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DISTINCT DEGREE FACTORIZATIONS
FOR POLYNOMIALS OVER A FINITE FIELD

ARNOLD KNOPFMACHER AND RICHARD WARLIMONT

Abstract. Let Fs[Ar] denote the multiplicative semigroup of monic polyno-

mials in one indeterminate X , over a finite field Fg . We determine for each

fixed q and fixed n the probability that a polynomial of degree n in Fg[X]

has irreducible factors of distinct degrees only. These results are of relevance

to various polynomial factorization algorithms.

1. Introduction

Let ¥q[X] denote the multiplicative semigroup of monic polynomials in one

indeterminate X over a finite field with q elements. Many deterministic as

well as probabilistic factorization algorithms for polynomials in ¥q[X] require

that a distinct degree factorization of the polynomial be performed as the initial

step. See, e.g., Knuth [6, pp. 429-431] and more recently [1, 2, 3, 8]. Further
references can be found in Shparlinski [9, Chapter 1]. In particular, the further

application of all such algorithms becomes unnecessary in the case that the poly-

nomial has only irreducible factors of distinct degrees. The probability that this

occurs, as determined below, is therefore of particular interest when applying

any such methods. Previously, Greene and Knuth [4, p. 48] also considered this

question but only in the limiting case q —> oo, for which they showed that an

asymptotic probability e~y is obtained, where y is Euler's constant. In prac-

tice, however, such factorization algorithms are most frequently applied over

small finite fields, in particular when q = 2. Our result allows us to compute

an accurate probability in this case as well as for a finite field of any fixed size.

These results indicate that a distinct degree factorization of a polynomial has

a significantly lower probability of occurrence than the limiting value e~y when

the size of the field is small.
We determine in addition the related probability that a polynomial has all its

distinct irreducible factors of different degrees. In this case we show that these

probabilities are higher than the limiting value of e~y for small finite fields.

Since the square-free part of a polynomial is easily determined [7, Chapter 6],

this larger class of polynomials also admits a rapid method of factorization.
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As is well known there are q" monic polynomials of degree n in ¥q[X] and

d\n

monic irreducible polynomials of degree n , where p(-) denotes the Möbius

function.

Let df(X) denote the degree of f(X) e ¥q[X].

Let yo(n,q) denote the number of polynomials f(X) £¥q[X] of degree n

with canonical factorization

AX) - MX) • ■ -pk(X),    where d(Pi(X)) ± d(Pj(X)) for i¿j.

Let yx(n, q) denote the number of polynomials f(X) £ ¥q[X] of degree n

with canonical factorization

f(X)=px(Xr---pk(Xr        (aj£N),

where d(p¡(X)) ¿ d(Pj(X)) for i¿j. Put

(1) L.(i):=n(l + ^f^)exp(-l/m)       0 = 0,1).
m=\ V " y  /

We formulate our results.

Theorem 1. There is some absolute constant c > 0 such that

(2) \yj(n,q)q-n-Lj(q)\<c/n   for all n > 1 (j = 0, 1).

Corollary.

(3) lim 7j(n, q)q-n = Lj(q)       0 = 0,1).
n—oo

For comparative purposes, we note that y2(n, q)/q" = ^ , where y2(n, q)

denotes the number of squarefree polynomials of degree n , n > 2, in ¥q[x].

(See, e.g., [7, Chapter 6].)
Using the above formulas and a computer leads to the following estimates of

these probabilities for small q .

Q L0(q)

2 0.39673
3 0.46934
4 0.49834
5 0.51370
7 0.52951
8 0.53408
9 0.53752
oc e~y = 0.5614- ••

U(q) ^
0.66559 0.5
0.61230 0.666
0.59477 0.75
0.58615 0.8
0.57769 0.857
0.57530 0.875
0.57353 0.888
e-1 1

The numerical results suggest that as q -> oo, L0(q) increases monotonically

to e~y while Li(^) decreases monotonically to e~y. These observations are

made precise in the next theorem.
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Theorem 2. Let q be a real variable with q>2. Then

(4) ^(l-j¡)sH**f{t^j;);.

(5) Lo(q) is a strictly increasing function of q.

(7) Li (q) is a strictly decreasing function of q.

Remark. The multiplicative semigroup ¥q[X] constitutes the simplest example

of an additive arithmetical semigroup (G, d) satisfying axiom A* , as intro-
duced by J. Knopfmacher [5]. Distinct degree factorization can be studied in

this more general context. We shall deal with these questions elsewhere.

2. PROOF OF RESULTS

Lemma. Let the complex sequences (a„), (bm) be formally related by

oo /   OO \

1+^fl^^exp [Y,bmWm\ ■

n=l \m=l /

Assume there is some constant K > 0 such that \bm\ < Km~2 for all m . Then

\a„\ < ex6Kn~2   for all n.

Proof. One has
n

1
"n = j:¥Bk(n),

k=\

where

Bk(n):=       J!      bmi---bmk.
mt-i-\-n¡il=n

From this we see that
"   Kk

k=\

where

Sk(n):=       ^2      (mx---mk)-2.
m\-t-ym¡í=n

We prove by induction on k that

Sk(n) < I6kn~2

and this will yield our results. Firstly

S,(«) = «-2.

Now let k > 1 and assume

Sk-X(n)< I6k-Xn~2.
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One has

n-\

Sk{n) = J2m 2Sk-i(n-m)
m=\

n-\

< I6k~x ̂ 2 m~2(n-m)-2

m=\

s .6»-'(e«-'(?)"'£ G)"2(»-r

< 16^-' -2-4. [Y,h~2 )n-2<l6kn-2.   D

\h=\       )

We now derive generating functions for y¡(n, q), 7 = 0, 1 .

Put Pm := {p irreducible \d(p) = m} . Then

oo oo     /

^2yx(n,q)z"=H[l+J2T,zad{P)
«=0 m=\   \ pePma=\

TT   / Zm      \

= JJ [l+7t(m,q)l_zmJ .

Similarly,

m=\

Y,yo(n,q)zn=U    l+£z^>    = \{(\ + n(m,q)zm).

«=0 m=\  \        pePm I        m=\

Proof of Theorem 1. We start by combining the above generating functions to

obtain

°° °°   Í zm      \
l+Y^y}(n,q)z"=\{[l + 7t(m,q)T-~)

1
= H(l + (n(m,q)-j)z'")—-—       (\z\ < q~x).

m=\ J

Put
Sj(n, q) := y¡(n, q)q~n ,        z¡(m, q) := (%(m, q) - j)q~m ,

and substitute z = wq~x (\w\ < 1). Then

oo oo .

1 +5>(n, q)w" = \[(l+zj(m,q)w">)

Fj(w)Gj(w)
1 - w

where
_. 1 + (1 -jq~x)w       .
Fj(w) := —/    .    .—— exp(-w)

J 1 - jq~lw
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and
exp(   w  )

Gj(w):= Yl(l+ej(m,q)wm)
1 - jq~mwm '

m=2 J^

Let us write

Gj(w) = exp(Sj(w, q)).

We shall show that Sj(w , q) can be expanded into a power series

Sj(w, q) = Y^,bj(m, q)i

and that there is some absolute constant c > 0 such that

(8) \bj(m, q)\ < cm~2   for all m.

One has
oo

Sj(w, q) = ^Oj(w;m,q)

m=2

where

wm 1
tJj(w; m, q) :=log(l +ej(m, q)wm)-h log

m 1 - jq~mwr

k+\

= Uj(m ,Q)- — )w+2s W—eÁm ' «) Wk„„mk
-£-G/V" > <^

_C if]—m\k„,,mk+ Er(^_m)^
fe=i

From this we see that

¿>;(m, #) = ^(w, q) + sj(m, <?) + tj(m, q)

where

r¡(m, q) :=&j(m, q) - l/m,

sj(m,q):=  £ ^—Ej(l,q)k

kl=m
k,l>2

, s _m »c—« 7*tj(m,q):=q ™^F

S
One finds (see §3, (13) and (15))

ia~' <Bi(l,a) <-- /fl"1

|-s;(/,?)|< 1//   for/>2.

Therefore

\rj(m , q)\ < —q-m>2 + q~m < 2~ml2+x.
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Further

Hm, q)\ < £ Í (j)* = 1 £ (j)* ' < 1   £   (£)' '
A:/=m        x    7 W=m   x    7 *^«~-«   ^     /
k,l>2 k,l>2

. ' •£ ,(ir2<jIf:«
mz   *-^      \ml m1 f-'

kl=m kl=m
k,l>2 k,l>2

k-2 ,      oo
2-*

2<i:<f       v      ' *;=2

Finally
|/;(m,(í)|<2-'"T(w).

Together these yield (8). Now let

oo oo

Fj(w) = ¿2 cAn ' q^w~n and GAw) = E aAn > q)w~" ■
n=0 «=0

Then
oo

Fj(w)Gj(w) = Y,dj(n,q)w-n,
n=0

where

dj(n,q) := £ Cj(k,q)a¡(l, q).

kl=n

Now we have
n

<*/(" ,q) = Yl dAh > Q) = LAq) - ¿2 dAh > 9) »
/¡=0 A>n

using the result
oo

¿2dj(h,q) = Fj(l)Gj(l) = Lj(q).
h=0

Therefore

|<5,(« , q) - Lj(q)\ < £ \dj(h , q)\ < £ |c,(/c, 9)| K(/, q)
h>n kl>n

=    $>;(*, 9)|       f>;('.9)l    + 5>,(£, <?)| £>,(/, <?)|.
\A:>f¡ /    \/=0 /        Ar<n />£

There is an absolute constant cx > 0 such that |c7(rV, g)| < cx2~k for all /c.

From (8) and our lemma we infer that there is some absolute constant c2 > 0

such that \aj(l, q)\ < c2l~2 for all /. Therefore

\ôj(n, q) - Lj(q)\ « 2~" + £ 2~k- « n~x .   D

k<n

Remark. If we write
, 1  \ 1 oo oo

Oj(w ;m,q)=[ e}(m, q)-) wm - -=Zj(m, q)2w2m + £ ' " ' + E " ' '
v mj i k=i kmi

we obtain

bj(m, q) = b(m) + b*(m, q),
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where
u,   -, l + (-l)m
b(m) :=-,

m2

and \b*(m, q)\ < cm~3 with c > 0 absolute.

This refinement in the evaluation of bj(m, q) will possibly entail a corre-

sponding improvement of Theorem 1 :

7j(n, q)q~n = Lj(q) + L)(q)n~x + 0(n~2)

with an absolute 0-constant. We do not pursue this matter further.

3. The proof of Theorem 2

The number q comes from ¥q[X] and thus is a power of a prime.

In particular, q is a real number > 2. We put

a(q, m) := mn(m, q) = ^p(d)qm,d

d\m

and shall study the expressions

LAQ)--=f[^ + ̂ a-^j)^(-llm)       0 = 0,1),

as functions of the real variable q >1. We first collect some well-known facts

which are needed in the sequel:

k

(9) J2qJ<lqk,
7 = 1

(10) o(q,l) = q,

(11) o(q, m) = qm - qm/p    if m = pa ,

and, in particular,

(12) o(q,p) = qp-q,

(13) o(q,m)>qm-lqm'2,

(14) o(q,m)>0,

(15) o(q,m) <qm - q   for m > 1,

(16) log^L-^I^l + ^y    for0<v<l,

(17) n(i+¿)«p(~)
m=l  v / \ /

We prove the results for the case 7 = 0. The proofs for j — 1 are similar

although somewhat more technical.

Proof of (4). We have

M*>=n(>+^)e*p(-i;H-MW,

p-y
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where

A(q):=f{(l + -^rí(o(q,m)q-m-l)\.
m=\m=\

Now

m=l

where
o(q, m)-qm\

KHI      11 V (m+l)<7m   J

From (15) we get B(q) < 1 . This yields the upper part of (4). Next,

4~q~2) V~WJV~W

where

BM'U-TTi      1-73      1-BKW,

m=6

Put yM(i) := ^tf~m/2. From (13) and (16) we get

m=6

OO / OO 4

C(q) > Y[(l-ym(q)) = exp   - £ log

1>expl-J2-ym(q) U + j

^eXP(4(1 + í^¡(2))^

/   55   _3\ 55   _3
>exp   -—9  3    >,_ 3_

-3

54^     J-        54

Now we have

^('-¿)('-¿)0-¿)0-¿)0-£f)
_ /J_     J_     J_     J_     55 J_

-        V3-? + 4j2 + 5q2 + 6q* + 54 qi
-.,      (x      1       1        !        55 \1,       3

which yields the lower part of (4).

Proof of (5). We show that fm(q) := o(q, m)q~m is a strictly increasing func-

tion of q > 1 for m > 1 fixed, from which the result follows.

If m is a power of a prime p then (11) yields fm(q) = I - qmlp~m , which

is strictly increasing. Otherwise let Pi < p2 be the two smallest prime factors

of m. Then
/„(?) = 5>W"/rf-M

d\m
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and

where

fm(q) = mq m xT(q, m),

t(0 ,/«):=£/i(d)(±-l)<r/«'
d\m V '

, x   n m/p,p2

1

7=1

as required.   D

> ^qm'* - lqmlp^    (by (9))

= LnmlP\P2(qm(P2-^)lP\P2 _ 4)

>§(<72-4)>0,
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