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INTERPRETATION OF LAVRENTIEV PHENOMENON
BY RELAXATION: THE HIGHER ORDER CASE

MARINO BELLONI

ABSTRACT. We consider integral functionals of the calculus of variations of the
form

1
F(u)=/ foc,u,u ..., utydx
0

defined for u € W"-2°(0, 1), and we show that the relaxed functional F with
respect to the weak ngc l(0 , 1) convergence can be written as

f(u):/olf(x,u,u',... ,u™ydx + L(u),

where the additional term L(u), the Lavrentiev Gap, is explicitly identified in
terms of F .

1. INTRODUCTION

In 1926 M. Lavrentiev (see [L]) first demonstrated this surprising result: given
a variational integral of a two-point Lagrange problem, which is sequentially
weakly lower semicontinuous on the admissible class of absolutely continuous
functions, its infimum on the dense subclass of C! admissible functions may be
strictly greater than its minimum value on the full admissible class. Some years
later Mania (see [M]) gave an example of this phenomenon with a polynomial
integrand. In recent years there have been additional works by several authors;
for further bibliographical references the reader can see for instance [BuM].

In this paper we follow the Buttazzo and Mizel [BuM] approach which con-
sists in studying the Lavrentiev Phenomenon from the point of view of relaxation
theory. More precisely let X be a topological space, ¥ C X a dense subset,
F:X — [0, +oc0] a given functional, and define

Fy =sup{G: X - [0, +0]: G ls.c., G F on X},
Fy=sup{G: X —-[0,+4+00]:Gls.c,G< FonVY},

L(u) = { Fy(u)—Fx(u) if Fx(u) < +oo,

. ueX.
0 otherwise,

We call this nonnegative functional L (notice that Fx < Fy) the “Lavrentiev
Gap” associated to F, X and Y. In their paper Buttazzo and Mizel [BuM]
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considered integral functionals of the form

1
Gu) = /0 £x, u(x), u(x)) dx

with X = W 1(0, 1) and Y = W!-+(0, 1), and gave a characterization of
L in term of the “Value Function” V (see §2 below). Then they obtained an
explicit representation of L for a large class of integrands.

In this paper we extend the results of [BuM] to integral functionals depending
on higher order derivatives, of the form

1
G(u) =/0 SO, ux), ..., u™(x))dx

with X = W™ 1(0, 1) and Y = W"-*>(0, 1). More precisely, in §2 we obtain
a characterization of L in terms of the “Value Function” V ; in §3 we provide an
explicit representation of L for some integrands which satisfy a “homogeneity
condition”, and an integrand of Mania type (see [M], [BM1], [BM2]) is analyzed
in detail by following this approach. Our results deal with regular integrands (in
a sense to be specified), but we want to point out an interesting result involving
autonomous second order integrands (see Cheng [C], Cheng and Mizel [CM])
showing the nonoccurrence of the gap phenomenon when the integrand satisfies
some continuity assumptions, with an example of a nonvanishing gap when a
constraint of the form {u > 0} is added.

2. THE REPRESENTATION THEOREM
Let Q be the interval (0, 1); we consider the following spaces:

w10, 1) the space of all functions u : @ — R which are absolutely
continuous together with their (n — 1) derivatives;

W":>°[0, 1] the space of all functions u : Q — R which are Lipschitz
continuous together with their (n — 1) derivatives;

Wo:°°10, 1] the space of all functions u : Q — R which are Lipschitz
continuous together with their (n — 1) derivatives on every
interval [§, 1], withd > 0;

Ao the space of all function u € W"-1(0, 1) n W *]0, 1]
such that u?(0)=0fori=0,...,(n—1).

Let f:Q x R" x R — R be a function such that:

(1) f(x,s, z) is of Carathéodory type (i.e. measurable in X and continu-
ousin (s, z));
(ii) f(x,s, -) is convex on R for every (x,s) € Q x R";
(iii) there exists a function w : Q@ x R x R — [0, +oo[, wWith w(x, ¢, 7)
integrable in x and increasing in ¢, 7, such that

0< fx,s,2)<wlx, ||, |zl) ¥(x,s,2)eQxR"xR.
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For every u € %, , define

/ £,y u™)dx,

(w) ifuewn>[0, 1],
+o0o  otherwise,

6 ={"
and denote by G the functional
G= max{H : Hoo — [0, +00] : H seq. w-W2:!-Ls.c., H < G} .

Our goal is to give a representation formula for G over %
Since F is sequentially weakly lower semicontinuous on W" 10, 1) (briefly

loc
seq. w- W 1(0, 1)-1s.c.) (see [B]), we have

loc
G(u) > F(u) Vue Ay,

and then
G(u) = F(u) + L(u) Vu € Sy

for a suitable functional L > 0. We call the functional L the “Lavrentiev Gap”
relative to G over the space %, . Obviously we have that G < G. Then

G(u) = F(u) Yue W">[0, 1];

ie. L(u) =0 for every u € W"->[0, 1]. In order to identify the functional L
we introduce the “Value Function” V(x,s) defined for every (x, s) € Q x R”
by:

V(x,s)=inf{/ S, u, ..., u™dt:ue wr=[0, 1], u0) =0
0

ul(x)=s;, i=0,...,(n— l)}

and its lower semicontinuous envelope with respect to s = (S0, ..., Sn-1)) »
given by
Wi(x,s)= litéfn infV(x, &).
-
We now state a representation result for the Lavrentiev Gap L.
Theorem 2.1. If the integrand f(x, s, z) satisfies the hypotheses above, then

L(u) = lim %nf W(x,u(x),...,u D(x)) foreveryuec .
x—0+
In order to achieve the proof of Theorem 2.1 we need some lemmas. For the

sake of simplicity in the following we set

M(u) = lim inf W (x, u(x), ..., u"=(x))
x—0+

and, when no confusion is possible, we use the notation #(x) to indicate the

vector (u()(x))" !,
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Lemma 2.2. Take u, u, € & with u, € W"->°[0, 1] and assume that u, — u
weakly in W":1(0, 1). Then

loc
F(u)+ M(u) < lhim inf G(uy) .
—+00
Proof. Take 6 > 0; for every h € N, by the definitions of V(x,s) and
Wi(x,s) we get
) 1
G(uy) =/ SO, up, ..., uﬁ,”))dx+/ fx,up, ..., uﬁ,”))dx
0 s
1
>2VE.TO)+ [ fx,un, ., ) dx
)

1
zW(é,ﬁh(J)H/ £ ups .., u™)dx.
’ )

As h — 400, taking into account that W is seq. w-ngc’l-_l.s.c. and that the

assumptions on the integrand f provide the seq. w-I/Vk',’él-l.s.c. of the integral
term, we get

1
liilminfG(u,,) > lzminf [W(J, uy(9)) +/ Sf(x,upy ..., uiﬂ))dx]
—+00 —+o00 P

> W(a,a(a))+/;f(x,u,...,u<">)dx.

Finally, as 6 — 0 we obtain

h—+o00

1
liminf G(uy) > lilan iélf [W(J, u(d)) +/ flx,u,..., u(”))dx]
- s

1
> M(u)+/ O, u, ..., uydx
0
=M(u) + F(u),
and the lemma is proved. 0O
Lemma 2.3. The functional F + M is seq. w-W":'-Ls.c. on S .

loc
Proof. Taking u, u, € %, with u;, — u weakly in Wk',‘é’ , we have to show
that
F(u)+ M(u) < llilm inflF (up) + M(up)].
— 400

Assume that the right-hand side is finite (otherwise there is nothing to prove),
and consider a sequence (x;) in Q with x;, — 0 such that

(2.1) W(xy , Up(xp)) 2M(u;,)+% Vh e N.
It is now possible to find a sequence (s;) in R”, with s, — 0 such that
_ 1
(22) lon = Tu (3] < 33
— 1
(2.3) V(xns sn) < W(Xn, Un(xn)) + 5 -
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Moreover, denoting by P,_; the polynomial of degree n—1 such that P,_;(x;)
= s, —un(xy) , it is easy to see that, since f is of Carathéodory type, the sequence
(sp) can be taken such that

1 1
(2.4) / SO,y + Pooy, w)dx < / f(x,'ah,ui,"’>dx+%.
Xp Xh

Finally, let v, € W"->°[0, x;] be such that 7,(0) =0, Ty(x;) = s, and

Xh
(2.5) / f(x, oy, v,(l"))dx < V(xp, sp) + %

0
Setting

_ up(x) + Py (x) i x> X,
“’"(x)“{v,,(x) if 0 < x < xp,
we have w, € W"->~[0, 1], w,(0) =0, and
(2.6) Whp ———— U w-W,{,’;'(O, 1).
—+00

Therefore, by using Lemma 2.2 and (2.1)-(2.6), we obtain

Fu)+ M(u) < l,ilm inf F(wy)
—+00

h—+o00

o 1 ! — 1
glﬂlj&f (V(xh,s,,)+z)+(/th(x,uh,uh )dx+h—

<timinf | (W 0o, B0 + 1 ) + Fm) + 7|

h—+oo |

[ Xh 1 _
= liminf / fCx, oy, v,(,”))dx +/ S, Ty + Pa_i(xp), uﬁ,")) dx]
5 0 Xp

< liminf :(M(uh) + %) + F ) + %]

h—+o00

= I;i,m inflM (up) + F(up)],
—+00
and the lemma is proved. O
Proof of Theorem 2.1. 1t is easy to see that
Mu)=0 forevery u € &, NW" [0, 1];

hence we have F + M < G on &, . By Lemma 2.3 we have F + M < G on
s , SO it remains to prove that

G< F(u)+ M(u) forevery u € %.
To this aim, fix u € %, and take a sequence (x;,) in Q, x; — 0, such that

(2.7) M(u) = Lim W(x,, 7(xy)).
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By definition of W and the assumptions on the integrand f we may find a
sequence (s;) in R”, s, — 0, such that for every A € N

_ 1
(2.8) Isp —u(xp) < 7
_ 1
(2.9) V(xn, sp) < W(xp, u(xy)) + 7
1 1
(2.10) / Fc, T+ Poys u™)dx < / fx, @, W™y dx + %
Xp Xh

where P,_, is as in the proof of Lemma 2.3. Finally, let v, € W"-*°[0, x;] be
a sequence such that 7,(0) =0, U,(x,) = s, and

S| -

Xh
(2.11) | 1T o dx <V s+
0
As in the proof of Lemma 2.3, we define the sequence
_f up(x) + Pyy(x) if x> xp,
wh(x) = { Vp(x) if0<x<x,.

Then wy € W"-*°[0, 1], w,(0) =0 and

wy, —— u strongly W%:'(0, 1).
h—+o00

Hence, by using (2.7)-(2.11), we obtain

G(u) < liminf G(w,)
h—+o0

[ rx 1 _
= liminf / hf(x, Tp, v,(l”))dx+/ fOe, U+ Pu_y(xh), u(”))dx]
h—+o0 i 0 X
i 1
< liminf (V(xh,s;,)+l)+ (/ f(x,ﬂ,u("))dx+l)]
h—+o00 | h Xn h
< liminf (W(x;, , u(xy)) + l) + F(u) + g]
h—+oo | h h
=M(u)+ F(u);

so M = L, and the theorem is completely proved. O

Remark 2.4. Fix a subset g of {0,1,...,n— 1} and consider the class &}
of all functions u € W"-1(0, 1)N W;2:*10, 1] such that u()(0) =0 for i€ f.
We denote by G4 the functional

Gy = max{H : #f — [0, +00] : H seq. w-W"'-Ls.c., H < G}.

loc
As in the previous case, we have
Gg(u) = F(u) + Lg(u) Vu € S

for a suitable functional Lz > 0, the “Lavrentiev Gap” relative to G over the
space & . In order to identify the functional Lg we introduce the Value
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Function Vg(x, s) defined for every (x, s) € Q x R* by:
X
Va(x,s)= inf{/ ft,u, ..., u™dt:uewr>[0,1], u”(0)=0,
0

u(i’)(X)=Sij, j=03 1,-"’k—1}

and its lower semicontinuous envelope with respect to s = (sj,, ..., Si,_,) , given
by
We(x,s) = li%nian,g(x , ).
—S

By repeating step by step the proof of Theorem 2.1, we obtain the following
result:

Theorem 2.5. If the integrand f(x, s, z) satisfies the assumptions of Theorem
2.1, then

Lp(u) = lim inf Wy(x, u(x), ..., ul=(x)) foreveryuec Lf.
x—0+

Note that the polynomial P,_; may be chosen, in this case, such that

p0 _ | ) n) () ifrep,
-l 0 otherwise .

3. SOME EXAMPLES

In this section we give an explicit representation formula for a class of second
order integrands f (we mean that f is a function dependingon x, u, ¥, u").
We introduce the so-called “invariance property” for second order integrands
(analogous to the one introduced in [HM 1] for first order integrands, and to the
one of [CM] for second order autonomous integrands):

there exists y €]1, 2[ such that forevery ¢t >0 and (x, s, z, w)
eQxRiuf(tx, s, "'z, 0"2w) = f(x,s, z,w) .
We want to analyze a class of second order integrands f(x, s, z, w) that sat-
isfies this invariance property only in an asymptotic sense near the relevant
singular abscissa. Let us take § > 1,1 € [1, d[; we suppose the integrand
f:Q xR xR— R has the form

flx,s, z,w)=x"a(x, s)b(x, z)lw|,
with a(x, s), b(x, z) nonnegative, continuous functions such that, setting y =
2%, for every y € Q the functions my, n,, M,, N, : Q — R defined by
my(s) = inf{a(x, x?s): x <y}, ny(s) =inf{b(x, x?"1s): x <y},
M, (s) = sup{a(x, x’s) : x <y}, N,(s)=sup{b(x, x""1s): x <y}
are locally bounded. Take now x,y € Q, x < y, and consider the following
functionals:

X
Fuw) = [ S uw,wyr,
0
X
F.,X,y(u)=/ 15 my (7w (¢ )|u")8 dit
0

X
F;,y(u)=/ M (7 u) Ny () WP de
0
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We suppose that there exists ¥ € Q such that, for every x € {x € Q: x < ¥},
we have :

(3.1 F? 5(u) < +oo  whenever Fy(u) < +oo.
Obviously for every x,y € Q with x <y

Fu x,y(u) < Fe(u) < Fy ,(u) Yue s,
then for every x € Q

sup F. x,y(u) < Fe(u) < inf F} (1) VYues),
yeQ yeQ ’

y<y y<y
say
. : * 1
(3.2) yll’rg+ Fi x,y(u) < Fe(u) < yli% Fe ,(u) Yued,.

Define, for y <y,
Jim my(s) = mo(s),  lim My(s) = Mo(s),

Jim () = mo(s),  lim Ny(s) = No(s);

by the assumptions (3.1) we apply the Monotone and Lebesgue Convergence
Theorems to (3.2) obtaining
(3.3) Fo,x(4) < Fx(u) < F(u) Vu € 5.}

where
Fo,x(w) = [ £ mo(e T ma(e! i
F(u) = /ox T Mot~ u) No (217 u ) ") dit .
We suppose also that my(s) = P < Q = My(s), with P, Q € [0, +oo[.
Theorem 3.1. Under the previous assumptions, for every
uesl={uewr\0,1)n w210, 1]: «'(0) = 0}

we have

Pok®!

lim inf,_q u' (x)x' ™7 5
/ no(€)|E|P 14

(3.4) 0

< L(u) < QoK

where k = %=1

In order to achieve the proof of Theorem 3.1, we need a lemma.

0

lim inf_o ' (x)x' =7 sl
| No(©)IEP~1 de]
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Lemma 3.2. Let h(Z) be the solution of the minimum problem
inf{G(u): u € W20, 1), u'(0)=0,u'(1)=Z},
where .
Glu) = / XU (el =7 o) (x) P dx.
0
We have

b

VA
h(Z) = 6k~ ‘ /0 n(@)|E1P~" de

where k = ‘%%l and the function h(Z) is the solution of the equation
(v - 1)ZK'(Z) = sup{QHK'(Z) - n(Z)|QI° : Q € R},
h(0)=0.
Proof. By explicitly carrying out the maximization, the equation (3.5) becomes
h'(Z) =6k®"'n(Z)|Z)°2

(3.5)

and by direct integration

h(Z) = 6k%-!

z
| nee-t d«:’ .
Let us take u € &/ (x, z) = {u € W2 : /(0) = 0, «'(x) = z}; from (3.5),
setting Z(¢) = t'~7u'(¢) and Q(¢) = t*~?u"(t) we obtain

(y = DZ(OK (Z(1)) > |Q)|H(Z (1)) — n(Z()QM)P .
Then

' (ZO)Q@)° = T R (Z()IQ(1) + (1 - 9)Z(1)]
= W(Z(1)Z'(t) = (ho Z)(2)
(for the last equality see [MM]). Integrating on ]0, x[ yields

I(u) = /0 " (e () (1) dit

X
- / (T () (1)) dit
0

-/ " iz dr

> /x(h oZ)(t)dt

0
= h(Z(x)) - lim h(Z(2))
= h(Z(x))

(in fact u € W2-°[0, x] with «’(0) = 0 implies
111%1 () =0 Vyell, 2,
and hence lim,_¢+ h(Z(¢)) = 0). It follows that
(3.6) W(x,z)=inf{I(u):ue(x, z)} >h(x'"7z)=h(Z).
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Consider now the sequence (#;) C & (x, z) defined by
(LH)kz ift>e,
ue(o) =0, u;(t) = xk—l .
ttrz ift<e.
Taking ¢ sufficiently small we have
14 X
Wix,2) < 1w) = [ e in@ il des [ o in@rugug? e,
0

€

where ug(t) = (%)" , Uo(0) = 0; passing to the limit for ¢ — 0 the first integral
tends to 0, and hence
W(x9 S) < I(uO) .

At this point we can easily verify that I(#g) = A(x'~7z), and the proof of the
lemma is then complete. 0O

Proof of Theorem 3.1. We fix u € &} ; by Theorem 2.5

Li(u) = limi(x)lle(x, u'(x))
X —

where Wi(x, z) = liminf,_,; Vi(x, ¢q) and
Vi(x, z) = inf{Fy(u) : u € W?>(0, 1), /(0) = 0, u/(x) = z}
=inf{Fy(u):u e ¥ (x, z)},

where & (x, z) = {ue W%>(0, x): v/(0) =0, u'(x) = z}.
Let us introduce the Value Functions relative to the functionals Fy ,, F?
given by

Wo(x, z) =inf{Fy »(u) :u € & (x, z)},

VO(x, z) = inf{Fo(u) : u € & (x, 2)};
obviously, for every x € Q and for every z € R, we have by (3.3)
(3.8) Vo(x, z) < Vi(x, z) < V(x, 2).

(3.7)

Setting S =sx~7, Z = zx!~? and
1
Golu) = P / = no (=7 dit,
0

GO(u) = Q/Ol £ No(£' 7)) dit,
H(Z)={ueW>>0, 1):4'(0)=0, (1) =Z},
by the change of variable ¢ = xy we get
Vo(x, z) = Hy(Z) = inf{Go(u) : u € & (Z)},
VO(x, z) = HY(Z) = inf{G°(u) : u € & (Z)},
so that inequalities (3.8) become
(3.9) Hy(Z) < Vi(x, 2) < HY(Z)

for every x € Q and for every z € R.
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By Lemma 3.2 we have that Hy(Z) and H%(Z) are given by

b

z
Ho(Z) = Pok’! |/0 no(@)IEP° " d¢

(3.10)
H%(Z) = Q6k°~!

VA
/0 No(&)[¢[~! dc| :

and inserting (3.10) into (3.9) we obtain the inequality (3.4), that is the the-
sis. O

Example 3.3. Consider the functional

1
F(u) = /0 flx, u(x), u'(x), u(x))dx,

where the integrand f has the following form, with 1 <p <2 and 0<g< 1,
f(x, 5,2, w) = (s = xP)*(z — x7)*|w|’
= x¥P+0)(sxP — 1)2(zx~7 — 1)}|w|®
= x2+9q(x, s)b(x, z)|lw|?,
where we set
a(x,s)=(sx7?-1)?,
b(x, z)=(zx"9-1)%.
If § <1 we can easily verify that the Lavrentiev Gap L(u) is identically equal

to 0: for every u € W2-1(0, 1) with #/(0) = 0 we construct the sequence in
W2, 00

, Wix), ifx.<x,
Ue(x) = ﬂ)flx, if0<x<x,
u:(0) = u(0),

where x, € [0, 1] is a sequence with limit 0 as ¢ — 0, and we verify that
F(u,) —» F(u) as ¢ — 0. Here, for simplicity, we restrict our attention to the

case 6 > 122+ With the notation above

(3.11)

14+2(p+4q)
—
This integrand f has as “zero cost curves” the functions z;(x) = x?, z3(x) =
(g + 1)~1x9*!; by the assumption on p and g we obtain z;(x), z»(x) €
w210, 1)\W?:->[0, 1].

When 6>%¢";—ql,wehave y >p,7y>q and then

mo(s) = no(s) = Mo(s) = No(s) = 1;
hence for every fixed u € & we obtain

T=1+20p+q), 7=2-5=2-

w(x)|’

Li(u) = k%~ 'liminf i

x—0*

b

this functional is not identically equal to 0: for instance, L;(x?) = +oo and
Li((g+ 1)~ 1x9t!) = 400.
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When 6 = %quz , by a computation similar to the previous case, we obtain
mo(s) = My(s) =1, ng(s) = No(s) = (s — 1)%.

Then, for every fixed u € &) we have

u' (x)x!7

Ly(u) = 6k~ liminf (- 1P dg| s
x—=0+ Jo

also in this case this functional is not identically equal to 0: for instance
L(x?) = +o0, while Li((q+1)"'x9*t!) =2k~ /(6 + 1)(6 +2).

Finally, when § < b‘-—f{%’ﬂ , Theorem 3.1 does not apply because the func-
tions n,, N, are not locally bounded. However it is possible to show that in
this case the gap phenomenon does not occur (see [Be]): for every u € Mul,z',
we construct u, in W2->°(0, 1) by (3.11) and we prove that, if F(u) < +oo,
then F(u,) — F(u) as ¢ — 0, i.e.

1
/ fx,u,u,u")dx < +oo= L(u)=0.
0
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