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CONDITIONS ON THE LOGARITHMIC DERIVATIVE
OF A FUNCTION IMPLYING BOUNDEDNESS

T. H. MacGREGOR AND F. R0NNING

Abstract. In this paper we investigate functions analytic and nonvanishing in

the unit disk, with the property that the logarithmic derivative is contained in

some domain Si . We obtain conditions on Í2 which imply that the functions

are bounded and that their first derivatives belong to Hp for some p > 1 .

For certain domains Q the sufficient conditions that we give are also, in some

sense, necessary. Examples of domains to which the results apply are given.

1. Introduction

Let A = {z:|z|<l}, and let sf be the set of functions that are analytic in

A. The main purpose of this paper is to formulate conditions on the logarithmic

derivative of a nonvanishing function in sf which imply that the modulus of

the function is bounded from above and below. We also obtain conditions

from which it follows that the function's derivative belongs to the Hardy space

Hp. The results tie in with the theory of starlike univalent functions which

are characterized in terms of the logarithmic derivative. In that context we
usually adopt the normalization /(0) = /'(0) -1=0, and then the class S*

of functions starlike with respect to the origin is characterized by

zf'(z)
/eS* «=-> Re-j^>0,     zeA.

The functions in S* are in general not bounded, and a typical example of an

unbounded function in S* is given by the Koebe function k(z) = z/(l - z)2 .

Well-known subclasses of S* are the functions starlike of order a, S*, given

by

/e^  ^Re-^>a,     0<a<l,   zeA,

and the strongly starlike functions, SS*, given by

zj(z)       na
„V   <^~>     0 < a < 1,   zeA.(1.1) f£SS*      ,-r        — e       r...

For a < 1 the class S* contains unbounded functions, and a typical example

is ka(z) = z/(l - z)2~2a ; whereas all functions in SS*, a < 1, are known
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to be bounded [1]. The same is true if the wedge in (1.1) is replaced by a

parabola with vertex at the origin and axis along the positive real axis [6]. In [5]

the question was raised whether all bounded starlike functions have an integral

representation

(1.2) f(z)= [     logT-^—dp(x)+f(0)
J\x\=l l - xz

for some complex-valued measure p on the unit circle. The investigations in

this paper to some extent also relate to this question.

2. The main results

Before we get to the results we shall describe the basic setup for the whole

work. Suppose that / is a function which is analytic and nonzero in A, and

let g(z) = f'(z)l'f(z). Assume that g(z) e Q where Q is a simply connected

domain and fl/C. Let wq = g(0), and let G be a conformai mapping of

A onto Í2 such that G(0) = ion. Under these assumptions we can prove the

following results which will be used later.

Lemma 2.1. Let M(r) = max|z|<r |C?(z)| for 0 < r < 1.

(a)//

(2.1) /   M(t)dt <oo,
JO

then f and Iff are bounded functions.

(b) V
,i

(2.2) /   Mp(t)dt < oo

for some p > I, then f e Hp .

Proof. Clearly g -< G, so we have

max|g-(z)| < max|C7(z)|
|z|<r \z\<r

for 0 < r < 1 . Because M is nondecreasing, this implies that

.i /»i /»i

/ \g(tz)\dt< [ M(t\z\)dt< f M(t)dt.
Jo Jo Jo

) implies that

(2.3) sup / \g(tz)\dt
|z|<l JO

>o Jo Jo

Therefore (2.1) implies that

it < oo.
|z|<1./0

We have log(/(z)//(0)) = Jc g(w)dw where C is the line segment from 0 to
z. Hence

log^>
/(0)

/ g(tz)dt < [  \g(tz)\dt
Jo Jo

1

Thus equation (2.3) implies that sup^^» |log(/(z)//(0))| is finite and hence

suP|z|<i |l°g(l/(z)//(0)l)l is finite, and the conclusion of part (a) follows.

To prove part (b) note that (2.2) implies (2.1) since p > 1 and therefore /

is bounded. Because g(z) = f'(z)/f(z), we have |/'(z)| < ||/||//~|g(z)|, and
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hence, /' e Hp if we can show that g e Hp . By Littlewood's subordination

principle we get

J- / * \g(re'e)\p dd<±- f \G(re'8)\p d6
In Jo 2n Jo

for 0 < r < 1, so it suffices to prove that G £ Hp . Let K(z) = G(z) - G(0)

and N(r) = max|Z|<r \K(z)\. Then N(r) < M(r) + \G(0)\. Since K is analytic

and univalent in A and Zi(0) = 0, we can use Prawitz's theorem [3, p. 61] to

get
r2n

¿ I"' \K(rew)\p dd < p i   X-Np(t)dt.
iTt Jo Jo    t

For a > 0 and b > 0 there is a constant Ap , depending only on p , such that

(a + b)p < Ap(ap + bp). Therefore,

2ni
\G(reie)\p dd < Ap

<An

1     fin

Tz\    \K{rei6)\
■n Jo

Jo   t

pde + \G(0)\p

Np(t)dt + \G(0)\p

Because N(r) < M(r) + \G(0)\ and Z((0) = 0, Schwarz's lemma implies that

N(r) < r(M(r) + \G(0)\). Thus

-rî- [ " \G(rew)\p de < Ap  pi tp~x(M(t)+ \G(0)\)pdt+ \G(0)\P
111 Jo Jo

p f (M(t) + \G(0)\)pdt + \G(0)\
Jo

pAp (J1 Mp(t)dt + \G(0)A + \G(0)\P

<An

<AP

This shows that (2.2) implies G e Hp .   □

In the following we further assume that Q is an unbounded Jordan domain

and that the origin is on the boundary of Q. Then some point zx on dA cor-

responds to oo under the mapping G, and some other point, zo , corresponds

to 0. By a rotation in z we can assume that z^ = 1 . The point 0 breaks up dQ

into two Jordan curves, which we denote T+ and T~ , each having endpoints 0

and oo . Let T be a Jordan curve with endpoints 0 and oo all of whose other

points belong to Q. For each R > 0 there is an arc denoted y^ which is on

Qn{w : \w\ = R}, meets T, and has one endpoint on T+ and the other on T~ .

Let £(R) denote the length of yR, and let <p(R) = ¿(R)/R. Then tp(R) gives
the angular variation of yR . We have 0 < tp(R) < In and 0 < l(R) < InR.

Now we are ready to state the main theorem about boundedness of the function

/•

Theorem 2.2. Let Q and tp be as described above. Let f e srf , f(z) ^ 0 for

zeA, and assume g(A) c Q where g(z) = f'(z)/f(z). If

r°° du
(2.4) /

<p(u)exp{nj]u^r)}
< oo.
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then there are positive constants m and M such that

m<\f(z)\<M,     zeA.

Proof. The proof basically involves setting up a suitable composition of confor-

mai mappings, so the Ahlfors' distortion theorem (see [4, p. 136]) can be used.

Recall that (7(A) - Q, G(z0) = 0, and (7(1) = oo . There are complex numbers

x and a such that |x| = 1, |q| < 1, and the function

to(z) = x-—=-,     \z\ < I ,
1 + az

satisfies to(l) = 1 and to(zo) = -1. An easy computation shows that there are

positive constants A and B , depending only on a, such that

(2.5) A<l-^^<B

1-|*|

for \z\ < 1. Indeed we can let A = (1 - \a\)/4 and B = 4/(1 - \a\). Write
w = G(z), C = logw , and a = log((l + <y(z))/(l - to(z))). Then z >-> a is a

conformai mapping of A onto the strip S? = {a : \\mo\ < n¡2} . Also w >-> Ç

is a conformai mapping of Q onto a domain O. The domain <I> is unbounded,

and each line {Ç : ReÇ = constant} meets O. The arc yR corresponds to a

line segment denoted es where s = ReÇ = logR. If we let e(s) denote the
length of es, then e(s) = <p(R). The boundary of <î> consists of two Jordan

arcs A+ and A" having endpoints at oo. Through the composition of the

mappings described above we obtain a mapping o = o'(Ç) of O onto S? such

that -oo corresponds to -oo and oo corresponds to oo. We can apply the

Ahlfors' distortion theorem to this mapping. Hence if ao < a and

(2-6) LW)
ao

:ds > 2
Jao   0(S.

then

(2.7) Re[ff(C)-a(Co)]>7r^a^(^-47r,

for Co € öa0 and Ç £ ea- We fix ao and choose a point Co € 0^ . Then for

z sufficiently near 1 the corresponding Ç satisfies Ç £ ea and a > üq . Let
R0 = ea°. Then

f    1    ,        fR     I      ,        fR    1    , 1  ,     R
/   -ET^ds= /    —7-r«> /    ~—dx = ^—log —

Jao e(s) Jr0 xtp(x) JRo lux In      R(

Hence (2.6) is satisfied for all z sufficiently near 1. Since

(7(C)=log((l + w(z))/(l-ti;(z))),

(2.5) implies

o

Rea(C) = log
1 +to(z)

1 -to(z)
< logl + log -—.   . ,. < log2 - log,4 + log -—

l-|w(z)| 1-

where r = \z\. Hence (2.7) implies

fJa0

1     J 1  , 1
-ds < — log-h C

e(s)     - n    ° l-r
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(2.8) /    ——dx<-log--+ C.
Jro

for some constant C. This is the same as

1,^1.        1
-r^rdx < - log -—

iRo xf(x) n       l-r

Hence (2.8) holds for all z sufficiently near 1, where r = \z\ and R = \G(z)\.

For 0 < r < 1, let u = u(r) be defined by the equality

2.9 /   ——dx = -log--+ C.
Jr0 xtp(x) n       l-r

Since l/x<p(x) > 0, this uniquely determines u. Moreover u(r) > Ro and

(2.8) and (2.9) imply that R = \G(z)\ < u(r) for \z\ = r and for all z suffi-
ciently near 1. For every s (0<e<2) G is bounded in A \ {z : |z - 11 > e} .

Hence if we have

rx
(2.10) /   u(r) dr < oo,

Jo

then J0 M(r)dr < oo and by Lemma 2.1(a) we have that / and 1// are

bounded.
What remains to establish the theorem is therefore to prove that the condition

(2.4) implies (2.10). Let Rx be defined by /*' j4^ dx = C, where C is as in

»i
(2.9). Then

From (2.9) we get

Í    , w        f°   dr A
\   u(r)dr= /    u-¡-du.

Jo Jrx    du

dr_ne<-*_

du     u<p(u)exp{nSl^}

and further,

du/»l /»OO

(2.11) /   u(r)dr = neCn \    -

We now see that (2.4) implies (2.10).   D

The examples of starlike functions mentioned in the introduction might sug-

gest that boundedness or nonboundedness is connected to how close Í2 is to a

halfplane. Indeed it is the case that the integral in (2.4) may exist or not exist

depending on how fast the function tp(u) tends to n when u —* oo . We will

give examples illustrating this in the last section. In order to obtain, in some

sense, a maximal domain Q which yields / and 1 // bounded, it is therefore

natural to put further assumptions on ip , e.g., that it is monotonically increasing

to n . Under such assumptions the condition (2.4) can be replaced by simpler

conditions.

Theorem 2.3. Let Q, tp, f, and g be as in Theorem 1.1.
(a) Assume that lim^oo <p(u) = n. If

n\>>\ r° du
(2.12) /     --.-s-<00'

Jx exP{*/r^}

then f and 1 // are bounded.
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(b) Assume that limu^oo tp(u) — n and that for some a > 1 the function tp

is nondecreasing in [a, oo). If

(2-13) r-STMv       ' Jx    un/i>M

then f and 1// are bounded.

Proof. Since lim^oo <p(u) = n then l/<p(u) is bounded for u large enough,

and part (a) follows from Theorem 2.2. Assume also that <p is nondecreasing

in [a, oo) for some a > 1 . Then

fu     1       ,       logu     loga

Ja  xtp(x)   X - tp(u)     tp(a)'

Hence exp j —n J" —j^ dx\ < Du~nl^u)  for some constant D.   Therefore

(2.13) implies (2.12) and part (b) follows.   □

We now turn to the discussion of conditions which imply that the derivative

of the function / belongs to some Hardy space Hp . The arguments used here

will be parallel to those used for proving boundedness. Assume that Q. has

the properties described before Theorem 2.2, and let /, g, G, and tp be as

before. Also let u be defined as in (2.9). Then it is easy to see that

(2.14) / up(r)dr <oo,    p> 1,

implies (2.2) just as (2.10) implies (2.1). Thus the conditions we pose will

be such that (2.14) holds, and therefore by Lemma 2.1(b) we conclude that

f'£H".

Theorem 2.4. Let Q and tp be as described before Theorem 2.2. Let f £ sé

and f(z) ¿0 for zeA, and assume g (A) c Q. where g(z) = f'(z)/f(z). If

(2.,5) T
up~xdu

< 00

" p(")e*p{*/r3cfe}
for some p > 1, then f e Hp .

Proof. The argument leading to (2.11) yields

(2.16) f\p(r)dr = nec" [°°-^^-T,
Jo Jr>   'PMexpLj^^-A

so (2.15) implies (2.14) and the proof is complete.   D

Under additional assumptions on tp it is clear that we can obtain a theorem

parallel to Theorem 2.3.

Theorem 2.5. Let Q, tp, f, and g be as in Theorem 2.4.
(a) Assume that lim»^^ tp(u) = n/p, p > 1. If

up~xdu

i:
< 00

then f £Hp.
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(b) Assume that lim^oo tp(u) — n/p, p > I, and that for some a > 1   tp is

nondecreasing in [a, oo). If

du

! ul-p+n/<p{u)
< 00,

then f £Hp.

3. Converse versions of the results in section 2

The basic setup remains the same as it has been. Under certain additional

assumptions on the domain Q, expressed in terms of tp , we can prove results

converse to Theorem 2.2 and Theorem 2.4. The basic tool here is a theorem of

Warschawski [4, p. 140] which we state below. With the same notation as in

the proof of Theorem 2.2, suppose that the curves A+ and A- have the form

y = r+(x) and y = t~(x), where t+ > x~ . Then 6(x) = r+(x) - t~(x), and

we define z(x) = {-(r+(x) + t~(x)) .

Warschawski's theorem. Suppose that for all x we have \r'(x)\<M, |0'(x)| <

M. If a0<a, Co <= ean, Ç £ ea , then

ReMO-o(Co)]<nJao-^dx + V2ja^dx + B,

where B is a constant depending on M.

Let Q be as before, and in addition assume that it is symmetric about the real

axis. Also assume that there is a constant M such that \rcp'(r)\ < M. With
these assumptions we have x(x) = 0 and |0'(*)l < M, so the Warschawski

theorem can be applied to get

ra 6'2{x)

a0  "\"J "-Jao    0(X)

logo(ûo)) which is bounded by an absolute

1
-dx + C.

constant, so for some C > 0 we have

Re[(x(C)-<T(Co)]<~
Jao  V(x)

Choose G, analytic and univalent in A, such that (7(A) = Q., (7(1) = oo, and

G(—l) = 0. For real r close to 1 we now have, in the same way as (2.8) was

proved,

Jan

(3.1)
Jr0 x<p(

1 , 1
,dx>- log-

<p(x) n       l-r
-C.

With u = u(r) defined such that equality holds in (3.1) we get

(3.2) u(r) <R = \G(z)\ < M(r)

and so J0 u(r)dr = oo implies /0 M(r)dr = oo. Define F by F'(z)/F(z) .

G(z). From the assumptions on Q it follows that M(r) = G(r), so we have

lim log
F(r)

F(0)
lim
r-»l

/ rG(tr)dt = [ G(t)dt = / M(t)dt.
Jo Jo Jo
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Therefore the function F will be unbounded if /J u(r) dr = oo.  Hence, by

(2.11), we have the following result.

Theorem 3.1. Let Q, tp, G, and F be as above. If

f°° du
/    -?-r = °°-

Jx    ^(ujexpj»/,"^}

then F(r) —> oo as r —> 1.

Under the same assumptions on tp and Q. as given above we can also for-

mulate a converse to Theorem 2.4.

Theorem 3.2. Let Q, tp, G, and F be as in Theorem 3.1, and define

_ up-xdu

J\

-[j _

If Ip< oo for 1 < p < q and Iq = oo, then F' e Hp for p < q but F' £ Ha.

Proof. That F' e Hp forp<q is the result of Theorem 2.4. In particular

since Zi < oo, F is bounded from below by a constant m (Theorem 2.2). If

Iq = oo, then /0' Mq(t)dt = oo because of (2.16) and (3.2). By a theorem of

Hardy and Littlewood [2, p. 87] this implies that G £ H«. Now \F'(z)\ =
\F(z)\ • \G(z)\ > m • \G(z)\, so we also get that F' i Hq .   D

4. Examples

As we have commented on before, the conditions that we have given in terms

of convergence of certain integrals are linked to how close Q is to a halfplane.

The examples that are given below will shed further light on this fact.

Example 1. Let F(z) = 1/(1 - z)a, a > 0. Then G(z) = F'(z)/F(z) =

a I (I - z). In this case Q is the halfplane Re w > a/2, and the function F is

certainly unbounded in A.

The critical situation is of course when Q opens up to be more and more

like a halfplane, which means that <p(r) —> n as r —* oo . The condition (2.12)

basically says that tp cannot approach n too fast. This is seen most clearly in

the stronger condition (2.13) where, to get integrability, the ratio njtp(u) must

not go to 1 too fast.

Example 2.   Let
nta

<p(t) = --,     A>0,     a>0.
ry     A + ta

Then <p(t) -+ n as t -> oo . Computing we find that

E(r) = n Í -^- = logr+-(l--) <log/- + -.
J\   t<p(t) a V       ra) a

So
f°° dr K  iœ (A + ra)dr     K  f°° dr_

Jx    <p(r)exp{E(r)} > n Jx rQ+'        * n Jx     r '

where K = exp{-,4/a}. Hence the integral diverges. The function <p satisfies

the conditions of Theorem 3.1 and therefore, if the corresponding domain Q

is symmetric about the real axis, the function F will not be bounded.
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Example 3.   Next we consider

^(0 =-r—i—7'    A>0,
nlogt

A + log t '

for t > 2. This function also satisfies the conditions of Theorem 3.1. Now

E(r) = / A + log * dt = log r + A log(log r) - K.
J2    t log tJ2    tlogt

Further we get

dr .„ r       dr „ f°°     drf°° dr f°°       dr f°°
J2    tp(r)exp{E(r)}=ACJ2    r(logr)^» + ° J2    7(logry

for some constant C. The first integral above converges for all A > 0, whereas

the second converges if and only if A > 1 . So in this case we get bounded

functions F depending on the value of A. With the same tp ,

dr _á  t°° drf°°    dr f00      dr       _   _A fc

This shows that the stronger condition (2.13) does not hold for this tp, no
matter how large A is.

Concerning the question of membership in Hp spaces, we see that with this

function tp we get F' e Hx for A > 1 and F' £ Hp for p > 1. If we modify
tp to

, ,       anlogt .
<p(t)= A + l*t>     A>0>     0<a<l,

then tp(t) —* an when t —* oo, and a similar computation shows that then we

get F' £Hp for p < 1/q if A > a.
The methods developed in this paper can also be applied to classes of normal-

ized starlike functions. In that case g(z) - zf'(z)/f(z) and g(z) lies in some

domain Q in the right halfplane. The next example deals with such functions.

Example 4. In [6] the second author studied classes of normalized starlike

functions with zf (z)/f(z) lying inside a parabola. It was shown that these

functions were bounded and that f'£H2. With the notation we have used we

now have

tp(t) = 2 tan"1 —¡=,    A>0.
VAt

Then
„. ,     n   f        dt n\fl f dt /—. r
E^ = ^     ,,   -i   i   >^- /  -^ = 71^2(^-1).2 J\   /tan  ' ^        2    Jx   y/t

Putting this into (2.15) we get for some constant K that

/»oo        rp~xdr K_  r°° v2p~xdv

Jx    tp(r)exp{E(r)} <A~pJj,tp(r)exp{E(r)}     Ap J^ tan-x(l/v)exp(v/y/l)'

For large enough v , tan-1 l/v > C/v for some constant C, so the integral on

the right-hand side of the above inequality behaves essentially as

r°°   v2p

JsÍa evl^
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which converges for every p and every A. This means that these starlike

functions satisfy /' e Hp for all p > 0. In the case of SS* ( a < 1 ) we

have tp(t) = an, and we immediately see from Theorem 2.3(b) and Theorem

2.5(b) that all these functions are bounded and that /' e Hp for p < I ¡a, in
accordance with results in [1].

Remark. Let Q be a domain in the right halfplane such that (2.4) holds, and

define 5* (£2) to be the class of functions / with /(0) = f'(0) - 1 =0 and
zf'(z)/f(z) £ Q. Then all functions in S*(£l) will be bounded starlike func-

tions with derivatives in ZZ1 . Therefore they will all have an integral represen-

tation

(4.1) f(z) = ¡^__ilogY^-zdp(x)

for some measure p. (See [5] and [6] for details.) Furthermore, since /' e

Hx, the boundary of /(A) will be a rectifiable Jordan curve. In [6] these

results were obtained in the case that <9Q is a parabola, so this is a considerable

generalization.
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