0 ¿ J zIH J ç M„(B). Since /"/ is an ideal of AH and zefi,"1.

it follows that JzIHJ CB™. But
-   h

(B'nB[)(JzIHJ) C (BlnB'nz)(IHJ) = 0.

Thus & £ CS(^,//).
To show the other inclusion we need the hypothesis that H is cocommutative

or commutative. If n £ CS(,4, //) there is a nonzero ideal J of y4w such that

the left annihilator of B'n or the right annihilator of BrK in M„(B) is nonzero,

where B = JAJ and n is the degree of n, by Lemma 3.2. Let Oy^ze M„(B)
and zBl„ = 0.

Let J = QHJQH and £ = JQJ. Applying Lemma 3.1 to the entries of

the nonzero matrix z, we have zJ ^ 0. Let x g Bln and take C & ¡? such

that xC ç Af„(y4). Let / = CH J , which is nonzero because AH is prime. We

observe

Jxl c J(xC")J ç M„(B).

Also Jxl t¿ 0 by Lemma 3.1, and one checks 7x/ ç Bln. Thus z/x/ = 0 and

so zJx = 0. Thus zJB'n = 0. So if n G CS(ß, H), then z7 = 0, by Lemma
3.2. Thus z = 0 by Lemma 3.1, but z ^ 0. The situation for right annihilators

is handled in the same way. Thus n £ CS(ß, H).    G

We note that algebraically closed fields are splitting fields. So the next result

yields Theorem B of the introduction.

Corollary 3.4. Let H be a finite-dimensional, semisimple, commutative or co-

commutative Hopf algebra over a splitting field K. Let A be an H-module

algebra that is H-semiprime. Then A#H is prime if and only if Qh(A)#H is
prime.
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Proof. Assume A#H is prime; then AH is prime and Qn(A) is //-prime.

Thus by [OPQ, Theorem 1.6] and Theorem 3.3, CS(ß, //) = Irr(//). This
means Qh(A)#H is prime.

Let ß = Qh(A) , and assume Q#H is prime. We begin by showing AH is

prime. Let I\ and I2 be ideals of AH with I2IX = 0. If U # 0, I2 ± 0,
then I\QHI2 ï 0, because ßff is prime. Let q G ßw and i G I2 with

/ií/ ^ 0. Choose C £ 9ii with tfz'C C A. So tfi'C" ç A", and we will
show hqiC" £ 0.

To do this we show the annihilator of CH in ß is zero. Let s e Q with

sCH = 0. Take 7e/ such that 7î ç A ;  so /sC" = 0. Let

L - {a G A | aC" = 0}.

Note L is an //-stable left ideal of A. If L ¿ 0, then Lff / 0, by [OPQ,
Proposition 4.3]. But C is regular in A and so LHC ^ 0. Now

Tr(L"C) = L"Tr(C) c LCH = 0.

Thus LHC = 0. Thus L — 0 and hence 7s = 0, which means 5 = 0. Thus we

have shown I\qiCH ± 0.
But qiCHI\ ç qili ç I2IX = 0. Thus hqiCH is a nonzero nilpotent left

ideal of AH. This contradicts the fact that AH is semiprime. Thus AH is
prime. Hence by Lemma 3.1 A is //-prime. By [OPQ, Theorem 1.6] and

Theorem 3.3 CS(A, H) = lrr(H). Hence A#H is prime.   G

We conclude by applying our results to pointed cocommutative Hopf algebra

actions. In this situation, Qh(A) = Q(A), where Q(A) is the symmetric
quotient ring [MS, Example 3.5]. We have extended [P2, Theorem 15.9].

Corollary 3.5. Let H be a finite-dimensional semisimple, pointed cocommutative

Hopf algebra over a splitting field K. Let A be an H-module algebra that is

H-semiprime. Then A#H is prime if and only if Q(A)#H is prime.
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