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INTERPRETATION OF LAVRENTIEV PHENOMENON
BY RELAXATION: THE HIGHER ORDER CASE

MARINO BELLONI

Abstract. We consider integral functionals of the calculus of variations of the

form

F(u)= f f{x,u,u', ...,u{n>
Jo

)dx

defined for u e W • °°(0, 1), and we show that the relaxed functional F with

respect to the weak W£¿ ' (0, 1) convergence can be written as

— /•'
F{u) = /   f{x,u,u',... , u{n)) dx + L{u),

Jo

where the additional term L(u), the Lavrentiev Gap, is explicitly identified in

terms of F .

1. Introduction

In 1926 M. Lavrentiev (see [L]) first demonstrated this surprising result: given

a variational integral of a two-point Lagrange problem, which is sequentially

weakly lower semicontinuous on the admissible class of absolutely continuous

functions, its infimum on the dense subclass of C admissible functions may be

strictly greater than its minimum value on the full admissible class. Some years

later Mania (see [M]) gave an example of this phenomenon with a polynomial

integrand. In recent years there have been additional works by several authors;

for further bibliographical references the reader can see for instance [BuM].

In this paper we follow the Buttazzo and Mizel [BuM] approach which con-

sists in studying the Lavrentiev Phenomenon from the point of view of relaxation

theory. More precisely let X be a topological space, Y c X a dense subset,

F : X -* [0, +oc] a given functional, and define

Fx = sup{G : X -> [0, +00] : G U.c., G < F on X},

F y = sup{G :X 7* [0, +00] : G l.s.c, G < F on Y},

(FY(u)-Fx(u)   if Fx(u) < +00,

\ 0 otherwise,
El.

We call this nonnegative functional L (notice that Fx < F y) the "Lavrentiev

Gap" associated to F, X and Y.  In their paper Buttazzo and Mizel [BuM]
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considered integral functional of the form

-i

/o
G{u)= /  f(x,u(x),u'(x))dx

with X = ^''(0, 1) and Y = rVl<+oo(0, 1), and gave a characterization of

L in term of the "Value Function" V (see §2 below). Then they obtained an
explicit representation of L for a large class of integrands.

In this paper we extend the results of [BuM] to integral functionals depending

on higher order derivatives, of the form

G(u)= [ f(x,u(x),...,u^(x))dx
Jo

with X =Wn'l(Q, 1) and Y = Wn>+°°(0, 1). More precisely, in §2 we obtain

a characterization of L in terms of the " Value Function" V ; in §3 we provide an

explicit representation of L for some integrands which satisfy a "homogeneity

condition", and an integrand of Mania type (see [M], [BMI], [BM2]) is analyzed

in detail by following this approach. Our results deal with regular integrands (in

a sense to be specified), but we want to point out an interesting result involving

autonomous second order integrands (see Cheng [C], Cheng and Mizel [CM])

showing the nonoccurrence of the gap phenomenon when the integrand satisfies

some continuity assumptions, with an example of a nonvanishing gap when a

constraint of the form {u > 0} is added.

2. The representation theorem

Let Q be the interval (0, 1) ; we consider the following spaces:

IV" ' ' (0, 1 )    the space of all functions u : Q —> R which are absolutely

continuous together with their (n - 1) derivatives;

W/"'oo[0, jj   tjje Space 0f aii functions u : Q —> R which are Lipschitz

continuous together with their (n - 1) derivatives;

W^'00^ ,1]   the space of all functions u : Q —> R which are Lipschitz

continuous together with their (n - 1) derivatives on every

interval [ô, 1], with S > 0;

j/oo the space of all function u e Wn • ' (0, 1 ) n W¿¿ °°]0, 1 ]

such that h(,)(0) = 0 for / = 0, ...,(«- 1).

Let / : Q x R" x R -» R be a function such that:

(i) f(x, s, z) is of Carathéodory type (i.e. measurable in X and continu-
ous in (s, z));

(ii) f(x, s, •) is convex on R for every (x, s) e Q x R" ;

(iii) there exists a function <y:QxRxR—»[0, +oo[, with co(x, t, t)

integrable in x and increasing in t, x, such that

0 < f(x, s, z) < ù)(x, \s\, \z\)   V(x,5, z) eiîxR" xR.
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For every u e stf^ , define

F(u) = /   f(x, u, ... , uw)dx,
Jo

F(u)   if we Wn'°°[0, 1],

+00     otherwise,

• i

/o

G(u) = I

and denote by G the functional

G = max/// : JJ&, -» [0, +oc] : // seq. w-H^j '-l.s.c, tf < g\ .

Our goal is to give a representation formula for G over ja^o •

Since F is sequentially weakly lower semicontinuous on ^¿'(O, 1) (briefly

seq. w- W£¿1{0, l)-l.s.c.) (see [B]), we have

G(u)>F(u)   Vwe^oo,

and then

G(u) = F{u) + L(u)   Vw e J/oo

for a suitable functional L > 0. We call the functional L the_"Lavrentiev Gap"

relative to G over the space ja^o ■ Obviously we have that G < G. Then

G(u) = F(u)   Vug ^"^[O, 1];

i.e. L(u) = 0 for every u G (^"'^[O, 1]. In order to identify the functional L

we introduce the " Value Function" V(x, s) defined for every (x, s) eQxR"
by:

V(x, s) = infi fX f(t, «,..., u(n))dt:ue ^"^[O, 1], w(,)(0) = 0,

u<-'Hx) = Si,  / = 0,...,(«-l)J

and its lower semicontinuous envelope with respect to s = (so, ... , S(„-i)),
given by

W(x, s) = lim inf V(x, Ç).

We now state a representation result for the Lavrentiev Gap L.

Theorem 2.1. If the integrand f(x, s, z) satisfies the hypotheses above, then

L(u) = lim inf W(x, u(x), ... , u(n~x\x))   for every u € sé^ .
x—»0+

In order to achieve the proof of Theorem 2.1 we need some lemmas. For the

sake of simplicity in the following we set

M(u) = lim inf W(x, u(x), ... , u{"-l)(x))
x—>0+

and, when no confusion is possible, we use the notation ïï(x) to indicate the

vector (^''(x))^1 .
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Lemma 2.2. Take u, Uf, e s/oo with Uf, e W • °° [0, 1 ] <a«i/ assume that Uf¡ —> u

weakly in W£¿1(0, 1). 77zí>h

F(m) + M(u) < lim inf G(uh).
h-*+co

Proof. Take 3 > 0 ; for every A e N, by the definitions of K(x, s)  and

W(x, s) we get

pô r 1

G(Uh)= I   f(x,uh, ... ,u^])dx+      f(x, uh, ... , u(£])dx
JO Jô

/■'
>V(ô,uh(ô))+      f(x,uh,...,unh)dx

Jô

> W(ô ,ûh(ô))+ fJô
f(x, uh, ... , u^])dx

m,\
As h -> +00, taking into account that W is seq. w-^c' -l.s.c. and that the

assumptions on the integrand / provide the seq. w-H-^j '-l.s.c. of the integral

term, we get

\iminfG(uh) > lim inf
h—»+00 h—>+oo

^(<J,ïïA(<î))-r- /* f(x,uh,...,uf)dx
J Ô

> W(6,11(d)) + [ f(x, u, ... , w(n)) dx.
Jô

Finally, as ô -* 0 we obtain

liminfG(w/¡) > lim inf
A-»+oo <5-»0

W(ô ,û(S))+ f
Jô

1

f(x, u, ... , u^)dx

>M(u)+ /   f(x,u,...,u^)dx
/O

= M(u) + F(u),

and the lemma is proved.    D

Lemma 2.3. The functional F + M is seq. w-W^1-l.s.c. on s^ .

Proof. Taking u, Uf, € sfoc with «/, —► u weakly in W{"¿' , we have to show

that
F(u) + M(u) < liminf[.F(w/,) + M(uh)].

h—>+oo

Assume that the right-hand side is finite (otherwise there is nothing to prove),

and consider a sequence (x¿¡) in Q with Xf, —> 0 such that

(2.1) W(xh,üh(xh))>M(uh)+Xji    V/*€N.

It is now possible to find a sequence (s/, ) in R" , with Sf¡ —► 0 such that

(2.2)

(2.3)

\Sh~uh(xh)\ < ^;

V(xh , sh) < W(xh , uh(xh)) + ^

,
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Moreover, denoting by Pn_i the polynomial of degree n-\ suchthat P„_i(xa)

= sh-üh(xh), it is easy to see that, since / is of Carathéodory type, the sequence

(sn) can be taken such that

(2.4) f f(x ,«*+?„_,, u[n))dx < [ f(x,uh, uf) dx + \.
Jxh Jxh n

Finally, let vh 6 Wn-°°[0, xh] be such that vh(0) = 0, vh(xh) = sh and

(2.5) H f(x, vh , vlhn)) dx <V(xh,sh) + \.
Jo n

Setting

wh(x)
uh(x) + Pn-i(x)   ifx>xh,

vh(x) if0<x<x/¡,

we have wh G H/"'°°[0, l],wh(0) = 0, and

(2.6) wh «w-^-'(0,I)
A->+oo

Therefore, by using Lemma 2.2 and (2.1)—(2.6), we obtain

F(u) + M(u) < liminf F(wh)
h—>+co

lim inf
h—>+oo

< lim inf
h—>+oo

< lim inf

< lim inf
h—»+oo

/•l

f(x, vh , v{hn)) dx+      f(x, uh + Pn-i(xh), u{hn)) dx
J XuI

(v(xh ,sh) + -^J + n   f(x, Uh, u[n)) dx +
1

1\ 2
W(xh, uh(xh)) + jlj+ F{uh) + j

1\ 3

liminf[Af(wA) + F(uh)],
h—t+oo

and the lemma is proved.   D

Proof of Theorem 2.1. It is easy to see that

M(u) = 0   for every ¡/e^nr^IO, 1];

hence we have F + M < G on sá^ . By Lemma 2.3 we have F + M < G on

s/oc , so it remains to prove that

G < F(u) + M(u)   for every u e s/^ .

To this aim, fix u G J^ and take a sequence (x/, ) in Q, Xf, —> 0, such that

(2.7) M(u)=   lim   W(xh, u(xh)).
h—>+<x>
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By definition of W and the assumptions on the integrand / we may find a

sequence (sh) in R" , iA->0, such that for every AeN

(2.8)

(2.9)

-,       v, 1
\sh-u(xh)\ < -r,

h
1

V(xh, sh) < W(xh , u(xh)) + ^ ,

(2.10) ( f(x,ü + P„-i,u{n))dx< f f(x,ü,u(n))dx + \,
J Xh Jxk "'xk

where Pn_i is as in the proof of Lemma 2.3. Finally, let v¡¡ G Wn'°°[0, x/,] be

a sequence such that Vf,(0) = 0,Vf,(xi,)=Sfl and

(2.11) j'" f(x, vh , vf >) ¿x < F(x„ ,sh) + ^

As in the proof of Lemma 2.3, we define the sequence

íiíiW + PhW   ifx>xA,

™aW~Wa(x) if0<x<x„.

Then wh e W"<°°[0, 1], WA(0) = 0 and

wh
h—>+c

M strongly ^'(0, 1).

Hence, by using (2.7)—(2.11), we obtain

G(u) <liminfG(ii/A)
h—>+oo

= lim inf
A->+oo

< lim inf
h—<+oo

[ *f(x,vh,v{hn))dx+ I f(x,u + Pn-i(xh),u^)dx
Jo Jxh

(v(xh, sh) + i) +    jf' /(*, Ü, «W) ¿X + i J

< lim inf
A—t+OO

W(XA , u(xh)) +

= M(u) + F(u);

l)+F(u) +

so M — L, and the theorem is completely proved.   □

Remark 2.4. Fix a subset /? of {0, 1, ... , n - 1} and consider the class ssfj,

of all functions u G W">1(0, l)n W£.,oc]0, 1] such that n<''>(0) = 0 for / G ß .

We denote by Gß the functional

Gß = max{// : s/¿ -» [0, +oo] : // seq. w-^c '-l.s.c, H < G} .

As in the previous case, we have

Gß(u) = F(u) + Lß(u)   Vií£j4

for a suitable functional Lß > 0, the "Lavrentiev Gap" relative to G over the

space s/J, .   In order to identify the functional Lß  we introduce the Value
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Function Vß(x, s) defined for every (x, s) G Q x R* by:

Vß(x,s) = infi [ f(t,u,...,u{n))dt:ue Wa-°°[0, 1], u^(0) = 0,
I/o

u(i'\x) = sh., j = 0,l,...,k-l\

and its lower semicontinuous envelope with respect to s = (s,0, ... , s¡kl ), given

by
Wß(x,s) = liminfVß(x,Z).

By repeating step by step the proof of Theorem 2.1, we obtain the following

result:

Theorem 2.5. If the integrand f(x, s, z) satisfies the assumptions of Theorem

2.1, then

Lfl(M) = liminfWVx, w(,o)(x), ... , «^-'»(x))   for every u G s/J! .
x—>0+

Note that the polynomial Pn-i may be chosen, in this case, such that

n-\

pWt = I u\\xh)-(sh)r   ifreß,

0 otherwise.

3. Some examples

In this section we give an explicit representation formula for a class of second

order integrands / (we mean that / is a function depending on x, u, u', u").

We introduce the so-called "invariance property" for second order integrands

(analogous to the one introduced in [HM1 ] for first order integrands, and to the

one of [CM] for second order autonomous integrands):

there exists y g]1 , 2[ such that for every t > 0 and (x, s, z, w)

GÍ2xR3í/(íx, Vs, ?-lz, ty~2w) = f(x, s, z,w) .

We want to analyze a class of second order integrands f(x, s, z, w) that sat-

isfies this invariance property only in an asymptotic sense near the relevant

singular abscissa.   Let us take ô > 1, t g [1, ô[; we suppose the integrand

/ : Q x R x R -► R has the form

f(x, s, z, w) = xT   a(x, s)b(x, z)\w\° ,

with a(x, s), b(x, z) nonnegative, continuous functions such that, setting y =

2 - |, for every y eQ, the functions my, ny, My, Ny : Q —> R defined by

my(s) = inf{a(x, xys) : x < y},     ny(s) = inf{è(x, x^'s) : x < y),

My(s) - sup{a(x, xys) : x < y},     Ny(s) = sup{b(x, x^'j) : x <y}

are locally bounded. Take now x, y G Q, x < y, and consider the following

functionals:

Fx(u)= [ f(t,u,u', u")dt,
Jo

F,,x,y(u)= [ tx-xmy(ryu)ny(tx-yu')\u"\sdt,
Jo

F*(u)= [  tr~]My(ryu)Ny(tx-yu')\u"\sdt.
Jo

10
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We suppose that there exists y G Í2 such that, for every x e {x e Q. : x < y} ,

we have

(3.1) F*j(u) < +00   whenever Fx(u) < +oo.

Obviously for every x, y G Q with x < y

F.,x,y(u)<Fx(u)<Fly(u)   VuesC;

then for every x G Q

sup F*,x,y(u) < Fx(u) < inf F*„(w)   Vues/J^,
yen
y<y

yen
y<y

say

(3.2) lim F, x Ju) < Fx(u) < lim F* Ju)   Mu G s/2,

Define, for y < y ,

lim my(s) = wo(î) ,     Hm My(s) = A/o(s),
y—>0+ y—»0+

lim ny(s) = no(s),     lim Ny(s) = N0(s) ;
y—>0+ y—»0+

by the assumptions (3.1) we apply the Monotone and Lebesgue Convergence

Theorems to (3.2) obtaining

(3.3)

where

Fo,x(u)<Fx(u)<F»(u)   Vwg, /l

rx

Fo,x(u)= f  t'-lm0(ryu)n0(ti~yu')\u"\âdt,
Jo

rx

F°(u) = f* r-lMo(r*u)N0(tl-'u')\u"\s dt.
JO

We suppose also that m~o(s) = P < Q = Mq{s) , with P, Q G [0, +oo[.

Theorem 3.1. Under the previous assumptions, for every

we have

(3.4)

«€< = {«€ W2'l(0, 1) n W*¿°°]0, 1] : «'(0) = 0}

Pôks~x I
liminfx_o u'{x)xi   y

< L(u) < Qôks~l I

no(Œ\S-ldi

lim inf^o u'{x)x,~'

Abolir1 dt

where k = â-^ .

In order to achieve the proof of Theorem 3.1, we need a lemma.
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Lemma 3.2. Let h(Z) be the solution of the minimum problem

inf{G(w):wG W2>°°(0, 1), «'(0) = 0, u'(\) = Z},

where

G(u)= [ xr-ln(xl-yu'(x))\u"(x)\sdx.
Jo

We have

h(Z) = 6kô-i f   n({)|í|,-1rfí
/o

where k — S(iJ_P and the function h(Z) is the solution of the equation

f (y - l)Zh'(Z) = sup{ßA'(Z) - n(Z)\Q\s : ß G R},

1 ' \A(0) = 0.
Proof. By explicitly carrying out the maximization, the equation (3.5) becomes

h'{Z) = ôkâ-ln(Z)\Z\s-2

and by direct integration

\[Z n(m\3-xdi
/o

h(Z)=ôk «5-1

Let us take m g j/(x, z) = {w g If2-00 : «'(0) = 0, u'(x) = z} ; from (3.5),

setting Z(t) = tx~yu'(t) and Q(t) = t2~yu"(t) we obtain

(y - \)Z(t)h'(Z(t)) > \Q(t)\h'(Z(t)) - n(Z(t))\Q(t)\s .

Then

r{n(Z(t))\Q{t)\s > rlh'(Z(t))[Q(t) + (1 - y)Z(t)]

= h'(Z(t))Z'(t) = (hoZ)'(t)

(for the last equality see [MM]). Integrating on ]0, x[ yields

/(«)= /  tT-xn(tl-yu'(t))\u"(t)\sdt
Jo

= [X rxn(tx-yu'(t))\tTlôu"(t)\ôdt
Jo

= frxn(Z(t))\Q(t)\sdt

X

> ¡\hoZ)'(t)
Jo

ïdt

h(Z(x))- lim+A(Z(0)

= h(Z(x))

(in fact u g W2'°°[0, x] with u'(0) = 0 implies

lim tx-yu'(t) = 0   VyG[l,2[,
/—o+

and hence lim,^0+ h(Z(t)) = 0). It follows that

(3.6) W(x, z) = inf{I(u) : u e s/(x, z)} > h(xx~yz) = h(Z).
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Consider now the sequence (ue) c s/(x, z) defined by

( (i)kz    if r > e,
ue(0) = 0,     u'e(t) = {    x

\ t^irz   if t < e.

Taking e sufficiently small we have

W(x,z) </(«,) = / tT-ln(tl-yu'e)\u'¡\sdt+ i* tT-ln(tl-yu'0)\u'¿\adt,
Jo Je

where u'0(t) - (j¡)k , Uq(0) = 0 ; passing to the limit for e -» 0 the first integral

tends to 0, and hence

W(x, s) < I(u0).

At this point we can easily verify that I(uq) = h(xl~yz), and the proof of the

lemma is then complete.   D

Proof of Theorem 3.1. We fix u G s/2^ ; by Theorem 2.5

Li (u) = lim inf Wi (x, u'(x))
x->0

where Wx(x, z) = liminf?^z Vi(x, q) and

Vx(x, z) = inf{Fx(u) : u G W2-°°(0, 1), w'(0) = 0, u'(x) = z]

= inf{Fx(u) :u£s/(x, z)},

where s/(x, z) = {u G W2'°°(0, x) : u'(0) = 0, u'(x) = z} .

Let us introduce the Value Functions relative to the functionals Fq<x, F®

given by

Vo(x, z) = inf{F0tX(u):ues/(x, z)},

( ' ' V°(x, z) = inf^M) : u G s/(x, z)} ;

obviously, for every x G Í2 and for every z G R, we have by (3.3)

(3.8) V0(x, z) < Vi (x, z) < V°(x, z).

Setting S = sx~y, Z = zxl~y and

G0(u) = P /   f-ln0(tl-yu')\u"\sdt,
Jo

G°(u) = q[ tT-lN0(tl-yu')\u"\sdt,
Jo10

s/(Z) = {u£ W2'°°(0, l):w'(0) = 0,w'(l) = Z},

by the change of variable t - xy we get

V0(x, z) = H0(Z) = inf{G0(w) : u G s/(Z)},

V°(x, z) = H°(Z) = inf{G°(w) :ues/(Z)},

so that inequalities (3.8) become

(3.9) //0(Z)<F1(x,z)<//°(Z)

for every x G Q and for every z G R.
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By Lemma 3.2 we have that H0(Z) and H°(Z) are given by

H0(Z) = PSk3'1

2021

(3.10)

H°(Z) = Qôk3-1

I   nomi^dZ
Jo

¡z N0(m\s-1 dt
Jo

and inserting (3.10) into (3.9) we obtain the inequality (3.4), that is the the-

sis.    D

Example 3.3. Consider the functional

F(u) = /   f(x, u(x), u'(x), u"(x))dx,
Jo

where the integrand / has the following form, with 1 < p < 2 and 0 < q < 1,

f(x,s, z,w) = (s-xp)2(z-x")2\w\s

= x2(p+q)(sx~p - l)2(zx"9 - \)2\w\s

= x2{p+<l)a(x,s)b(x, z)\w\s,

where we set

a(x, s) — (sx~p - l)2,

b(x, z) = (zx-i - l)2.

If ô < 1 we can easily verify that the Lavrentiev Gap L(u) is identically equal

to 0: for every u e W2'l(0, 1) with u'(0) = 0 we construct the sequence in
JJ/2,oo

{u'(x),      if X£ < X ,

^x,    if 0 < x < x£,
xs

u£(0) = u(0),

where xe G [0, 1] is a sequence with limit 0 as e —► 0, and we verify that

F(ue) —► F(u) as e->0. Here, for simplicity, we restrict our attention to the

case ô > 1+2^+g) . With the notation above

x = \+2(p + q),     y = 2-T- = 2-l+2{Px+q) .
o o

This integrand / has as "zero cost curves" the functions zi(x) = xp, z2(x) =

(q + l)_1x9+1 ; by the assumption on p  and q  we obtain  zi(x), z2(x) e

W2-l(0, l)\rV2-°°[0, 1].

When ô > 1+2(f^ , we have y >p,y > q and then

m0(s) =» n0(s) = M0(s) = N0(s) = 1 ;

hence for every fixed u G s/2^ we obtain

L1(w) = A:á-1liminf
x—>0+

u'(x)

X'
-1

this functional is not identically equal to 0: for instance, Li(xp) = +oo and

L,((<7+l)-1x«+1) = +oc.
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When ô = 1+2<f*9'> , by a computation similar to the previous case, we obtain

m0(s) = M0(s) = 1,     n0(s) = N0(s) = (s - I)2.

Then, for every fixed u G s/2_, we have

ru'(x)x< ■■  ■ .t-?

Li(u) = ôks~x
pU (X)X-    •

im inf/ (í-l)2|í|,_1</í

also in this case this functional is not identically equal to 0:   for instance
Li(xp) = +00 , while Li((q + l)~xxq+x) = 2ks~xl(S + l)(8 + 2).

Finally, when S < x+2{f_^ , Theorem 3.1 does not apply because the func-

tions ny, Ny are not locally bounded. However it is possible to show that in

this case the gap phenomenon does not occur (see [Be]): for every u G s/^1A

we construct uE in W/2'oo(0, 1) by (3.11) and we prove that, if F(u) < +00,

then F(ue) -» F(u) as e —> 0, i.e.

/   f(x, u, u', u")dx < +00 =>• L(u) = 0.
Jo
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