INTERPRETATION OF LAVRENTIEV PHENOMENON BY RELAXATION: THE HIGHER ORDER CASE

MARINO BELLONI

Abstract. We consider integral functionals of the calculus of variations of the form

$$
F(u)=\int_{0}^{1} f\left(x, u, u^{\prime}, \ldots, u^{(n)}\right) d x
$$

defined for $u \in W^{n, \infty}(0,1)$, and we show that the relaxed functional \bar{F} with respect to the weak $W_{\text {loc }}^{n, 1}(0,1)$ convergence can be written as

$$
\bar{F}(u)=\int_{0}^{1} f\left(x, u, u^{\prime}, \ldots, u^{(n)}\right) d x+L(u)
$$

where the additional term $L(u)$, the Lavrentiev Gap, is explicitly identified in terms of F.

1. Introduction

In 1926 M. Lavrentiev (see [L]) first demonstrated this surprising result: given a variational integral of a two-point Lagrange problem, which is sequentially weakly lower semicontinuous on the admissible class of absolutely continuous functions, its infimum on the dense subclass of C^{1} admissible functions may be strictly greater than its minimum value on the full admissible class. Some years later Manià (see [M]) gave an example of this phenomenon with a polynomial integrand. In recent years there have been additional works by several authors; for further bibliographical references the reader can see for instance [BuM].

In this paper we follow the Buttazzo and Mizel [BuM] approach which consists in studying the Lavrentiev Phenomenon from the point of view of relaxation theory. More precisely let X be a topological space, $Y \subset X$ a dense subset, $F: X \rightarrow[0,+\infty]$ a given functional, and define

$$
\begin{aligned}
\bar{F}_{X} & =\sup \{G: X \rightarrow[0,+\infty]: G \text { l.s.c., } G \leq F \text { on } X\}, \\
\bar{F}_{Y} & =\sup \{G: X \rightarrow[0,+\infty]: G \text { l.s.c., } G \leq F \text { on } Y\}, \\
L(u) & = \begin{cases}\bar{F}_{Y}(u)-\bar{F}_{X}(u) & \text { if } \bar{F}_{X}(u)<+\infty, \quad u \in X . \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

We call this nonnegative functional L (notice that $\bar{F}_{X} \leq \bar{F}_{Y}$) the "Lavrentiev Gap" associated to F, X and Y. In their paper Buttazzo and Mizel [BuM]

[^0]considered integral functionals of the form
$$
G(u)=\int_{0}^{1} f\left(x, u(x), u^{\prime}(x)\right) d x
$$
with $X=W^{1,1}(0,1)$ and $Y=W^{1,+\infty}(0,1)$, and gave a characterization of L in term of the "Value Function" V (see $\S 2$ below). Then they obtained an explicit representation of L for a large class of integrands.

In this paper we extend the results of $[\mathrm{BuM}]$ to integral functionals depending on higher order derivatives, of the form

$$
G(u)=\int_{0}^{1} f\left(x, u(x), \ldots, u^{(n)}(x)\right) d x
$$

with $X=W^{n, 1}(0,1)$ and $Y=W^{n,+\infty}(0,1)$. More precisely, in $\S 2$ we obtain a characterization of L in terms of the "Value Function" V; in $\S 3$ we provide an explicit representation of L for some integrands which satisfy a "homogeneity condition", and an integrand of Manià type (see [M], [BM1], [BM2]) is analyzed in detail by following this approach. Our results deal with regular integrands (in a sense to be specified), but we want to point out an interesting result involving autonomous second order integrands (see Cheng [C], Cheng and Mizel [CM]) showing the nonoccurrence of the gap phenomenon when the integrand satisfies some continuity assumptions, with an example of a nonvanishing gap when a constraint of the form $\{u \geq 0\}$ is added.

2. The representation theorem

Let Ω be the interval $(0,1)$; we consider the following spaces:

$$
\begin{array}{ll}
W^{n, 1}(0,1) \quad \text { the space of all functions } u: \Omega \rightarrow \mathbf{R} \text { which are absolutely } \\
& \begin{array}{l}
\text { continuous together with their }(n-1) \text { derivatives; }
\end{array} \\
W^{n, \infty}[0,1] \quad \begin{array}{l}
\text { the space of all functions } u: \Omega \rightarrow \mathbf{R} \text { which are Lipschitz } \\
\text { continuous together with their }(n-1) \text { derivatives; }
\end{array} \\
\left.\left.W_{\text {loc }}^{n, \infty}\right] 0,1\right] \begin{array}{l}
\text { the space of all functions } u: \Omega \rightarrow \mathbf{R} \text { which are Lipschitz } \\
\\
\\
\\
\text { continuous together with their }(n-1) \text { derivatives on every } \\
\text { interval }[\delta, 1], \text { with } \delta>0 ; \\
\\
\mathscr{A}_{\infty} \\
\text { the space of all function } \left.\left.u \in W^{n, 1}(0,1) \cap W_{\mathrm{loc}}^{n, \infty}\right] 0,1\right] \\
\\
\text { such that } u^{(i)}(0)=0 \text { for } i=0, \ldots,(n-1) .
\end{array}
\end{array}
$$

Let $f: \Omega \times \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$ be a function such that:
(i) $f(x, s, z)$ is of Carathéodory type (i.e. measurable in X and continuous in (s, z));
(ii) $f(x, s, \cdot)$ is convex on \mathbf{R} for every $(x, s) \in \Omega \times \mathbf{R}^{n}$;
(iii) there exists a function $\omega: \Omega \times \mathbf{R} \times \mathbf{R} \rightarrow[0,+\infty[$, with $\omega(x, t, \tau)$ integrable in x and increasing in t, τ, such that

$$
0 \leq f(x, s, z) \leq \omega(x,|s|,|z|) \quad \forall(x, s, z) \in \Omega \times \mathbf{R}^{n} \times \mathbf{R} .
$$

For every $u \in \mathscr{A}_{\infty}$, define

$$
\begin{aligned}
& F(u)=\int_{0}^{1} f\left(x, u, \ldots, u^{(n)}\right) d x \\
& G(u)= \begin{cases}F(u) & \text { if } u \in W^{n, \infty}[0,1] \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

and denote by \bar{G} the functional

$$
\bar{G}=\max \left\{H: \mathscr{A}_{\infty} \rightarrow[0,+\infty]: H \text { seq. w- } W_{\text {loc }}^{n, 1}-1 . \text { s.c., } H \leq G\right\}
$$

Our goal is to give a representation formula for \bar{G} over \mathscr{A}_{∞}.
Since F is sequentially weakly lower semicontinuous on $W_{\text {loc }}^{n, 1}(0,1)$ (briefly seq. w - $W_{\text {loc }}^{n, 1}(0,1)$-l.s.c.) (see [B]), we have

$$
\bar{G}(u) \geq F(u) \quad \forall u \in \mathscr{A}_{\infty}
$$

and then

$$
\bar{G}(u)=F(u)+L(u) \quad \forall u \in \mathscr{A}_{\infty}
$$

for a suitable functional $L \geq 0$. We call the functional L the "Lavrentiev Gap" relative to G over the space \mathscr{A}_{∞}. Obviously we have that $\bar{G} \leq G$. Then

$$
\bar{G}(u)=F(u) \quad \forall u \in W^{n, \infty}[0,1]
$$

i.e. $L(u)=0$ for every $u \in W^{n, \infty}[0,1]$. In order to identify the functional L we introduce the "Value Function" $V(x, s)$ defined for every $(x, s) \in \Omega \times \mathbf{R}^{n}$ by:

$$
\begin{array}{r}
V(x, s)=\inf \left\{\int_{0}^{x} f\left(t, u, \ldots, u^{(n)}\right) d t: u \in W^{n, \infty}[0,1], u^{(i)}(0)=0\right. \\
\left.u^{(i)}(x)=s_{i}, i=0, \ldots,(n-1)\right\}
\end{array}
$$

and its lower semicontinuous envelope with respect to $s=\left(s_{0}, \ldots, s_{(n-1)}\right)$, given by

$$
W(x, s)=\liminf _{\xi \rightarrow s} V(x, \xi)
$$

We now state a representation result for the Lavrentiev Gap L.
Theorem 2.1. If the integrand $f(x, s, z)$ satisfies the hypotheses above, then

$$
L(u)=\liminf _{x \rightarrow 0^{+}} W\left(x, u(x), \ldots, u^{(n-1)}(x)\right) \quad \text { for every } u \in \mathscr{A}_{\infty}
$$

In order to achieve the proof of Theorem 2.1 we need some lemmas. For the sake of simplicity in the following we set

$$
M(u)=\liminf _{x \rightarrow 0^{+}} W\left(x, u(x), \ldots, u^{(n-1)}(x)\right)
$$

and, when no confusion is possible, we use the notation $\bar{u}(x)$ to indicate the vector $\left(u^{(i)}(x)\right)_{i=0}^{n-1}$.

Lemma 2.2. Take $u, u_{h} \in \mathscr{A}_{\infty}$ with $u_{h} \in W^{n, \infty}[0,1]$ and assume that $u_{h} \rightarrow u$ weakly in $W_{\text {loc }}^{n, 1}(0,1)$. Then

$$
F(u)+M(u) \leq \liminf _{h \rightarrow+\infty} G\left(u_{h}\right)
$$

Proof. Take $\delta>0$; for every $h \in \mathbf{N}$, by the definitions of $V(x, s)$ and $W(x, s)$ we get

$$
\begin{aligned}
G\left(u_{h}\right) & =\int_{0}^{\delta} f\left(x, u_{h}, \ldots, u_{h}^{(n)}\right) d x+\int_{\delta}^{1} f\left(x, u_{h}, \ldots, u_{h}^{(n)}\right) d x \\
& \geq V\left(\delta, \bar{u}_{h}(\delta)\right)+\int_{\delta}^{1} f\left(x, u_{h}, \ldots, u_{h}^{n}\right) d x \\
& \geq W\left(\delta, \bar{u}_{h}(\delta)\right)+\int_{\delta}^{1} f\left(x, u_{h}, \ldots, u_{h}^{(n)}\right) d x .
\end{aligned}
$$

As $h \rightarrow+\infty$, taking into account that W is seq. $w-W_{\text {loc }}^{n, 1}-$ l.s.c. and that the assumptions on the integrand f provide the seq. $w-W_{\text {loc }}^{n, 1}$-l.s.c. of the integral term, we get

$$
\begin{aligned}
\liminf _{h \rightarrow+\infty} G\left(u_{h}\right) & \geq \liminf _{h \rightarrow+\infty}\left[W\left(\delta, \bar{u}_{h}(\delta)\right)+\int_{\delta}^{1} f\left(x, u_{h}, \ldots, u_{h}^{(n)}\right) d x\right] \\
& \geq W(\delta, \bar{u}(\delta))+\int_{\delta}^{1} f\left(x, u, \ldots, u^{(n)}\right) d x
\end{aligned}
$$

Finally, as $\delta \rightarrow 0$ we obtain

$$
\begin{aligned}
\liminf _{h \rightarrow+\infty} G\left(u_{h}\right) & \geq \liminf _{\delta \rightarrow 0}\left[W(\delta, \bar{u}(\delta))+\int_{\delta}^{1} f\left(x, u, \ldots, u^{(n)}\right) d x\right] \\
& \geq M(u)+\int_{0}^{1} f\left(x, u, \ldots, u^{(n)}\right) d x \\
& =M(u)+F(u)
\end{aligned}
$$

and the lemma is proved.
Lemma 2.3. The functional $F+M$ is seq. w - $W_{\text {loc }}^{n, 1}$-l.s.c. on \mathscr{A}_{∞}.
Proof. Taking $u, u_{h} \in \mathscr{A}_{\infty}$ with $u_{h} \rightarrow u$ weakly in $W_{\text {loc }}^{n, 1}$, we have to show that

$$
F(u)+M(u) \leq \liminf _{h \rightarrow+\infty}\left[F\left(u_{h}\right)+M\left(u_{h}\right)\right] .
$$

Assume that the right-hand side is finite (otherwise there is nothing to prove), and consider a sequence $\left(x_{h}\right)$ in Ω with $x_{h} \rightarrow 0$ such that

$$
\begin{equation*}
W\left(x_{h}, \bar{u}_{h}\left(x_{h}\right)\right) \geq M\left(u_{h}\right)+\frac{1}{h} \quad \forall h \in \mathbf{N} . \tag{2.1}
\end{equation*}
$$

It is now possible to find a sequence $\left(s_{h}\right)$ in \mathbf{R}^{n}, with $s_{h} \rightarrow 0$ such that

$$
\begin{gather*}
\left|s_{h}-\bar{u}_{h}\left(x_{h}\right)\right| \leq \frac{1}{h} \tag{2.2}\\
V\left(x_{h}, s_{h}\right) \leq W\left(x_{h}, \bar{u}_{h}\left(x_{h}\right)\right)+\frac{1}{h} . \tag{2.3}
\end{gather*}
$$

Moreover, denoting by P_{n-1} the polynomial of degree $n-1$ such that $\bar{P}_{n-1}\left(x_{h}\right)$ $=s_{h}-\bar{u}_{h}\left(x_{h}\right)$, it is easy to see that, since f is of Carathéodory type, the sequence $\left(s_{h}\right)$ can be taken such that

$$
\begin{equation*}
\int_{x_{h}}^{1} f\left(x, \bar{u}_{h}+\bar{P}_{n-1}, u_{h}^{(n)}\right) d x \leq \int_{x_{h}}^{1} f\left(x, \bar{u}_{h}, u_{h}^{(n)}\right) d x+\frac{1}{h} . \tag{2.4}
\end{equation*}
$$

Finally, let $v_{h} \in W^{n, \infty}\left[0, x_{h}\right]$ be such that $\bar{v}_{h}(0)=0, \bar{v}_{h}\left(x_{h}\right)=s_{h}$ and

$$
\begin{equation*}
\int_{0}^{x_{h}} f\left(x, \bar{v}_{h}, v_{h}^{(n)}\right) d x \leq V\left(x_{h}, s_{h}\right)+\frac{1}{h} \tag{2.5}
\end{equation*}
$$

Setting

$$
w_{h}(x)= \begin{cases}u_{h}(x)+P_{n-1}(x) & \text { if } x>x_{h} \\ v_{h}(x) & \text { if } 0 \leq x \leq x_{h}\end{cases}
$$

we have $w_{h} \in W^{n, \infty}[0,1], \bar{w}_{h}(0)=0$, and

$$
\begin{equation*}
w_{h} \xrightarrow[h \rightarrow+\infty]{ } u \text { w- } W_{\text {loc }}^{n-1}(0,1) \tag{2.6}
\end{equation*}
$$

Therefore, by using Lemma 2.2 and (2.1)-(2.6), we obtain

$$
\begin{aligned}
F(u) & +M(u) \leq \liminf _{h \rightarrow+\infty} F\left(w_{h}\right) \\
& =\liminf _{h \rightarrow+\infty}\left[\int_{0}^{x_{h}} f\left(x, \bar{v}_{h}, v_{h}^{(n)}\right) d x+\int_{x_{h}}^{1} f\left(x, \bar{u}_{h}+\bar{P}_{n-1}\left(x_{h}\right), u_{h}^{(n)}\right) d x\right] \\
& \leq \liminf _{h \rightarrow+\infty}\left[\left(V\left(x_{h}, s_{h}\right)+\frac{1}{h}\right)+\left(\int_{x_{h}}^{1} f\left(x, \bar{u}_{h}, u_{h}^{(n)}\right) d x+\frac{1}{h}\right)\right] \\
& \leq \liminf _{h \rightarrow+\infty}\left[\left(W\left(x_{h}, \bar{u}_{h}\left(x_{h}\right)\right)+\frac{1}{h}\right)+F\left(u_{h}\right)+\frac{2}{h}\right] \\
& \leq \liminf _{h \rightarrow+\infty}\left[\left(M\left(u_{h}\right)+\frac{1}{h}\right)+F\left(u_{h}\right)+\frac{3}{h}\right] \\
& =\liminf _{h \rightarrow+\infty}\left[M\left(u_{h}\right)+F\left(u_{h}\right)\right],
\end{aligned}
$$

and the lemma is proved.
Proof of Theorem 2.1. It is easy to see that

$$
M(u)=0 \quad \text { for every } u \in \mathscr{A}_{\infty} \cap W^{n, \infty}[0,1]
$$

hence we have $F+M \leq G$ on \mathscr{A}_{∞}. By Lemma 2.3 we have $F+M \leq \bar{G}$ on \mathscr{A}_{∞}, so it remains to prove that

$$
\bar{G} \leq F(u)+M(u) \quad \text { for every } u \in \mathscr{A}_{\infty} .
$$

To this aim, fix $u \in \mathscr{A}_{\infty}$ and take a sequence $\left(x_{h}\right)$ in $\Omega, x_{h} \rightarrow 0$, such that

$$
\begin{equation*}
M(u)=\lim _{h \rightarrow+\infty} W\left(x_{h}, \bar{u}\left(x_{h}\right)\right) \tag{2.7}
\end{equation*}
$$

By definition of W and the assumptions on the integrand f we may find a sequence $\left(s_{h}\right)$ in $\mathbf{R}^{n}, s_{h} \rightarrow 0$, such that for every $h \in \mathbf{N}$

$$
\begin{gather*}
\left|s_{h}-\bar{u}\left(x_{h}\right)\right| \leq \frac{1}{h} \tag{2.8}\\
V\left(x_{h}, s_{h}\right) \leq W\left(x_{h}, \bar{u}\left(x_{h}\right)\right)+\frac{1}{h} \tag{2.9}\\
\int_{x_{h}}^{1} f\left(x, \bar{u}+\bar{P}_{n-1}, u^{(n)}\right) d x \leq \int_{x_{h}}^{1} f\left(x, \bar{u}, u^{(n)}\right) d x+\frac{1}{h} \tag{2.10}
\end{gather*}
$$

where P_{n-1} is as in the proof of Lemma 2.3. Finally, let $v_{h} \in W^{n, \infty}\left[0, x_{h}\right]$ be a sequence such that $\bar{v}_{h}(0)=0, \bar{v}_{h}\left(x_{h}\right)=s_{h}$ and

$$
\begin{equation*}
\int_{0}^{x_{h}} f\left(x, \bar{v}_{h}, v_{h}^{(n)}\right) d x \leq V\left(x_{h}, s_{h}\right)+\frac{1}{h} \tag{2.11}
\end{equation*}
$$

As in the proof of Lemma 2.3, we define the sequence

$$
w_{h}(x)= \begin{cases}u_{h}(x)+P_{n-1}(x) & \text { if } x>x_{h} \\ v_{h}(x) & \text { if } 0 \leq x \leq x_{h}\end{cases}
$$

Then $w_{h} \in W^{n, \infty}[0,1], \bar{w}_{h}(0)=0$ and

$$
w_{h} \xrightarrow[h \rightarrow+\infty]{ } u \text { strongly } W_{\mathrm{loc}}^{n, 1}(0,1)
$$

Hence, by using (2.7)-(2.11), we obtain

$$
\begin{aligned}
\bar{G}(u) & \leq \liminf _{h \rightarrow+\infty} G\left(w_{h}\right) \\
& =\liminf _{h \rightarrow+\infty}\left[\int_{0}^{x_{h}} f\left(x, \bar{v}_{h}, v_{h}^{(n)}\right) d x+\int_{x_{h}}^{1} f\left(x, \bar{u}+\bar{P}_{n-1}\left(x_{h}\right), u^{(n)}\right) d x\right] \\
& \leq \liminf _{h \rightarrow+\infty}\left[\left(V\left(x_{h}, s_{h}\right)+\frac{1}{h}\right)+\left(\int_{x_{h}}^{1} f\left(x, \bar{u}, u^{(n)}\right) d x+\frac{1}{h}\right)\right] \\
& \leq \liminf _{h \rightarrow+\infty}\left[\left(W\left(x_{h}, \bar{u}\left(x_{h}\right)\right)+\frac{1}{h}\right)+F(u)+\frac{2}{h}\right] \\
& =M(u)+F(u)
\end{aligned}
$$

so $M=L$, and the theorem is completely proved.
Remark 2.4. Fix a subset β of $\{0,1, \ldots, n-1\}$ and consider the class $\mathscr{A}_{\infty}^{\beta}$ of all functions $\left.u \in W^{n, 1}(0,1) \cap W_{\mathrm{loc}}^{n, \infty} \mathrm{j} 0,1\right]$ such that $u^{(i)}(0)=0$ for $i \in \beta$. We denote by \bar{G}_{β} the functional

$$
\bar{G}_{\beta}=\max \left\{H: \mathscr{A}_{\infty}^{\beta} \rightarrow[0,+\infty]: H \text { seq. w- } W_{\text {loc }}^{n, 1} \text {-l.s.c., } H \leq G\right\}
$$

As in the previous case, we have

$$
\bar{G}_{\beta}(u)=F(u)+L_{\beta}(u) \quad \forall u \in \mathscr{A}_{\infty}
$$

for a suitable functional $L_{\beta} \geq 0$, the "Lavrentiev Gap" relative to G over the space $\mathscr{A}_{\infty}^{\beta}$. In order to identify the functional L_{β} we introduce the Value

Function $V_{\beta}(x, s)$ defined for every $(x, s) \in \Omega \times \mathbf{R}^{k}$ by:

$$
\begin{aligned}
V_{\beta}(x, s)=\inf \left\{\int_{0}^{x} f\left(t, u, \ldots, u^{(n)}\right) d t: u\right. & \in W^{n, \infty}[0,1], u^{\left(i_{j}\right)}(0)=0, \\
& \left.u^{\left(i_{j}\right)}(x)=s_{i_{j}}, j=0,1, \ldots, k-1\right\}
\end{aligned}
$$

and its lower semicontinuous envelope with respect to $s=\left(s_{i_{0}}, \ldots, s_{i_{k-1}}\right)$, given by

$$
W_{\beta}(x, s)=\liminf _{\xi \rightarrow s} V_{\beta}(x, \xi) .
$$

By repeating step by step the proof of Theorem 2.1, we obtain the following result:
Theorem 2.5. If the integrand $f(x, s, z)$ satisfies the assumptions of Theorem 2.1, then

$$
L_{\beta}(u)=\liminf _{x \rightarrow 0^{+}} W_{\beta}\left(x, u^{\left(i_{0}\right)}(x), \ldots, u^{\left(i_{k-1}\right)}(x)\right) \quad \text { for every } u \in \mathscr{A}_{\infty}^{\beta}
$$

Note that the polynomial P_{n-1} may be chosen, in this case, such that

$$
P_{n-1}^{(r)}= \begin{cases}u_{h}^{(r)}\left(x_{h}\right)-\left(s_{h}\right)_{r} & \text { if } r \in \beta \\ 0 & \text { otherwise }\end{cases}
$$

3. Some examples

In this section we give an explicit representation formula for a class of second order integrands f (we mean that f is a function depending on $x, u, u^{\prime}, u^{\prime \prime}$). We introduce the so-called "invariance property" for second order integrands (analogous to the one introduced in [HM1] for first order integrands, and to the one of [CM] for second order autonomous integrands):

$$
\begin{aligned}
& \text { there exists } \gamma \in] 1,2[\text { such that for every } t>0 \text { and }(x, s, z, w) \\
& \in \Omega \times \mathbf{R}^{3} t f\left(t x, t^{\gamma} s, t^{\gamma-1} z, t^{\gamma-2} w\right)=f(x, s, z, w) .
\end{aligned}
$$

We want to analyze a class of second order integrands $f(x, s, z, w)$ that satisfies this invariance property only in an asymptotic sense near the relevant singular abscissa. Let us take $\delta>1, \tau \in[1, \delta[$; we suppose the integrand $f: \Omega \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ has the form

$$
f(x, s, z, w)=x^{\tau-1} a(x, s) b(x, z)|w|^{\delta}
$$

with $a(x, s), b(x, z)$ nonnegative, continuous functions such that, setting $\gamma=$ $2-\frac{\tau}{\delta}$, for every $y \in \Omega$ the functions $m_{y}, n_{y}, M_{y}, N_{y}: \Omega \rightarrow \mathbf{R}$ defined by

$$
\begin{aligned}
& m_{y}(s)=\inf \left\{a\left(x, x^{\gamma} s\right): x \leq y\right\}, \quad n_{y}(s)=\inf \left\{b\left(x, x^{\gamma-1} s\right): x \leq y\right\} \\
& M_{y}(s)=\sup \left\{a\left(x, x^{\gamma} s\right): x \leq y\right\}, \quad N_{y}(s)=\sup \left\{b\left(x, x^{\gamma-1} s\right): x \leq y\right\}
\end{aligned}
$$

are locally bounded. Take now $x, y \in \Omega, x \leq y$, and consider the following functionals:

$$
\begin{aligned}
F_{x}(u) & =\int_{0}^{x} f\left(t, u, u^{\prime}, u^{\prime \prime}\right) d t \\
F_{*, x, y}(u) & =\int_{0}^{x} t^{\tau-1} m_{y}\left(t^{-\gamma} u\right) n_{y}\left(t^{1-\gamma} u^{\prime}\right)\left|u^{\prime \prime}\right|^{\delta} d t \\
F_{x, y}^{*}(u) & =\int_{0}^{x} t^{\tau-1} M_{y}\left(t^{-\gamma} u\right) N_{y}\left(t^{1-\gamma} u^{\prime}\right)\left|u^{\prime \prime}\right|^{\delta} d t .
\end{aligned}
$$

We suppose that there exists $\bar{y} \in \Omega$ such that, for every $x \in\{x \in \Omega: x \leq \bar{y}\}$, we have

$$
\begin{equation*}
F_{x, \bar{y}}^{*}(u)<+\infty \quad \text { whenever } F_{x}(u)<+\infty \tag{3.1}
\end{equation*}
$$

Obviously for every $x, y \in \Omega$ with $x \leq y$

$$
F_{*, x, y}(u) \leq F_{x}(u) \leq F_{x, y}^{*}(u) \quad \forall u \in \mathscr{A}_{\infty}^{1}
$$

then for every $x \in \Omega$

$$
\sup _{\substack{y \in \Omega \\ y \leq \bar{y}}} F_{*, x, y}(u) \leq F_{x}(u) \leq \inf _{\substack{y \in \Omega \\ y \leq \bar{y}}} F_{x, y}^{*}(u) \quad \forall u \in \mathscr{A}_{\infty}^{1}
$$

say

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} F_{*, x, y}(u) \leq F_{x}(u) \leq \lim _{y \rightarrow 0^{+}} F_{x, y}^{*}(u) \quad \forall u \in \mathscr{A}_{\infty}^{1} \tag{3.2}
\end{equation*}
$$

Define, for $y \leq \bar{y}$,

$$
\begin{aligned}
\lim _{y \rightarrow 0^{+}} m_{y}(s)=m_{0}(s), & \lim _{y \rightarrow 0^{+}} M_{y}(s)=M_{0}(s) \\
\lim _{y \rightarrow 0^{+}} n_{y}(s)=n_{0}(s), & \lim _{y \rightarrow 0^{+}} N_{y}(s)=N_{0}(s)
\end{aligned}
$$

by the assumptions (3.1) we apply the Monotone and Lebesgue Convergence Theorems to (3.2) obtaining

$$
\begin{equation*}
F_{0, x}(u) \leq F_{x}(u) \leq F_{x}^{0}(u) \quad \forall u \in \mathscr{A}_{\infty}^{1} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{0, x}(u) & =\int_{0}^{x} t^{\tau-1} m_{0}\left(t^{-\gamma} u\right) n_{0}\left(t^{1-\gamma} u^{\prime}\right)\left|u^{\prime \prime}\right|^{\delta} d t \\
F_{x}^{0}(u) & =\int_{0}^{x} t^{\tau-1} M_{0}\left(t^{-\gamma} u\right) N_{0}\left(t^{1-\gamma} u^{\prime}\right)\left|u^{\prime \prime}\right|^{\delta} d t
\end{aligned}
$$

We suppose also that $m_{0}(s)=P \leq Q=M_{0}(s)$, with $P, Q \in[0,+\infty[$.
Theorem 3.1. Under the previous assumptions, for every

$$
\left.\left.u \in \mathscr{A}_{\infty}^{1}=\left\{u \in W^{2,1}(0,1) \cap W_{\mathrm{loc}}^{2, \infty}\right] 0,1\right]: u^{\prime}(0)=0\right\}
$$

we have

$$
\begin{align*}
& \left.P \delta k^{\delta-1}\left|\int_{0}^{\lim \operatorname{lif}_{x \rightarrow 0} u^{\prime}(x) x^{1-\gamma}} n_{0}(\xi)\right| \xi\right|^{\delta-1 d \xi} \mid \tag{3.4}\\
& \quad \leq L(u) \leq\left. Q \delta k^{\delta-1}\left|\int_{0}^{\lim \inf _{x \rightarrow 0} u^{\prime}(x) x^{1-\gamma}} N_{0}(\xi)\right| \xi\right|^{\delta-1} d \xi \mid
\end{align*}
$$

where $k=\frac{\delta(y-1)}{\delta-1}$.
In order to achieve the proof of Theorem 3.1, we need a lemma.

Lemma 3.2. Let $h(Z)$ be the solution of the minimum problem

$$
\inf \left\{G(u): u \in W^{2, \infty}(0,1), u^{\prime}(0)=0, u^{\prime}(1)=Z\right\}
$$

where

$$
G(u)=\int_{0}^{1} x^{\tau-1} n\left(x^{1-\gamma} u^{\prime}(x)\right)\left|u^{\prime \prime}(x)\right|^{\delta} d x
$$

We have

$$
h(Z)=\left.\delta k^{\delta-1}\left|\int_{0}^{Z} n(\xi)\right| \xi\right|^{\delta-1} d \xi \mid
$$

where $k=\frac{\delta(\gamma-1)}{\delta-1}$ and the function $h(Z)$ is the solution of the equation

$$
\left\{\begin{array}{l}
(\gamma-1) Z h^{\prime}(Z)=\sup \left\{Q h^{\prime}(Z)-n(Z)|Q|^{\delta}: Q \in \mathbf{R}\right\} \tag{3.5}\\
h(0)=0
\end{array}\right.
$$

Proof. By explicitly carrying out the maximization, the equation (3.5) becomes

$$
h^{\prime}(Z)=\delta k^{\delta-1} n(Z)|Z|^{\delta-2}
$$

and by direct integration

$$
h(Z)=\left.\delta k^{\delta-1}\left|\int_{0}^{Z} n(\xi)\right| \xi\right|^{\delta-1} d \xi \mid
$$

Let us take $u \in \mathscr{A}(x, z)=\left\{u \in W^{2, \infty}: u^{\prime}(0)=0, u^{\prime}(x)=z\right\}$; from (3.5), setting $Z(t)=t^{1-\gamma} u^{\prime}(t)$ and $Q(t)=t^{2-\gamma} u^{\prime \prime}(t)$ we obtain

$$
(\gamma-1) Z(t) h^{\prime}(Z(t)) \geq|Q(t)| h^{\prime}(Z(t))-n(Z(t))|Q(t)|^{\delta}
$$

Then

$$
\begin{aligned}
t^{-1} n(Z(t))|Q(t)|^{\delta} & \geq t^{-1} h^{\prime}(Z(t))[Q(t)+(1-\gamma) Z(t)] \\
& =h^{\prime}(Z(t)) Z^{\prime}(t)=(h \circ Z)^{\prime}(t)
\end{aligned}
$$

(for the last equality see [MM]). Integrating on $] 0, x$ yields

$$
\begin{aligned}
I(u) & =\int_{0}^{x} t^{\tau-1} n\left(t^{1-\gamma} u^{\prime}(t)\right)\left|u^{\prime \prime}(t)\right|^{\delta} d t \\
& =\int_{0}^{x} t^{-1} n\left(t^{1-\gamma} u^{\prime}(t)\right)\left|t^{\tau / \delta} u^{\prime \prime}(t)\right|^{\delta} d t \\
& =\int_{0}^{x} t^{-1} n(Z(t))|Q(t)|^{\delta} d t \\
& \geq \int_{0}^{x}(h \circ Z)^{\prime}(t) d t \\
& =h(Z(x))-\lim _{t \rightarrow 0^{+}} h(Z(t)) \\
& =h(Z(x))
\end{aligned}
$$

(in fact $u \in W^{2, \infty}[0, x]$ with $u^{\prime}(0)=0$ implies

$$
\lim _{t \rightarrow 0^{+}} t^{1-\gamma} u^{\prime}(t)=0 \quad \forall \gamma \in[1,2[
$$

and hence $\left.\lim _{t \rightarrow 0^{+}} h(Z(t))=0\right)$. It follows that

$$
\begin{equation*}
W(x, z)=\inf \{I(u): u \in \mathscr{A}(x, z)\} \geq h\left(x^{1-\gamma} z\right)=h(Z) . \tag{3.6}
\end{equation*}
$$

Consider now the sequence $\left(u_{\varepsilon}\right) \subset \mathscr{A}(x, z)$ defined by

$$
u_{\varepsilon}(0)=0, \quad u_{\varepsilon}^{\prime}(t)= \begin{cases}\left(\frac{t}{x}\right)^{k} z & \text { if } t \geq \varepsilon \\ t \frac{t^{k-1}}{x^{k}} z & \text { if } t<\varepsilon\end{cases}
$$

Taking ε sufficiently small we have

$$
W(x, z) \leq I\left(u_{\varepsilon}\right)=\int_{0}^{\varepsilon} t^{\tau-1} n\left(t^{1-\gamma} u_{\varepsilon}^{\prime}\right)\left|u_{\varepsilon}^{\prime \prime}\right|^{\delta} d t+\int_{\varepsilon}^{x} t^{\tau-1} n\left(t^{1-\gamma} u_{0}^{\prime}\right)\left|u_{0}^{\prime \prime}\right|^{\delta} d t
$$

where $u_{0}^{\prime}(t)=\left(\frac{t}{x}\right)^{k}, u_{0}(0)=0$; passing to the limit for $\varepsilon \rightarrow 0$ the first integral tends to 0 , and hence

$$
W(x, s) \leq I\left(u_{0}\right)
$$

At this point we can easily verify that $I\left(u_{0}\right)=h\left(x^{1-\gamma} z\right)$, and the proof of the lemma is then complete.

Proof of Theorem 3.1. We fix $u \in \mathscr{A}_{\infty}^{1}$; by Theorem 2.5

$$
L_{1}(u)=\liminf _{x \rightarrow 0} W_{1}\left(x, u^{\prime}(x)\right)
$$

where $W_{1}(x, z)=\liminf _{q \rightarrow z} V_{1}(x, q)$ and

$$
\begin{aligned}
V_{1}(x, z) & =\inf \left\{F_{x}(u): u \in W^{2, \infty}(0,1), u^{\prime}(0)=0, u^{\prime}(x)=z\right\} \\
& =\inf \left\{F_{x}(u): u \in \mathscr{A}(x, z)\right\}
\end{aligned}
$$

where $\mathscr{A}(x, z)=\left\{u \in W^{2, \infty}(0, x): u^{\prime}(0)=0, u^{\prime}(x)=z\right\}$.
Let us introduce the Value Functions relative to the functionals $F_{0, x}, F_{x}^{0}$ given by

$$
\begin{align*}
V_{0}(x, z) & =\inf \left\{F_{0, x}(u): u \in \mathscr{A}(x, z)\right\} \\
V^{0}(x, z) & =\inf \left\{F_{x}^{0}(u): u \in \mathscr{A}(x, z)\right\} \tag{3.7}
\end{align*}
$$

obviously, for every $x \in \Omega$ and for every $z \in \mathbf{R}$, we have by (3.3)

$$
\begin{equation*}
V_{0}(x, z) \leq V_{1}(x, z) \leq V^{0}(x, z) \tag{3.8}
\end{equation*}
$$

Setting $S=s x^{-\gamma}, Z=z x^{1-\gamma}$ and

$$
\begin{aligned}
& G_{0}(u)=P \int_{0}^{1} t^{\tau-1} n_{0}\left(t^{1-\gamma} u^{\prime}\right)\left|u^{\prime \prime}\right|^{\delta} d t \\
& G^{0}(u)=Q \int_{0}^{1} t^{\tau-1} N_{0}\left(t^{1-\gamma} u^{\prime}\right)\left|u^{\prime \prime}\right|^{\delta} d t \\
& \mathscr{A}(Z)=\left\{u \in W^{2, \infty}(0,1): u^{\prime}(0)=0, u^{\prime}(1)=Z\right\}
\end{aligned}
$$

by the change of variable $t=x y$ we get

$$
\begin{aligned}
& V_{0}(x, z)=H_{0}(Z) \\
&=\inf \left\{G_{0}(u): u \in \mathscr{A}(Z)\right\} \\
& V^{0}(x, z)=H^{0}(Z)
\end{aligned}=\inf \left\{G^{0}(u): u \in \mathscr{A}(Z)\right\}, ~ l
$$

so that inequalities (3.8) become

$$
\begin{equation*}
H_{0}(Z) \leq V_{1}(x, z) \leq H^{0}(Z) \tag{3.9}
\end{equation*}
$$

for every $x \in \Omega$ and for every $z \in \mathbf{R}$.

By Lemma 3.2 we have that $H_{0}(Z)$ and $H^{0}(Z)$ are given by

$$
\begin{align*}
& H_{0}(Z)=P \delta k^{\delta-1}\left|\int_{0}^{Z} n_{0}(\xi)\right| \xi| |^{\delta-1} d \xi \mid \\
& H^{0}(Z)=\left.Q \delta k^{\delta-1}\left|\int_{0}^{Z} N_{0}(\xi)\right| \xi\right|^{\delta-1} d \xi \mid \tag{3.10}
\end{align*}
$$

and inserting (3.10) into (3.9) we obtain the inequality (3.4), that is the thesis.

Example 3.3. Consider the functional

$$
F(u)=\int_{0}^{1} f\left(x, u(x), u^{\prime}(x), u^{\prime \prime}(x)\right) d x
$$

where the integrand f has the following form, with $1<p<2$ and $0<q<1$,

$$
\begin{aligned}
f(x, s, z, w) & =\left(s-x^{p}\right)^{2}\left(z-x^{q}\right)^{2}|w|^{\delta} \\
& =x^{2(p+q)}\left(s x^{-p}-1\right)^{2}\left(z x^{-q}-1\right)^{2}|w|^{\delta} \\
& =x^{2(p+q)} a(x, s) b(x, z)|w|^{\delta},
\end{aligned}
$$

where we set

$$
\begin{aligned}
a(x, s) & =\left(s x^{-p}-1\right)^{2}, \\
b(x, z) & =\left(z x^{-q}-1\right)^{2} .
\end{aligned}
$$

If $\delta \leq 1$ we can easily verify that the Lavrentiev Gap $L(u)$ is identically equal to 0 : for every $u \in W^{2,1}(0,1)$ with $u^{\prime}(0)=0$ we construct the sequence in $W^{2, \infty}$

$$
\begin{align*}
& u_{\varepsilon}^{\prime}(x)= \begin{cases}u^{\prime}(x), & \text { if } x_{\varepsilon} \leq x, \\
\frac{u^{\prime}\left(x_{\varepsilon}\right)}{x_{\varepsilon}} x, & \text { if } 0 \leq x \leq x_{\varepsilon},\end{cases} \tag{3.11}\\
& u_{\varepsilon}(0)=u(0),
\end{align*}
$$

where $x_{\varepsilon} \in[0,1]$ is a sequence with limit 0 as $\varepsilon \rightarrow 0$, and we verify that $F\left(u_{\varepsilon}\right) \rightarrow F(u)$ as $\varepsilon \rightarrow 0$. Here, for simplicity, we restrict our attention to the case $\delta>\frac{1+2(p+q)}{2-p}$. With the notation above

$$
\tau=1+2(p+q), \quad \gamma=2-\frac{\tau}{\delta}=2-\frac{1+2(p+q)}{\delta}
$$

This integrand f has as "zero cost curves" the functions $z_{1}(x)=x^{p}, z_{2}(x)=$ $(q+1)^{-1} x^{q+1} ;$ by the assumption on p and q we obtain $z_{1}(x), z_{2}(x) \in$ $W^{2,1}(0,1) \backslash W^{2, \infty}[0,1]$.

When $\delta>\frac{1+2(p+q)}{1-q}$, we have $\gamma>p, \gamma>q$ and then

$$
m_{0}(s)=n_{0}(s)=M_{0}(s)=N_{0}(s)=1 ;
$$

hence for every fixed $u \in \mathscr{A}_{\infty}^{1}$ we obtain

$$
L_{1}(u)=k^{\delta-1} \liminf _{x \rightarrow 0^{+}}\left|\frac{u^{\prime}(x)}{x^{\gamma-1}}\right|^{\delta}
$$

this functional is not identically equal to 0 : for instance, $L_{1}\left(x^{p}\right)=+\infty$ and $L_{1}\left((q+1)^{-1} x^{q+1}\right)=+\infty$.

When $\delta=\frac{1+2(p+q)}{1-q}$, by a computation similar to the previous case, we obtain

$$
m_{0}(s)=M_{0}(s)=1, \quad n_{0}(s)=N_{0}(s)=(s-1)^{2}
$$

Then, for every fixed $u \in \mathscr{A}_{\infty}^{1}$ we have

$$
L_{1}(u)=\left.\delta k^{\delta-1}\left|\liminf _{x \rightarrow 0^{+}} \int_{0}^{u^{\prime}(x) x^{1-\gamma}}(\xi-1)^{2}\right| \xi\right|^{\delta-1} d \xi \mid
$$

also in this case this functional is not identically equal to 0 : for instance $L_{1}\left(x^{p}\right)=+\infty$, while $L_{1}\left((q+1)^{-1} x^{q+1}\right)=2 k^{\delta-1} /(\delta+1)(\delta+2)$.

Finally, when $\delta<\frac{1+2(p+q)}{1-q}$, Theorem 3.1 does not apply because the functions n_{y}, N_{y} are not locally bounded. However it is possible to show that in this case the gap phenomenon does not occur (see [Be]): for every $u \in \mathscr{A}_{W^{2,1}}^{1}$ we construct u_{ε} in $W^{2, \infty}(0,1)$ by (3.11) and we prove that, if $F(u)<+\infty$, then $F\left(u_{\varepsilon}\right) \rightarrow F(u)$ as $\varepsilon \rightarrow 0$, i.e.

$$
\int_{0}^{1} f\left(x, u, u^{\prime}, u^{\prime \prime}\right) d x<+\infty \Rightarrow L(u)=0
$$

Acknowledgments

I thank Giuseppe Buttazzo for proposing the problem and for his useful suggestions. The author has been supported by the research group "Problemi di evoluzione nei fluidi e nei solidi".

References

[BM1] J. M. Ball and V. J. Mizel, Singular minimizers for regular one-dimensional problems in the calculus of variations, Bull. Amer. Math. Soc. (N.S.) 11 (1984), 143-146.
[BM2] , One-dimensional variational problems whose minimizers do not satisfy the EulerLagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325-388.
[Be] M. Belloni, Ph.D. Thesis (in preparation).
[B] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Res. Notes Math. Ser., vol. 203, Longman, Harlow, 1989.
[BuM] G. Buttazzo and V. J. Mizel, Interpretation of the Lavrentiev phenomenon by relaxation, J. Funct. Anal. 110 (1992), 434-460.
[CA] L. Cesari and T. S. Angell, On the Lavrentiev phenomenon, Calcolo 22 (1985), 17-29.
[C] C. W. Cheng, The Lavrentiev phenomenon and its applications in nonlinear elasticity, Ph.D. Thesis, Carnegie Mellon Univ., Pittsburgh, 1993.
[CM] C. W. Cheng and V. J. Mizel, On the Lavrentiev phenomenon for autonomous second order integrands, Arch. Rational Tech. Anal. 126 (1994), 21-34.
[CV] F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc. 291 (1985), 73-98.
[HM1] A. C. Henricher and V. J. Mizel, The Lavrentiev phenomenon for invariant variational problems, Arch. Rational Mech. Anal. 102 (1988), 57-93.
[HM2] __, A new example of the Lavrentiev phenomenon, SIAM J. Control Optim. 26 (1988), 1490-1503.
[L] M. Lavrentiev, Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl. 4 (1926), 107-124 .
[M] B. Manià, Sopra un esempio di Lavrentieff, Boll. Un. Mat. Ital. 13 (1934), 146-153.
[MM] M. Marcus and V. J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294-320.

Dipartimento di Matematica, Universitá di Parma, Viá Massimo d’Azeglio, 85/A, 63100
Parma, Italy
E-mail address: belloni@dm.unipi.it

[^0]: Received by the editors July 13, 1994.
 1991 Mathematics Subject Classification. Primary 49J45; Secondary 49K05.

