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THE REGIONALLY PROXIMAL RELATION

JOSEPH AUSLANDER, DAVID B. ELLIS, AND ROBERT ELLIS

Abstract. Sufficient conditions for the regionally proximal relation Q(X) of

a minimal flow to be an equivalence relation are obtained in terms of the group

S/(X) of the flow and various groups which depend only on the acting group

T.

Introduction

One of the first problems in topological dynamics was to characterize the
equicontinuous structure relation S(X) of a flow (X, T) ; i.e. to find the

smallest closed equivalence relation, S(X) on (X, T), such that (X/S, T)

is equicontinuous. A natural candidate for 5 is the so-called regionally prox-

imal relation Q(X) (see below for the definition). Now Q turns out to be

closed, invariant, and reflexive, but not necessarily transitive. The problem was

then to find conditions under which Q was an equivalence relation. Starting

with Veech [V], various authors, including MacMahon [M], Ellis-Keynes [EK],

came up with various sufficient conditions for Q to be an equivalence relation.

In this paper we give a sufficient condition in terms of the group of the flow

(X, T), which generalizes most of the ones previously adduced (see 1.12).

These groups, introduced in [El], have begun to play a fundamental role in

topological dynamics in that many dynamical properties of flows may be char-

acterized using them. Indeed 1.10, the principal result of this paper, may be

viewed as saying that Q(X) is an equivalence relation if E c G'S'(X) (see

1.12), a statement which refers only to the group &(X) of the flow (X, T)

and certain groups G' and E which depend only on the acting group T.

The authors would like to thank Daniel Penazzi for many helpful discussions

during the preparation of this paper.
We begin by recalling the definition of the regionally proximal relation Q.

1.1.   Definition. Let (X, T) be a flow. We define the regionally proximal re-
lation Q(X) c X x X by

Q(X) = {(x, y) | there exist x, —> x, y¡ —► y, and í, 6 T

such that limxiti = limy,i,}.

It is easily checked that Q(X) is symmetric, closed, and T-invariant. Moreover
Q(X) is trivial if and only if the flow (X, T) is equicontinuous.
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1.2. Notation. Let M be a fixed minimal right ideal in ßT. We will write

J = {v £ M\v2 = v}   and   G = Mu,

where u £ J is fixed. Then (M, u) is a universal pointed minimal T-flow;

that is, given a minimal flow (X, T) with base point xo = xou, the map

/? -+ Xop \ M -* X

is a homomorphism of flows. We will write Q for the regionally proximal
relation Q(M) and

Q[p] = {q£M\(p,q)£Q}.
Note that G is a group which we equip with the r-topology. Recall that if

K c G, then its closure in this topology is given by

clsT K = (KoU)DG.

Here

K o u = {p £ M | there exist p, £ K and /, —» u with p,i, —► p }.

A net {a,} c G converges to a e G in the T-topology if and only if there exists

a net {t¡} c T such that t¡ -> « and a,i, —► a in the ordinary topology on M.

We denote by G' the T-closed subgroup of G defined by

G' = ("VcISt ZVI /V is a x -neighborhood of u }.

It follows from the definitions that a £ G' if and only if there exists a net in

G which converges to both a and u in the T-topology.

We will need the following elementary property of Q which we isolate as a
lemma.

1.3. Lemma. Let p £ M and (qx, q2) £ Q. Then (pqx, pq2) £ Q.

Proof. The map q —> pq from M —> M is a flow automorphism.

The next lemma deals with the relationship between Q and Q(X) for a flow

(X,T).

1.4. Lemma. Let (X, T) be a minimal flow with base point xq — xqu. Let
(x, y) £ Q(X) with x, y £ Xw, where w £ J. Suppose that p £ Mw with

xop = x. Then there exists q £ Mw such that Xoq = y and (p, q) £ Q.

Proof. It is well known (see [E2]) that there exist (p0, <7o) € Q such that

XoPo = xoP and Xoqo = y ■ Since x, y £ Xw, we may assume that po, <7o G

Mw . (Otherwise replace po,<lo by pow, qow). Now xqPqU = Xopu, so
a = pu(pou)~x £ Mu satisfies

Xool = Xo   and   apo = apouw = puw = p.

It then follows from 1.3 that the pair (apo, aqo) = (p, aqo) satisfies the desired

conditions.

1.5. Definition. We define a subset H = Hq of G by

H = Q[u] DG = {a£G\(u,a)£Q}.

We gather a few properties of H.  Although most of them follow readily

from the definitions, in the interest of completeness we include their proofs.
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1.6. Lemma, (a) G' C H,
(b) H is x-closed,
(c) H = H~X,

(d) Hß = ßH for all ß£G,
(e) Hp = Q\p] n Gv for all p £ Mv .

Proof, (a) Let a £ G'. Then there exists a net a, in G which converges to a

and to u in the T-topology. Thus there exist nets in T

ti —> u   and   Si -* u

such that

Otjti —► Q,        Q/5/ —► M.

But then ai; -» a« = a ; moreover

-i -i
aSj(s¡   t¡) —<• au = a    and   0,5,(5,   í,) —> a.

Hence (u, a) £ Q and a £ H.
(b) Let q £ H op . Then there exist a¡ e ZZ and t¡ £ T such that

h-*p,    otiU^q.

Now (m , a,) e Q, so lim(wí,, a¡t¡) = (p, q) £ Q. That is, q £ Q[p] and hence

Hop cQlp]. It follows that

clsT H = (Hou)nGc Q[u] C\G = H.

(c) follows immediately from the fact that Q is symmetric.

(d) follows from 1.3 and the fact that Q is T-invariant.
(e) Using the proof of part (b) we have

Z/pcZZopcÔLo]

for all p £ M. If p £ Mv , then Hp = Hpv c Mv = Gv . On the other hand
if Q € Q[p] n Gv , then (p, q) £ Q and hence (pw, qu) £ Q. It follows that

h = qu(pu)~x £ H.

Thus q - quv = hpuv = hpv - hp £ Hp .

1.7. Definition. Let p £ M and «e7 with pv = p . Recall that the collection

{V\VcTWithp£V}

forms a neighborhood base for p £ ßT. We define

L(p) = P| clsTintTclsT((MnF)v).
_

p€V

We now prove a key technical lemma regarding L(p).

1.8. Lemma. Let p £ M. Then
(a) L(p) ¿ 0,

(b) G'L(p) = L(p),
(c) L(p)t/; c Q[p] n Gu; /or all w £ J.

Proof, (a) Let 0 # W c A/ be open. We consider the left action

GxM ^ M

(a, q) -<• atf.
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A point q £ M is almost periodic with respect to this action if and only if qt

is almost periodic for every t £ T. Thus the almost periodic points for this

action are dense in M, and we can find q £ W which is almost periodic. Now

q = qw for some w £ J and
_    _    _
Gq — Gqw = Gw

is minimal with respect to the left action of G. Thus there exists a finite set

F c Gw such that

Gw cF(WnGw).

But then

Gw cF(WnGw) cFchx(WnGw).

Hence intTclsT(IF n Gw) ^ 0. Since the map ß —> ßv : Gw —► Gv is a

T-homeomorphism for any idempotent v £ J, we have

0 / (intT chT(W n Gw))v = intT clsT(W n Gw)v C intT clsT Wv.

The desired result now follows immediately from the finite intersection prop-

erty.

(b) Let v £ J with pv = p, and let W c Gv be a T-open subset. We

include a proof that G' clsT W = clsT W although this result is found in [E2].

Let ß £ W and a £ G'. Then there exist a net a, £ Gv which converges

to both av and v in the T-topology. Then a,/? converges to ß and hence

we may assume that a,/? £ W for all i. But a,/? also converges to aß, so

aß £ clsT W. We have shown that

G'W cclsTW

from which it Jollows immediately that G' clsT W = clsT W. Applying this to
intTclsT((AZn V)v) yields the desired result.

(c) First note that for any neighborhood N of p in M

L(p)w c clsTintTclsT(Ait;) c cls^/Vw)

= (Nw o w) n Gw c ((TV o w) o to) n Gu; = (N ow)n Gw.

Let r € L(p)w , so r £ N ow for any neighborhood in ./V of p. Thus there

exist nets p,< —> p , t¡ -* w with p,/, —► r. On the other hand rt¡ —* rw = r, so

(P, r) £ Q.

1.9. Proposition. Let A be a x-closed subgroup of G suchthat AH is a group.

Then AHp = AHL(p) for all p £ M.

Proof. AHL(p) is the union of a collection of cosets of AH, so it suffices

to show that L(p) c AHp. Let v £ J with pv = p. Then by 1.8 and 1.6
L(p) = L(p)v c Q[p] nGv = Hp.

Let (A", T) be a minimal flow with basepoint xo satisfying xqu = xo . The

so-called group of the flow

&(X, T) = {a£G\x0a = x0}.

Our main theorem gives a condition on &(X, T) which guarantees that Q(X)

is an equivalence relation.
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1.10. Theorem. Let (X, T) be a minimal flow with group A = S?(X, T), and
assume that H c AG'. Then Q is an equivalence relation on X.

Proof. Let (x, y), (y, z) £ Q(X). By 1.6 G' c H, so the assumption that
H c AG' is equivalent to the statement AH = AG1. In particular AH is

a group. We first show, using only the assumption that AH is a group, that

z = xhv for some h £ H and v £ J . We then complete the proof (using the

fact that AH = AG') by showing that (x, z) £ Q(X).
The flow (X, T) is minimal, so there exist w, v £ J such that xw = x

and zv = z. Thus (xw , yw) = (x, yw) and (yw, zw) are both in Q(X).

Applying 1.4 there exist ßx, ß2, ß$ £ Gw with

(ßi, ßi), (ßi, ßi) e Q   and   x0ßx = x, x0ß2 = yw, x0ß3 = zw.

We thus have
a. fl-i    a. /,ß2ß~x, ßiß2~x £ Q[w] r\Gw = Hw.

The fact that ^4ZZ and hence AHw are groups now implies that ß^ßxx £ AHw

and hence ßi £ AHßx = AßxHw . It follows that there exists h £ H with

Xoßi = Xoßxhw . Then

z = zv = zwv = XoßiV = Xoßxhwv = xhv.

To complete the proof we observe that

v = uv £ (ß~xAHßx)v = (ß-xAßx)Hv

= (ßrxAßx)H(hv) = (ß-xAßx)HL(hv)

Thus

and hence

1     ^HlJliVlu) — \HX

= (ß~xAHßx)L(hv) = (ß'lAG'ßx)L(hv)

= (ßx-xAßx)G'L(hv) = (ßx'xAßx)L(hv).

vu £ (ß~xAßx)(L(hv)u) c (ßx~xAßx)Q[hv],

(ß~xßßx,hv)£Q

for some ß e A . We then have (ßßx, ßxhv) £ Q by 1.3, and

(x, z) = (x0ßx, xhv) = (xoßßx, xoßihv) £ Q(X)

as desired.
We shall see that the converse of 1.10 is false, but first we deduce some

interesting consequences.

1.11. Proposition. Let A be a x-closed subgroup of G. Then the x-closed sub-

group generated by AH is AE where E is the group of the universal equicon-

tinuous minimal flow.

Proof. Let B be the T-closed subgroup of G generated by AH. Since Q is

contained in the equicontinuous structure relation on M, H c E and hence

B c AE. There exists a minimal flow (X, T) such that &(X, T) = B (see

[E2]). Now H c B = BG', so Q(X) is an equivalence relation by 1.10. Thus

Q(X) is the equicontinuous structure relation on X (see [A]). In other words

the maximal equicontinuous factor of X is given by

(*) *eq = X/Q(X).
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The group &(Xeq, T) = BE. On the other hand it follows from (*) that

&(Xeq ,T) = {a£G\(x0, x0a) £ Q(X)}

= {a £ G | Xoa = Xfj/z for some h £ H}

= BH — B.

Hence BE = B, so AE c B .
In the following proposition, (X, T) is a minimal flow with basepoint Xq =

xqU and A - 2?(X, T). P(X) denotes the proximal relation on X, and S(X)

denotes the equicontinuous structure relation on X.

1.12.   Proposition. The following are equivalent:

(1) AH is a group,

(2) AH = AE,
(3) S(X) = Q(X)P(X),
(4) Q(X)P(X) is a closed equivalence relation.

Proof.  (1) =*> (2) is an immediate consequence of Proposition 1.11, and (2) =>

( 1 ) is obvious.
(3) => (2) It is sufficient to show that E c AH. Let e £ E. Then (x0, x0e) £

S(X), so (x0, y) £ Q(X) and (y, x0e) £ P(X) for some y £ X. Hence there

exists a minimal right ideal I c ßT such that

yr — xoer   for all r £ I.

Let w £ I be an idempotent such that uw — u and wu = w. (For a proof

that such an idempotent exists see [E2].) Then

(xo, Xoe) = (XoU , XqSU) = (XqUW , XoSUW)

= (x0w , x0ew) = (x0w ,yw)£ Q(X),

and it follows that e £ AH.
(2) ^ (3) Clearly Q(X)P(X) c S(X). Suppose that (x0, yo) e S(X) and

that v £ ßT is a minimal idempotent with yov = yo ■ Then

you = xoe   for some e £ E ;

and since we are assuming that AH = AE, there exists h £ H with Xoe = xoh .
Now

(x0, x0h) £ Q(X)   and   (x0h , x0hv) £ P(X),

so (x0, yo) = (xo, youv) = (x0, x0hv) e Q(X)P(X). In particular note that if

you = >>o we have shown that (x0, yo) e Q(X).
Now suppose that (x, y) £ S(X) with xw = x where w £ ßT is a minimal

idempotent. Let a £ G such that xa = xo . Then as was noted above we have

(x0,ya) = (xa, ya)£Q(X).

Thus

(x, yw) = (x0a~xw, (ya)a~xw) £ Q(X).

Since (yw, y) e P(X), it follows that (x, y) £ Q(X)P(X).
(4) => (3) The relation Q(X)P(X) is T-invariant, contains Q(X), is con-

tained in S(X), and so must be S(X).
(3) => (4) is obvious.
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1.13. Remarks. (1) In view of 1.11, 1.10 is equivalent to: E c AG' implies
Q(X) is an equivalence relation. Since this statement involves only the group

A of the flow, it is natural to ask whether Q(X) being an equivalence relation

is a "group condition"; i.e., given that &(X, T) = &(Y, T) and that Q(X) is

an equivalence relation does it follow that Q(Y) is one also?

(2) In [E3] it is shown that when the almost periodic points are dense in

XxX, E c AG'. Thus 1.10 generalizes the result that Q(X) is an equivalence

relation when the almost periodic points are dense in XxX. In particular,
if (X, T) is point distal, then the almost periodic points are dense in X x X

and it follows from 1.10 that Q is an equivalence relation for any proximal

extension of (X, T).
(3) The proof of the crucial lemma 1.8 raises the question: Is every p £ M

an almost periodic point of the flow (G, M), and if not why not?

The following lemma follows from a combination of Proposition 14.14 of

[E2] and Proposition 3.10 of [EGS]. In the interest of completeness we include

an outline of a (different) proof.

1.14. Lemma. Let D be the group of the universal distal minimal flow. Then

G'D = E.

Proof. First note that G' c H c E and D c E (because the universal equicon-

tinuous flow is a factor of the universal distal flow). Thus G'D c E. Let B be

any T-closed normal subgroup of G which contains G'D. Then the map

t^utu-.T -► G¡B

is a homomorphism. Indeed G/B is a compact topological group, so (G/B, T)
is an equicontinuous flow. Applying this to B — G'D and B = E we obtain

GI G'D —► G/E, a homomorphism of equicontinuous flows. But G/E is the

maximal equicontinuous flow, so G'D = E.

1.15. Corollary. Let (X, T) be a minimal flow for which the proximal relation

is closed. Then Q(X) is an equivalence relation.

Proof. Since the proximal relation is closed, it must be an equivalence relation

(see [A]). Dividing out by this relation we see that (X, T) is a proximal exten-

sion of a distal flow. Hence D c &(X, T) = A, which implies (by 1.14) that
H c E = DG' c AG'. It then follows from 1.10 that Q(X) is an equivalence
relation.

We now give an example which shows that the converse of Theorem 1.10 is

false.

1.16. Example. Let X = Sn~x and T = SL(n, R) with n > 2. We consider

the action
X x T -» X,

(     l\ -    xl
{X'l)^ \\xlW

Then Q is an equivalence relation on X ; in fact (x, y) £ Q(X) for all x, y £

X. Moreover van der Waerden (see [W]) shows that the constants are the only

almost periodic functions on T when the latter is provided with the discrete

topology; hence E = G in this case. On the other hand the identification of

antipodal points gives a Z,2 group extension:

X = Sn~x ^RP".
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But (RP", T) is proximal, so 5?(RP", T) = G. Therefore G/&(X, T) 3 Z2
and A = S?(X, T) is of index 2 in G. It follows that A is T-clopen and
G' c A ¿ G. Now the fact that Q(X) = X xX implies that AH = G. Hence
H <£ A = AG'.
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