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A COVERING COCYCLE WHICH DOES NOT GROW LINEARLY

KATHLEEN M. MADDEN

Abstract. A cocycle h : X x Zm —► R" of a Zm action on a compact

metric space, provides an R" suspension flow (analogous to a flow under a

function) on a space Xh which may not be Hausdorff or even 7". . Linear

growth of h guarantees that X¡, is a Hausdorff space; when m = n , linear

growth is a consequence of Xn being Hausdorff and a covering condition. This

paper contains the construction of a cocycle h : X x Z —» R2 which does not

grow linearly yet produces a locally compact Hausdorff space with the covering

condition. The Z action used in the construction is a substitution minimal set.

1. Introduction

Let X be a compact metric space, and let Zm act as a group of commuting

homeomorphisms on X . That is, we have a flow (X, Zm). For a £ Zm , we

denote the action of a on x £ X by ax. A cocycle for the flow (X, Zm) is

a continuous map h : X x Zm —> R" satisfying the cocycle equation: for any
a, b £ Zm and x £ X,

h(x, a + b) = h(x, a) + h(ax, b).

A cocycle h : X x Zm —<■ Rn can be used to construct the suspension

(Xn, R") of the flow (X, Zm). This is done as follows: we have a Zm action

on X x Rn given by

Ta(x, w) = (ax, w - h(x, a))

for a £ Zm , x £ X, w g R" . Because h is a cocycle, it is easily checked that

Tao Tb = Ta+b and hence a —► Ta defines a Zm action on X x R" . We also

have a natural R" action on X x Rn via

((x, v),w)->(x,v + w)

for x £ X, v ,w £ R" . These two actions commute and so the R" flow on

X x R" gives an R" action on Xn, where X„ is the quotient space of X x Rn

modulo the Zm action on it. When m — n = I , this construction yields the

familiar flow under a function.
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In the hope of being able to use suspensions to create interesting R" flows,

we would like to insist that Xn is Hausdorff and (Xn, R") is minimal. It is

not hard to check that (Xn, R") will be minimal if and only if (X, Zm) is
minimal.

The relationship between the properties of h and the topological properties

of the resulting suspension (Xh , R") has been studied by Furstenberg, Keynes,

Markley, and Sears in [3].

Definition 1.1. A cocycle h is covering if

(i)  Xh is a Hausdorff space,

(ii) the projection n : X x R" —► Xh is a local homeomorphism.

When h is covering, X„ is locally compact and metric. One of the goals of

[3] was to gain a basic understanding of covering cocycles. Some of the results

are included here under the assumption that the Zm action on X has a free

dense orbit.

Theorem 1.1. A cocycle h : X x Zm —> Rn is covering if and only if \h(x, a)\ —>

oc uniformly in x as \a\ —» oo.

(The norm we will use is \v\ = Yl \v¡\ ■)

Theorem 1.2. Let h : X x Zm —► R" be a covering cocycle. Then n > m, and

the space Xn is compact if and only if n = m.

The key result needed to show that m = n when Xn is compact is:

Theorem 1.3. If h  is a covering cocycle and Xn  is compact, then there exist

constants C and D such that

C\a\ < \h(x, a)\

whenever \a\ > D.

In fact, as a consequence of the cocycle equation, given any cocycle

h:XxZm^Rn, there exists a constant C > 0 such that \h(x, a)\ < C'\a\

for all a £ Zm . Thus, for h as in Theorem 1.3,

C|a|<|A(x,«)|<C|«|

when |a| is sufficiently large.
These results lead to the question of whether the covering cocycles are pre-

cisely the cocycles which grow linearly in the sense of Theorem 1.3. Clearly,

when n — m the answer is yes. In what follows we will show that when n ^ m ,

covering and linear growth are not equivalent notions. We will construct a cov-

ering cocycle on a minimal flow which does not grow linearly._

Our example is obtained using a substitution minimal flow (tf(to), a) and a

cocycle h : tf(to) x Z —> R2. In section 2 we discuss some general properties of

substitution minimal flows and cocycles on such flows. In section 3 we construct

the specific substitution minimal flow and cocycle h on it which is covering but

does not grow linearly.
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2. Substitution minimal flows

Let (X, T) be a flow (i.e., T : X —> X is a homeomorphism of X onto X),

and suppose that to £ X has a free dense orbit. If h : X x Z —> R" is a cocycle

for the flow (X, T), we may characterize when h is covering in terms of to :

Proposition 2.1. Let (X, T), to £ X, and h be as described. Then h is cover-

ing if and only if given R > 0, there exists r > 0 such that \a - b\ > r implies

\h(to, a) - h(to, b)\ > R.

Proof. First suppose h is covering and let R > 0 be given. We can choose

r > 0 such that \a\ > r implies \h(x, a)\ > R for all x £ X. In particular,

using the cocycle equation,

\h(to, a) - h(to, b)\ = \h(Tb(to), a - b)\ > R

when \a-b\ >r.
Conversely, let R > 0 be given and choose r > 0 as described. Now suppose

x £ X and a £ Z with \a\> r. For some {n¡}°Z0 ç Z , Tn'(to) —► x and

|A(x,fl)|= lim|A(7""(û>),a)|

= lim \h(to, a + «,) - h(to, n¡)\
I—>oo

> R-

Thus, \h(x, a)\ —> oo uniformly in x £ X as |a| —> oo .   D

We also observe that for (X, T) a flow, there is a one-to-one correspondence

between W = {h : X x Z -► R"\h is a cocycle} and C(X, R") = {/ : X -» Z?"|
/ is continuous}. For / g C(X, /?") we obtain hf £& as follows:

(ZZoAT'x), n>0,
hf(x,n) = l0, n = 0,

K-ZmAT-'x),       «<0.

Conversely, if h £ W, then h(- , 1) : X -» ZÎ" is in C(X, Ä").
In particular, for S = {1, 2, ... , m} a finite collection of symbols and

(Sz, a) the usual full shift on m symbols, (5Z , o) is a flow. By choosing

a non-periodic point gj g Sz , we can construct (tf(to), o) = (X, a) where

tf(co) — {ok(to) : k £ Z}. Then (X, a) is a flow with &) g X having a free

dense orbit. We obtain a collection of cocycles on (X, a) by considering maps

from S into R". If / : S -> ZT , then for / : X -► ZÎ" via /(x) = /(x0), / is
in C(X, R" ) and gives h — h? in W as described. (We may extend / to finite

blocks of symbols by f(sx ...sk) = Y^i=\ f(si) ■ Then h(x, n) = f(x[0, n - 1])
for n > 0 and h(x, n) = -f(x[n, -1]) for n < 0.) Under these circumstances

and the additional assumption that (X, a) is uniquely ergodic, the following

proposition illustrates that the linear growth of h and the values taken on by

/ are closely connected.

Proposition 2.2. Let (X, o), f, and h be as described. Suppose also that

(X, <t) is uniquely ergodic with unique invariant measure ¡p ■ Then the following
are equivalent:
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(1) There exists r,R,R'>0 such that \a\ > r implies

R'\a\ < \h(x,a)\ < R\a\

for all x £ X
(2) There exists r,R,R'>0 such that \a - b\ > r implies

R'\a-b\ < \h(to, a) - h(to, b)\ <R\a-b\

(3) IEi£s/WWI>o.
Proof. It is clear that (1) implies (2) since

\h(to, a) - h(to, b)\ = |A(ff*(<w), a - A)|.

Suppose that (2) holds. Let x £ X with o"'(co) —> x. Then

\h(x, a) | = lim \h(oni(to), a) \ = lim | A(tu, a + n¡) - h(to, n¡)

and it is clear that (2) implies (1).
Now suppose that a, b £ Z , a < b . We see

h(to, a) - h(to, b) \ — ¿2f(s)Ns(to[a,b-l])
ses

where Ns(to[a, b - 1]) denotes the number of occurrences of the symbol s in

the block to[a, b - 1]. In particular, for any a £ Z , by the unique ergodicity

of (X,o)

lim
m—»oo

h(to, a) - h(to, a + m)

m
lim

m—»oo Y, A*)
ses

Ns(to[a, a + m- I])

m

-\jH* ses

Since this limit is uniform in a £ Z , it is apparent that (2) holds if and only if

(3) holds.   D

Notice that because the constant R in (1) exists for any cocycle, if (3) fails

to hold then ( 1 ) fails because R' does not exist.

With these results in mind, we turn to substituting minimal flows as a way of

constructing uniquely ergodic, minimal flows (X, a) with X = tf(to) C Sz .

A substitution is a map sending symbols from a finite set into finite strings of

these symbols, called blocks. A thorough overview of substitutions can be found

in [1] and [8]. For completeness, we include some of the notation and results

here.
For S = {1, 2, ... , m} as before, let S" denote the collection of blocks of

length n . Then 6 : S —> S" is a substitution of constant length. We associate

an m x m matrix, Me, with 6 via

Me = [Nt{9U)))ijU,jsm

where N¡(8(j))  is the number of occurrences of the symbol { in the block

6(j). We say 8 is primitive if the matrix Me is primitive in the usual sense.
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Let 6 be a primitive substitution. We say a pair of symbols p, q £ S is a

recurrent pair if

(i)  6(q) begins with q and d(p) ends with p,

(ii) the block pq occurs in 6k(q) for some k > 1.

A recurrent pair of symbols determines an element of Sz , denoted topq

by
to[-nk , nk - l] = 6k(pq)

to.

where to[i, i + j] = tOitoi+x ...to¡+j. Notice that 6(to) = to. Then tf(to) =

{ok(to): k £ Z} is an invariant subset of Sz . In fact we can say more:

Theorem 2.1. If 6 isa substitution with a recurrent pair pq and to = topq £ Sz ,

then (tf(to), o) is minimal and uniquely ergodic.

The minimality of (tf(to), a) was first observed by Gottschalk [4] and the

unique ergodicity by Klein [5]. Others, including Dekking [1] and Michel [7],
have extended these results to more general situations than those discussed here.

If <j> is the unique invariant measure on cf(to), then (</>(j))i65 is the nor-

malization of the strictly positive right eigenvector associated with the Perron-

Frobenius eigenvalue of Me [7].

3.  A COVERING COCYCLE WHICH DOES NOT GROW LINEARLY

Let S = {a,b,c,d,â,b,c,d} and let 6 : S —► S4 as follows:

6(a) = abca, 6(b) = bdab, 6(c) = cade, 9(d) = debd,

and 8(s) = ss\s'2s for 6(s) = ssxs2s and s = s
We see that

Me =

/2
1
1
0
0
0
0

Vo

0
1
0
2
0
0
1

0

o\
0
1
0
0
1
0

V
and it is easily verified that M8 is primitive and that ca is a recurrent pair
Thus, for to = toca, to), a) = (Xoj , a) is minimal and uniquely ergodic.

Let <f> be the unique invariant measure on (Xw, tr). Since the Perron-Frobenius

eigenvalue of Me is 4 and the corresponding right eigenvector is ( 1, 1, .

<ß(s) = 1/8 for all s£S.
Let f:S^R2 by

1),

/(a) = (a/2,0),

Ac) = d,-i),
/(*)«U, 1),
/(d) = (0, a/2)

and f(s) = -f(s). Then, as described in the previous section, we have / G

C(Xm, R2) and h = hj £ <& = { g : Xw x Z -► R2\g is a cocycle}. By

Proposition 2.2, h does not grow linearly since | Yses f(s)<f>(s) 1=0.  Also,
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if we let f(x) = (fx(x), f2(x)), then Jx fdcb = 0 for i = 1, 2 and so, by

Theorem 1.12 in [3], neither /■ nor f2 would determine a covering cocycle

on X(o. In particular, trying to build a flow under either /• or f2 would be

fruitless. However, in what follows we will show that taken in tandem, they

produce h , a covering cocycle with values in R2 .

We first note that for

/2 + 72        0     \
V     0        2 + a/27

Lf = fd and, by induction, Lnf = fd" . Denote 2 + a/2 by a. (The substi-
tution 6 and the matrix L are variants of a substitution and matrix used by

Dekking in [2] to create a continuous nowhere differentiable curve, the von Koch

curve. Dekking uses the substitution to construct compact subsets {An}^=l of

R2 ; his compact sets, A„ , resemble the image of the first 4" integers (con-

nected with line segments) under our h(co, •). Dekking then uses L~x as a

scaling transformation to obtain the von Koch curve as the limit of the sets

L-"An .)
To show that h is covering, by Proposition 2.1 it will suffice to show that

given R > 0 there exists r > 0 so that when \n - m| > r for n, m £ Z

(without loss of generality n < m), then

|A(iu, n) - h(to, m)\ = \f(to[n, m - 1])| > R.

The following three lemmas will be used.

Lemma 3.1. Let W be a block appearing in to, and let N(W) denote the num-

ber of symbols in W. Then for all n>0,

(i) N(W) = l implies V2a" < \fOn(W)\ < 2a" ,
(ii) N(W) = 2 implies 2a" < \fO"{W)\ < an+x,   '

(iii) N(W) = 3 implies an+x < \fOH(W)\ < V2an+X,

(iv) N(W) = 4 implies a/So^1 < \fOn(W)\ < 2a"+1,

(v) N(W) = 5 implies v^a^1 < \fdn(W)\.

Proof. We observe that it suffices to show that the inequalities hold for n — 0

since

\fd"(W)\ = \L"f(W)\ = a"\f(W)\.
To show that the lemma holds for n = 0, we list all the blocks of length 5 or

less appearing in to and we apply / to all of these blocks.

This is not as tedious as it might seem. There are several simplifying as-

sumptions we can make. First, it can be shown that each symbol can only be

followed by two others. For example, a can be followed by b and d. Sec-

ondly, if sx...sn appears in to for 1 < n < 5, then we must be able to find tx t2

appearing in to with sx...sn a subblock of 6(txt2). These two observations

considerably shorten the list of possible words of length 5 or less appearing

in to. Also the fact that \f(sx. ..s„)\ = | - f(s\ . ..s"„)\ reduces the necessary
calculations further. These calculations can be found in Table 1 of [6] .        D

The remaining two lemmas give approximations for values of / on blocks

of the form
e"-x(sx...si)en(tx...tk)d"-x(ux...Uj),
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0 < /, 7 < 3, I < k < 4, when they occur in to in a particular location. The

word "occurs" will be given a special technical meaning; specifically, when we

say a block of this form occurs in to, we mean it appears in the following way:

d(Sj) ends in sx ...s¡, 6(ux) begins with ux...u¡ , and

to[0,p-4n-l] = 6n(a)...d"(si)dn(tx...tk)dn(ux)

where w[0,p-l] begins with a and ends with Sitx...tkux or that

co[-p-4",-i] = e"(si)d"(tx...tk)e"(ux)...d"(c)

where <y[-p,-l] begins with s¡tx...tkux and ends with c. This distinction

is important because not every appearance of a block of the above form is an

occurrence.

Lemma 3.2. Suppose 0<i<3,2<k<4.

(1) If sx ...s¡6(tx ...tk) occurs in to, then

\f(sx...sid(tx...tk))\>\f(sx...si)\ + \f(6tx)\.

(2) If 6(tx ...tk)sx...s, occurs in to, then

\f(d(tx...tk)sx...si)\>\f(6tx)\ + \f(sx...si)\.

Proof. If i' = Ö, then the result follows from Lemma 3.1. The case of k = 2

is handled by calculating \f(sx. ..s¡6(tx... tk))\, \f(sx. ..s¡)\ + |/(f?íi)|, and

\f(6(tx ...tk)sx ...s¡)\ on all possible blocks of length three occurring in to.

These calculations are contained in Table 2 of [6].

Otherwise, k > 2. We will show that (1) holds. The proof of (2) is similar.
First, suppose that i - I . Then, using Lemma 3.1 twice,

\f(sxe(tx...tk))\>\\f(d(tx...tk))\-\f(sx)\\>a2-2

>2a + 2>\f(6tx)\ + \f(sx)\.

Next suppose that i = 2 and suppose d(s2) = s2sisxs2. Then

\f(sxs28(tx...tk))\>\\f(6(s2tx...tk))\-\f(s2s3)\\

> v2a2 — a >2a + a

>\f(etx)\ + \f(sxs2)\.

A similar argument holds for i: - 3 .

Lemma 3.3. Suppose sx...s¡6(tx ...tk)ux...u¡ occurs in to, with 0 < i, j < 3

and 1 < k < 4. Then, for all n £ N,

f[d"-x(sx...s,)dn(tx...tk)dn-x(ux...uj)] > V^C*".
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Proof We observe that the proof reduces to showing that the inequality holds

for n = 1, because for n > 1, we have the following easy inductive step:

\f(d"-x(sx...sl)dn(tx...tk)e»-x(ux...uj))\

= \Lf(en-2(sx...si)en-x(tx...tk)d"-2(ux...uj))\

= a\f(d"-2(sx...si)en-x(tx...tk)en-2(ux...Uj))\

>a(V2a"-x)

= V2an.

First suppose that k = 1. Lemma 3.1 includes i — j = 0. If j = 3 and
i > 1 then, using Lemma 3.1 and Lemma 3.2,

| f(sX . ..Sjd(tX)UXU2U3) I > I |/(5! . ..s¡e(txux))\ - \f(ux)\ I

>l/(fti)l + l/(*i...*i)|-|/(«i7l
>\f(9tx)\

> Via.

The case of j > 1 and i = 3 is similar. The remaining cases for k — 1 are
handled in Tables 3 and 4 of [6].

Otherwise, k > 2. Suppose \f(sx ...s¡)\ > \f(ux... Uj)\. Then, using Lemma
3.2,

| /(*,.. .Si9(tx... tk)ux... uj)) | > | |/(j,... Si6(tx... tk))\ - \f(ux... Uj)\ |

> I f(8tX) I + 1/0*1 -..Si) | - |/(Mi ...M/) |

> I/(oil) |

> Via.

Similarly if |/(mi ...«,-)| > |/(si...s¡)\.

We are now ready to show that h is covering.

Theorem 3.1. There exists c > 0 such that when 4" < \a - b\ < 4n+x then

\h(to,a)-h(to,b)\>can-1

for all n £ N and h is a covering cocycle.

Proof. Assuming a < b, first note that if

W = S0l... 50,0 #0*1, • • . SX¡¡ )62(s2í .. . S2¡2 )... Ö"-2(5(„_2)i . . . S{„-2)i{n_2} )

appears in to with 0 < ij < 3 and 0 < j < n - 1, then, using Lemma 3.1, we

have

n-2 n-2

\f(W)\<Y/\f(ej(Sjl...Sj,j)\ <^V2aJ+x
j=0 j=0

\    I — a   J \   a — 1    /      a — I

We consider two possible cases.
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Case 1. A 6"(s) block occurs in to[a, b - 1] for some s £ S.  (Notice at

most four such blocks can occur in to[a, b - 1].) So

to[a,b- l] = s0¡...soÍQ9(sXl...sXi¡)

.. 0"-2O*(„_2),... 5(„-2)l.   „ )6"-x(sx... Si)d" (tx... tk)0n-l(ux. .. Uj)
'(«-2)

M0l . .. M0,

with 6n~x(sx. ..Sj)d"(tx... tk)6"~x(ux... Uj) occurring in to and where 0 < i¡,

i. ji, J; < 3, 1 < k < 4, and 0 < / < n - 1. Applying the previous estimate
and Lemma 3.3, we obtain

h(to, a) -h(to,b) | = |/(û)[fl,ô-l])|

> \f(dn-x(sx...Si)dn(tx...tk)en-x(ux...Uj))\-i
'a/2q"'

a- 1

a-\j

Now set c = (a/2 - £¿f ) « .2426 > 0.

Case 2. No 0"(s) blocks occur in to[a, b - 1]. Then at least three and at

most six 0"_1(s) blocks occur in cu[a,A-l]. If three or four 9n~l(s) blocks

occur, then the argument used in Case 1 with n - 1 gives \h(to, a) - h(to, b)\ >
ca"~l.

Otherwise, five or six 8n~i(s) blocks occur in to[a, b - 1]. Say 8n~l(sx... s¡)

occurs in to[a,6-1] for 5 < / < 6 . But then sx ...s¡ appears in 6(txt2) and
to[a, b - 1] appears in 6n(txt2). In this case, using Lemma 3.1,

|A(o>,a)-A(tö,A)| = |/(to[a,A-l])|

\f(d"(txt2))\-3max\f(d"-x(s))\
ses

> 2a"-3(2an-x)

> (2a - 6)a"-1

« (.8284)a"-'

> can~x

as desired.

Now we can summarize the properties of the cocycle we have constructed:

Theorem 3.2. There exists a uniquely ergodic substitution minimal flow (Xw, a)

and a cocycle h : Xa, x Z —> R2 such that

(i) the cocycle h does not grow linearly,
(ii) the cocycles h¡ : Xw x Z —> R are not covering for i = 1, 2 where

h(x, a) = (hx(x, a), h2(x, a)) ,

(iii) the cocycle h is covering.
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Proof Use Proposition 2.2, Theorem 1.12 of [3], Proposition 2.1, and Theorem
3.1.

Finally, it follows from Proposition 2.2 that some arbitrarily small pertur-

bations of the h we have constructed will have linear growth. However, we

do not know how such perturbations effect the structure of the locally compact

Hausdorff space Xh and the R2 action on it.
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