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GENERALIZED (r, s)-SEQUENCES, KRONECKER-TYPE SEQUENCES,
AND DIOPHANTINE APPROXIMATIONS

OF FORMAL LAURENT SERIES

GERHARD LARCHER AND HARALD NIEDERREITER

Abstract. The theory of (t, s)-sequences leads to powerful constructions of

low-discrepancy sequences in an s-dimensional unit cube. We generalize this

theory in order to cover arbitrary sequences constructed by the digital method

and, in particular, the Kronecker-type sequences introduced by the second au-

thor. We define diophantine approximation constants for formal Laurent series

over finite fields and show their connection with the distribution properties

of Kronecker-type sequences. The main results include probabilistic theorems

on the distribution of sequences constructed by the digital method and on the

diophantine approximation character of s-tuples of formal Laurent series over

finite fields.

1. Introduction and basic definitions

The most effective constructions of low-discrepancy sequences in an s-dimen-

sional unit cube are currently based on the notion of a (t, s)-sequence (see [16,

Chapter 4]). A (t, s)-sequence satisfies strong uniformity properties within

special finite segments of the sequence (see Definition 2 below for the details).

Some constructions of (/, s)-sequences work with formal Laurent series, in

particular a construction introduced in [16, Chapter 4] and studied further by
the authors [8]. However, the full range of this construction goes well beyond the

framework of (/, s)-sequences. Thus, to analyze the whole family of sequences

obtained by this construction, which is one of the aims of the present paper, it

is necessary to generalize the concept of a (t, s)-sequence in the way described

in Definition 3 below. These generalized (t, s)-sequences should also be of

interest in other contexts involving low-discrepancy sequences.

The construction mentioned above not only motivates the definition of gen-

eralized (t, s)-sequences, but it also leads to intriguing connections with the

theory of diophantine approximations of formal Laurent series. Some of these

connections were already pointed out in [8], but in the present paper we can

go much further by introducing and analyzing new diophantine approximation

constants for formal Laurent series (see Section 4).
We follow [ 16] in our basic notation and terminology. For a point set P con-

sisting of N arbitrary points yo, yi, ■■■ , »-i in the half-open s-dimensional
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unit cube Is = [0, 1 )s, s > 1, and for an arbitrary subinterval J of Is, let

A(J; P) be the number of n with 0 < n < N - 1 for which yn £ J. Let ks
denote the s-dimensional Lebesgue measure.

Definition 1. Let b > 2, s > 1, and 0 < t < m be integers. Then a point set P

consisting of bm points of Is forms a (t,m, s)-net in base b if A(J; P) — b'

for every subinterval J = T[si=l[aib~d', (a¡+ \)b~di) of Is with integers d¡ > 0

and 0 < a, < bdi for 1 < i < s and with ks( J) = b'~m . Furthermore, a

(t, m, s)-net P in base i is a strict (t,m, s)-net in base b if P is not a
(u, m, s)-net in base b for some u with 0 < u < t.

Definition 2. Let b > 2, s > 1, and t > 0 be integers. Then a sequence

yo, yi, ... of points in Is is a (t, s)-sequence in base b if for all integers

k > 0 and m > t the point set consisting of the y„ with kbm < n < (k+ l)bm

forms a (t,m, s)-net in base è . Furthermore, a (/, s)-sequence in base b is

a sin'cf (t, s)-sequence in base b if it is not a (w, 5)-sequence in base b for

some w with 0 < u < t.

Clearly, the uniformity properties of (t, s)-sequences are the stronger the
smaller the value of t. The "strict" variants in Definitions 1 and 2 have not

been considered before. Constructions of (t, s)-sequences can be found in

Faure [2], Niederreiter [10], [11], [12], [16, Chapter 4], Sobol' [18], and Tezuka

[19].
We now generalize Definition 2 by allowing the parameter / to vary with m .

We write No for the set of nonnegative integers.

Definition 3. Let b > 2 and s > 1 be integers and let T: No —► No be a function

with T(m) < m for all m £ No. Then a sequence yo,yi, ... of points in Is

is a (T, s)-sequence in base b if for all k, m £ No the point set consisting of
the y„ with kbm < n < (k + \)bm forms a (T(w), m, s)-net in base b .

Remark 1. If T and U are functions as in Definition 3 with T(m) < U(m)

for all m e No, then any (T, s)-sequence in base b is also a (U, 5)-sequence

in base b. In particular, if T is such that T(m) < t £ N0 for all m £ No, then

any (T, s)-sequence in base b is a (/, s)-sequence in base b.
We note that since any function T in Definition 3 must satisfy T(0) = 0, we

will often define Y(m) only for m > 1. The following definition generalizes

the second part of Definition 2.

Definition 4. Let b, s, and T be as in Definition 3. Then a (T, s)-sequence in

base b is called a strict (T, s)-sequence in base b if it is not a (U, s)-sequence

in base b for some function U: No —> No with U(m) < m for all m £ No and

\J(m) < T(m) for at least one m £ No.

We now present a brief overview of the paper. In Section 2 we establish

bounds for the star discrepancy D*N(S) of a (T, s)-sequence S ; of particular

interest are the cases in which D*N(S) - 0(N~l(logN)s). The digital method

of constructing low-discrepancy sequences is recalled in Section 3, and condi-

tions under which sequences obtained by this method form (T, s)-sequences are
given. We also prove probabilistic results on the average behavior of sequences

constructed by the digital method. Various diophantine approximation con-

stants for formal Laurent series over finite fields are introduced and analyzed in
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Section 4. The sequences studied in [8] are then shown to be (T, s)-sequences

in Section 5, with the function T depending on the diophantine approximation

constants from Section 4.

2. The star discrepancy of (T, s)-sequences

We recall that for a point set P consisting of N points in Is its star dis-

crepancy is defined by

D*N(P) = sup
j

^•?) -W)
N

where the supremum is extended over all subintervals J of Is with one vertex

at the origin. For a sequence S of elements of Is, we write D*N(S) for the star

discrepancy of the first N terms of S.

As in [16, p. 56], we let Ab(t, m, s) be a number for which

ND*N(P)<Ab(t,m,s)

holds for any (t,m, s)-net P in base b, where N — bm . Such upper bounds

Ab(t, m, s) are given in great detail in [10, Section 3], [16, Chapter 4]. In

particular, we can take

(1) Ab(t,m,s) = 0(btms-1)   for m > 1

with an implied constant depending only on b and 5.

Lemma 1. For T: N0 -» N0 with Y(m) < m for all m£N0 let S be a (T, s)-

sequence in base b. Let N = Y^m=Vlambm be the digit expansion of the positive

integer N in base b. Then we have

k

ND*N(S) < 53 amAb(Y(m) ,m,s).
m=0

Proof. This follows immediately from the definition of a (T, s)-sequence and

from the fact that for the star discrepancy D*N(P) of the union P of two point

sets Pi and P2 with star discrepancies D*L(P\) and D*M(P2), respectively, and
with L + M = N we have ND*N(P) < LD*L(PX) + MD*M(P2) (compare with [4,

Chapter 2, Theorem 2.6]).   D

The following bound for the star discrepancy of a (T, s)-sequence is some-

times sharper with respect to the implied constants, especially if no specific
information on N is available.

Lemma 2. For T: N0 -» N0 with Y(m) < m for all m £ N0 let S be a (T, s)-

sequence in base b. Given a positive integer N, let fceNo be such that bk <
N < bk+l and let r £ No be maximal such that br divides N. Then we have

ND*N(S) < ^ ¿¿b(T(m),m,s) + ^Ab(T(r),r,s)
m=r

+ X-Ab(Y(k + \),k + \,s).

Proof. The proof is carried out quite analogously to the proof of [ 10, Lemma

4.1] and by noting that now by definition we always have T(m) < m .   O
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By combining now Lemma 1 or Lemma 2 with the known detailed upper

bounds Ab(t, m, s), we get upper bounds for the star discrepancy of (T, s)-

sequences with explicit constants. Since in the general case we are mainly inter-

ested in the order of magnitude of the star discrepancy, we do not write down

the implied constants, but rather use the bound in Theorem l(i) below as a

fundamental result. Furthermore, we give a condition on T under which the

star discrepancy D*N(S) of a (T, 5)-sequence S in base b has the possibly

optimal order of magnitude, i.e., D*N(S) - 0(N~l(logN)s). Note that it is a

classical conjecture in the theory of uniform distribution of sequences that for

every dimension 5 there is a constant c¡ > 0 such that for any sequence S of

elements of Is we have

D*N(S)>csN~l (log N)s

for infinitely many 7Y. This conjecture has been proved in the case s = 1 by

Schmidt [17].

Theorem 1. For T: N0 -» N0 with Y(m) < m for all m £ N0 let S be a
(T, s)-sequence in base b.

(i) Given an integer N > b, let the integer k be such that bk < N < bk+l .

Then we have
k

ND*N(S) < B(b, s) 53 bJ{m)ms-[

with a constant B(b, s) depending only on b and s.

(ii) If the sequence

(l±b^)
\     m=l ' k=\,2,...

is bounded, then we have

D*N(S) = 0(N~[(logN)s)   forN>2.

Proof, (i) This follows immediately by combining Lemma 1 with the bound in

(!)•

(ii) This follows from part (i) and from k log b < log N.   G

Remark 2. For a (t, s)-sequence in base b the sequence in Theorem 1 (ii) is ob-

viously bounded. There are of course also functions T which are not bounded

by some t, but for which k~l ¿Zkm=\ bT{m) is bounded.

Remark 3. It is easily seen that k~s ¿Zm=\ bT^ms~l is bounded if and only if

k~l ¿Zm=\ ¿>T(m) is bounded. The sufficiency was already used in the proof of

Theorem 1 (ii) and the necessity follows by summation by parts.

3. Sequences obtained by digital constructions

The main method for the construction of (/, m, s)-nets, of (t, s)-sequences,

and in the following also of (T, s)-sequences is the method of digital construc-

tions over finite commutative rings with identity, or in short the digital method.

This method was introduced in [10, Section 6] and was further used e.g. in [11],

[12], [14].



GENERALIZED (t, i)-SEQUENCES 2055

We follow [16, Chapter 4] in the description of the digital method for the
construction of sequences. Let the integers 5 > 1 and b > 2 be given. We

write Zb = {0, 1, ... , b - 1} for the set of digits in base b. Then we choose

the following:
(i) a commutative ring R with identity and card(R) = b ;
(ii) bijections y/r: Zb -» R for r — 0, 1, ... , with y/r{0) = 0 for all suffi-

ciently large r ;
(iii) bijections n¡j: R —► Zb for i = 1, 2, ... , 5 and 7 = 1,2,...;

(iv) elements cj} £ R for \ < i <s, j > 1, and r > 0.

For « = 0,1,...  let
oo

n = 53flr(n)*r
r=0

be the digit expansion of n  in base b, where ar(n) £ Zb  for r > 0 and

ar(n) = 0 for all sufficiently large r. Then we define the sequence

(2) xn = (xnl),...,xns))£ls   for « = 0,1,...

by putting
OO

x{ni] = Y^yfjb'*   for « > 0 and 1 < / < 5,

where

y»j = 1» ( £ cfry/r(ar(n)) j e Z6   for « > 0, 1 < i < s, and ; > 1

Here the following condition is assumed to hold:

(v) for each « > 0 and 1 < / < 5, we have y¡J < b — 1 for infinitely many j .

This condition guarantees, in particular, that the points x„ in (2) belong to
Is = [0, l)s and not just to [0, l]s. The sequences in (2) constructed by

this method are called digital sequences constructed over R. In many cases of

practical interest R is chosen to be a finite field.

Remark 4. Note that the above construction method can be symbolically illus-

trated by the following scheme. (Here we do not explicitly use the identification

of the elements of R and Zb by the bijections \pr and f/i; ; in most cases we ac-

tually have one fixed identification independent of i, j, and r.) For \ < i < s

let C¡ be the infinite matrix over R with rows

e? = (<$,$,...)   for; = 1,2,...':

Every « > 0 with digit expansion « = ¿Z%o arin)br in base b is identified

with the infinite column vector

over R . Then if

'ao(n)\

| ai(n)
'■    )

'xn'](l)\

| xP (2)

•:   /
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we set

oo

x{ni] = 53Xn}0)b-j   for « > 0 and 1 < i < s,

x„ = (xnl), ... ,x{ns))    for«>0.

Lemma 3. With the notation for the digital method above, suppose that the func-

tion T: No -» No with Y(m) < m for all m £ N0 satisfies the following property :

for any integers m > 1 and d\, ... , ds > 0 with YÎm d¡ = m-Y(m) and any

fp £ R,  1 < j < di, I < i < s, the system of linear equations

m-\

%é$zt = jf   for\<j<di,\<i<s,
r=0

in the unknowns Zq, ... , zm_i over R has exactly bT<-m^ solutions. Then the

digital sequence x0, xi, ... constructed over R is a (T, s)-sequence in base

b. If, in addition, for all m > 1 there are d\, ... , ds > 0 with J}i-i ^ =

m + 1 - Y (m) and fjl) £ R such that the above system does not have exactly

0T(m)-i solutions, then the sequence xo'> Xj, ... is a strict (T, s)-sequence in

base b.

Proof. The arguments in the proof of [16, Theorem 4.35] yield also the present

more general result.   D

If the base b is a prime power q, then we can take for R the finite field

Fq of order q. We can then simplify Lemma 3 by using a notion from [16,

Chapter 4] in a notation that suits our purpose.

Definition 5. For 1 < / < 5 let C, be an infinite matrix over the finite field Fq

with rows

cj   = (cj0 > cj\ > ■■■)    for j = 1, 2, ... .

For an integer m > 1 put

¿;\m) = (c($,...,cUm_l)£F™   forj = l,2,... .

Then we define Qm(C\, ... , Cs) to be the largest integer d such that any system

{Cj(m) : 1 < j < d,■, 1 < / < s} of vectors with 0 < d¡ < m for 1 < i < s and

Z)¿=i di = d is linearly independent over Fq (here the empty system is viewed

as linearly independent).

Lemma 4. Let S bean s-dimensional digital sequence constructed over the finite

field Fq and let the infinite matrices C\, ... , Cs over Fq be as in Remark 4.
Then S is a strict (T, s)-sequence in base q with

Y(m) = m- Qm(Cx, ... ,CS)   for m>\.

Proof. This follows from Lemma 3, Definition 5, and elementary facts of linear

algebra.   D

In the following we will prove that digital sequences constructed over Fq

show, on the average, a very good distribution behavior. For this purpose we

use a natural measure on the class of all ¿-dimensional digital sequences con-

structed over Fq . First of all, we note that in view of Lemma 4 the distribution
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properties of such a sequence depend only on the matrices C\, ... , Cs. There-
fore, we identify the class of all s-dimensional digital sequences constructed

over Fq with the set Jfs of all s-tuples (C\, ... , Cs) of infinite matrices over

Fq (in the notation Jfs and in some of the following notation, we suppress the

dependence on q for simplicity).

We define the probability measure ps on Jts as the product measure induced

by a certain probability measure p on the set JH of all infinite matrices over

Fq . We can view Jf as the product of denumerably many copies of the se-

quence space Fq°° over Fg , and so we define p as the product measure induced

by a certain probability measure p on F™ .

In view of later investigations of sequences defined via formal Laurent series,

we use the following way of introducing the measure p. We identify each

c- (ci, c2, ...) £ Fq°° with its generating function

oo

r-k /- r tt*-i\^CkZ~k£Fq((z-i)),

fc-1

where Fq((z~1)) is the field of formal Laurent series over Fq in the variable

z_1 . In this way we have identified F9°° with the set Hq of all generating

functions. With the topology induced by the degree valuation (compare with

Section 4) and with respect to addition, Hq is a compact abelian group, and

we define p to be the unique Haar probability measure on Hq .

The probability measure ps on Jfs is thus defined completely. We can now

establish the following probabilistic result with respect to ps. We write N for

the set of positive integers.

Theorem 2. Let D: N -+ [0, oo) be such that

£

ms '
< oo.

Z-i flD(m)
m=\

Then ps-almost all s-dimensional digital sequences constructed over the finite

field Fq are (T, s)-sequences in base q with

Y(m)<D(m) + 0(l)   for all m > 1,

where the implied constant may depend on the sequence.

Proof. We can assume w.l.o.g. that D(m) £ No for all m £N. Now we put

*?(s,d) = 53
- ms  '

flD(m) •

For M £ N let Jfs(D, M) be the set of all (Q, ... , Cs) £ J?s with the
following property: there are m £ N and d\, ... , ds £ N0 with Yf¡=i d¡ =

m - D(m) - M such that the vectors ép(m) £ F™ , 1 <j < dj, 1 < i < s, are

linearly dependent over Fq . Here the cj\m) are as in Definition 5. Then

oo oo

ps(^rs(D, M)) < 53 5Z ^2PsWsCh, m, di, ... , ds)),
m=\ d\,...,ds=0 h

d¡+---+ds=m-D(m)-M
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where the last sum is extended over all nonzero h = (h\l\ ... , hdl\ ... , h\s',

...,hds))£Fqm-D{m)-M and
s

Jfs(n,m,dx, ... , ds) := \ (C,, ... , Cs) €■-#,: ¿¿*f c<°(m) = 0 I .

Because of h / 0, the equation

¿5>fc<V) = o
,=1 ;=1

determines one of the vectors é'^m) uniquely in terms of the others, and so

this vector equation has exactly q^n-vw-M-i) somtions  Therefore

Ps(^s(b, m, dx, ... , ds)) = q~m.

It follows that
oo oo

^(^(d,m))<53       53      53 q~m
m=\ d,,...,ds=0 h

d¡+---+ds=m-D(m)-M

oo

< 53 ms-1qm-D{m)-Mq-m = q~MKq(s, D).

Since M can be chosen arbitrarily large, the result follows now from Lemma

4.    G

Remark 5. Theorem 2 implies, for example, that given any e > 0, we have

Y(m) <(s + E)\og9m + 0(l)   for all m > 1

for /^-almost all s-dimensional digital sequences constructed over Fq, where

log9 denotes the logarithm to the base q .

Using Theorem 1 (i) and Remark 5, we get that for ^-almost all s-dimensional

digital sequences S constructed over Fq the star discrepancy satisfies

D*N(S) = 0(N~l (log N)2s+E)

for N > 2 and for all e > 0, with an implied constant depending only on

q, s, e, and 5. At least for the case where q is prime, it may be possible

to reduce this probabilistic discrepancy bound to 0(N~' (log N)s(\oglog N)2+e),

by adapting an approach that was developed in [6] for the special class of digital

sequences to be described in Section 5; however, this method involves enormous

technical complications.

4. Diophantine approximations of formal Laurent series

Let Fq again be the finite field of order q and let Fq((z~x)) be the field

of formal Laurent series over Fq in the variable z_1 . Every element L of

Fq((z~1)) has the form

(3) L = 53 ukz~k

k=w



GENERALIZED (í , í)-SEQUENCES 2059

with an integer w and all Uk £ Fq. The degree valuation v on Fq((z~1)) is

defined by

m_f - min{/c : uk / 0}    ifL^O,
"l   '~ { -oo ifL = 0.

For nonzero polynomials Q £ Fq[z] we have then v(Q) - deg(ß), but for the

zero polynomial we use the convention deg(O) = -1. If L is as in (3), then its

fractional part Fr(L) is given by

Fr(L) ¿2      uk
fc=max(l ,w)

z~k

We now introduce the following diophantine approximation constants.

Definition 6. Let (L\, ... , Ls) be an s-tuple of elements of Fq((z~1)) for

which 1, L\, ... , Ls are linearly independent over the rational function field

Fq(z). Then we recursively define the integers d¡¡(L\, ... , Ls),« = 0,1,...,

by putting

d0(Li, ... , Ls) = 1 -s,

dh+\(L\, ... , Ls)
{s

d > dh(Lx.Ls): 3ß,,..., & € Fq[z] with 53deg(ß/) = d
i=i

such that v j Fr í ¿ ß,L, ] ] < ^ ( Fr j ¿ P/L, J J

for all R\, ... , Rs £ Fq[z] with - 5 < 53 deg(P,) < d \
i=i J

for « = 0, 1, ... .

Furthermore, we define

vh(Ll,...,Ls) = -mmLhr(Í2QiL)) ■ Q\, ■-■ > Qs Ï Fq[z]

\
with -5 < 53deg«2;) < ¿4+1 {L\, ... , Ls) >

/=i J
for « = 0, 1, ... .

Remark 6. It is clear from Definition 6 that (db(L\, ... , Ls))a=o,i,... is an

increasing sequence of integers > 1-5 and that (Vf,(L\, ... , Ls))/,=o,i,... is an

increasing sequence of positive integers.

Remark!. In the case s= 1, i.e., when Li is an irrational element of F9((z-1)),

the numbers db(L\) and vb(L\) can be expressed in terms of continued fraction

parameters. In the standard notation for continued fractions, let

Li = [A0;Ai, A2, ...]
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be the continued fraction expansion of L\, where the partial quotients Ab, h =

0, 1, ... , are polynomials over Fq with deg(Ab ) > 1 for h > 1. By using well-

known results on continued fractions (see e.g. [16, Appendix B]), we get then

the formulas

h

dh(Lx) = 53deg(^,)   for h > 1,
'='
h+\

vh(Li) = ^2deg(Ai)   for«>0.
i=i

Lemma 5. If we also put v_\(L\, ... , Ls) — 0, then

vh(Li, ... , Ls) >dh+l(Lu ... ,Ls) + s-l   for « > -1.

Proof. For h = -1 this follows from the definitions, so we can assume « > 0

from now on. We claim that for all integers N > l-s there exist Q\, ... , Qs £

Fq[z] with -5 < ¿ZU deg«2<) < N and

MFr(¿0<L'j) <-N-s.

Choosing then N = db+l (L\, ... , Ls) - 1, we get

-vh(Li , ... , Ls) < -N -s = -dh+l(Li, ... , Ls) + \ -s,

and the result of the lemma follows.

The above claim can be deduced from the Minkowski linear forms theorem

for formal Laurent series established by Mahler [9] (see also Eichler [1]). For

the sake of completeness, we include a simple direct proof. For L as in (3) and
/ £ N0 we put

trunc/(L) :=      y^      u^~k ■

/c=max(l ,w)

Now we choose integers g\, ... , gs > -I with 5Z/=i gi = N• Then there are

qN+s s.tupies (/>,,..., ps) of elements of Fq[z] with deg(P¡) < g, for 1 <

i < s. Consequently, there are two such s-tuples (P\, ... , Ps) ^ (R\, ... , Rs)

with

truncAT+J_i ( 53 piU ) = truncAf+J_i ( 53 R'L¡ ) ■

With Qi := P¡ - R¡ for 1 < / < 5 we then get -s < ¿ZU\ deg(ö<) < N and

trunc,v+i_i I 2_^ QiL¡ J = 0,

so that
its \\

i/( Fr ( 53ß/Li 11 <-N-s.   D\¿¡^¡ i !>-"-■>■   •">
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Definition 7. For an s-tuple (L\, ... , Ls) of elements of Fq((z~1)) and for

m £ N0 we define em(L\, ... , Ls) to be the least integer d for which there

exist Qi, ... , Qs £ Fq[z] not all 0 with £/=i deg(ß,) = d and

v   Fr   53ß,L,       <-m.\¿i^i I  I ^ ~m ■

Lemma 6. Let (L\,... , Ls) be an s-tuple of elements of Fq((z~x)) for which

1, L\, ..., Ls are linearly independent over Fq(z). If again v_x (L\, ... , Ls) =
0, then for « = 0,1,...  we have

£m(L\, ... , Ls) = db(L\, ... , Ls)

forvh_i(Li, ... ,Ls)<m <vh(Lx, ... ,LS).

Proof. Fix h, m £ N0 with vh_{(L\, ... , L5) < m < vh(L\, ... , Ls). By
the definition of vh(L\, ... , Ls) there exist Q\, ... , Qs £ Fq[z] with -s <

Eí=i deg(ß,) < dh+i(Li, ... , Ls) such that

v[Fr(Y,QlLl)J)J=-vh(Ll,...,Ls).

We choose Q\, ... , Qs such that ¿ZUi deg(ß,) is minimal. From

MFr(£ö<L<j) <-m

we conclude that

s

(4) ^(L1,...,L5)<53deg(ß,)
,=i

by Definition 7. If we had ¿Z)=\ deg(ß,) > dh(L\, ... , Ls ), then it would follow
from the definition of db+l(L[, ... , Ls) that there exist R\, ... , Rs £ Fq[z]

with -s < £J_, deg(Ä,-) < ¿/=i deg(ß() such that

v \Yx (J2 RíLA j<u\Yr í ¿ a-L,■ J j = -vh(Lx , ... , Ls).

The definition of the last number would then imply that

MFr(è*'Lij) =-vh(Ll,...,Ls),

which is a contradiction to the minimality of £/»i deg(ß,). Thus 5Z/=i deg(ß,)

< dh(Lx, ... , Ls), and so (4) yields

em(Li, ... , Ls) <dh(L{, ... , Ls).

For « = 0 this already shows the result of the lemma, so we can assume « > 1

in the rest of the proof. Take any P\, ... , Ps e Fq[z] not all 0 with

u[Fr[zZP-Ln) <-m<-vh_l(Ll,...,Ls).
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Then by the definition of the last number ¿y¡=l deg(P¡) > db(L\, ... , Ls), and
so

em(L\, ... , Ls)> dh(Lx, ... , Ls)

in view of Definition 7.   D

Definition 8. Let x : {1 -s, 2-5 ,...}—>[ 1, oo) be a function with limx^oo r(x)

= oo . Then an s-tuple (L\, ... , Ls) of elements of Fq((z~1)) is said to be of
type < t if

v ÍFr ( ¿ß,L, j j > -t Í ¿deg(ß;)

for all Q\, ... , Qs £ Fq[z] that are not all 0. If the function t is of the form

t(x) = ßx + y for some real constants ß > 1 and y, then (L\, ... , Ls) is

said to be of finite type < ß .

Example. We can construct s-tuples of finite type in the following way. Let A

with Fq(z) ç A C Fq((z~1)) be a Galois extension of Fq(z) of degree m > s+1

and let E be the integral closure of Fq[z] in A. Take any L\, ... , Ls £ E

for which 1, Li, ... , Ls are linearly independent over Fq(z). We claim that

(L\, ... , Ls) is of finite type < m — 1. For Q\, ... , Qs £ Fq[z] not all 0 we
have

Fr(53ß,L;] =¿fi¡Lí-P=:L
\í=i /      i=i

for some P £ Fq[z]. The linear independence condition implies that L ^ 0.

Put G = Gal(A/Fq(z)) and G* = C7\{identity} . Then

nal) := n c(L)=L n ( è Q'^L') - n.
(T6G ct€G*  \/=i /

and so

(5) KA^(L)) = v(L) + 53 »/ ( ¿ ßf<7(^) - P ) .
<reG-       \i=l /

Because of the nonarchimedean character of v we have

v(P)<v\S2QiU\ < max(v(Qi) + v(Li)),

and so for all a £ G*,

v Í 53 QiO(Li) - P j < max f max(i/(ß«) + ̂ (ff(¿/))), ̂ (^)

< max v(Qi) + y' = max deg(ß,) + y'
1<Í<Í 1 < í<s

with

y' = max u(a(L¡)).
1<¡<5
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From L[, ... , Ls £ E we get L £ E, and so NA(L) £ Fq[z\. Furthermore,

L ¿ 0 implies NA(L) ¿ 0. Therefore v(NA(L)) > 0 ; hence (5) yields

v (Fr (¿ Q.l) ] > - 53 v (¿ Qío(U) - H
\        \/=l // (T6G*       \i=l /

s

> -(m - 1) max deg(ß,) - (m - \)y' > -(m - l)53deë(ô;) ~ y
( = 1

for some real constant y, and the claim is established.   We remark that if

m = s + 1, then the above argument shows that

" FrI¿Q'L'))^-smaxdeB(ß')-sy'
\        \ t-^1 I  I \<i<s

u=\
l<i<5

for all Q\, ... , Qs £ Fg[z] that are not all 0, and so we also get an example

of an j-tuple (L\, ... , L¡¡) that satisfies the hypothesis of [8, Theorem 3]. We

note also that this example works not only over Fq , but also over an arbitrary

field of constants.

Lemma 7. For an s-tuple (L\, ... , Ls) of type < x we have

(6) em(Li, ... , Ls) > x~l(m)   forallm£N0,

where x~l(m) := min{x > 1 — s: x(x) > m} . If x is nondecreasing and attains

only integer values, then the converse holds also.

Proof. By Definition 7, for given m £ No there exist Q\, ... , Qs £ Fq[z] not

all 0 with ¿J_, deg(ß/) = em(Lx ,...,LS) and

On the other hand, we have

V ( Fr ( E Q'L') )  * -^em{U ,...,LS))
a'=l

by Definition 8. It follows that x(em(L\, ... , Ls)) > m ; hence we get (6).

For the converse we assume that (6) holds and that x is nondecreasing and

attains only integer values. To prove that (L\, ... , Ls) is of type < x, we

suppose that, on the contrary, there exist R\, ... , Rs £ Fq[z] not all 0 with

-(Fr(è^))<-T(ède^))-

Put d = ¿2si=l deg(R¡) and m = x(d) ; then

'.(* (t «*))<-*•

and so Definition 7 yields em(L\, ... , Ls) < d . In view of (6) we get x~l (m) <

d. Since x is nondecreasing, we obtain x(d) > m , a contradiction.   D
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Let us point out that a probabilistic result on the type of s-tuples (L\,..., Ls)

will be shown in Theorem 9 in the next section.

5. Kronecker-type sequences

We investigate a special class of s-dimensional digital sequences introduced

in [16, Chapter 4] and studied further in [6], [8]. The construction of these se-

quences can be viewed as a function-field analog of the construction of classical

s-dimensional Kronecker sequences, i.e., of sequences of integer multiples mod

1 of a point in W, and so we use the name "Kronecker-type sequences" for

these digital sequences. The main results of this section establish links between

the distribution properties of Kronecker-type sequences and the diophantine

approximation constants discussed in Section 4.

For our purposes, the most convenient definition of Kronecker-type sequences

is the one given originally in [16, Chapter 4] since it fits into the framework of

the construction of digital sequences in Section 3. An equivalent definition of

Kronecker-type sequences, which shows the analogy with the construction of

classical Kronecker sequences, is presented in [8].

Let Fq again be the finite field of order q, where q is an arbitrary prime

power. For a given dimension î>1 we choose an s-tuple (L\ , ... , Ls) of

elements of FQ((z~1)), say

oo

L< = ¿Z u[kz~k   for 1 < / <s,
k=w¡

where we can assume that w, < 1 for I < i < s. Then we use the construction

of digital sequences in Section 3 with R = Fq and the elements

CW = u(p+J £Fq   for 1 < / < s, ; > 1, r > 0.

In other words, the matrices C\, ... , Cs  in Remark 4 are now the infinite

Hankel matrices

(7) C, :=

(uf    uf    uf    ...\

uf     «4°     «?     ••

\'.':\ )

for 1 < i < s.

We denote the resulting s-dimensional digital sequence constructed over Fq by

S(L\, ... , Ls). In this notation we suppress the dependence of the sequence

on the chosen bijections tpr and n¡j since it will turn out that our results

depend only on L\, ... , Ls. According to [16, Lemma 4.47], the following is a

sufficient condition for the condition (v) in Section 3: Li, ... , Ls are irrational

and for each 1 < i < s there exists a nonzero c, £ Fq such that r¡ij(c¡) = q - 1

for all sufficiently large j .
The case where L¡, ... , Ls are rational corresponds to the construction of

point sets in [ 14] which was further analyzed in [3], [5], [7], [15], [16, Chapter 4].

It was shown by the authors [8] that the sequence S(Li, ... , Ls) is uniformly

distributed in Is if and only if 1, L\, ... , Ls are linearly independent over

the rational function field Fq(z), so this is clearly the case of main interest,

although some results, such as Theorem 3 below, hold generally. In [8] one can
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also find a sufficient condition for S(L\, ... , Ls) to be a (t, s)-sequence in base

q for some t £ No ; in the language of the present paper, this condition says

that the s-tuple (L\, ... , Ls) is of finite type < 1 (compare with Definition

8). A probabilistic result on the discrepancy of S(L\, ... , Ls) was proved by

Larcher [6] in the special case where q is prime. The following general result

shows the connection with notions introduced in Sections 1 and 4.

Theorem 3. For every s-tuple (L\, ... , Ls) of elements of Fg((z~1)) the se-

quence S(L\, ... , Ls) is a strict (T, s)-sequence in base q with

T(m) = m - em(L\, ... , Ls) - s + 1   for all m £ No,

where em(L\, ... , Ls) is as in Definition 1.

Proof. In view of Lemma 4 it suffices to determine the numbers Qm(C\, ... , Cs)

for m > 1, where C\, ... , Cs are the matrices in (7). By Definition 5 we con-

sider, for given m > 1 , the vectors

uf {m) = (uf, u% ,..., u%m_x) £ Fqm   for 1 < / < s and ; > 1.

The definition of em(L\, ... , Ls) implies that there exist Q\, ... , Qs £ Fq[z]

not all 0 with £j_, deg(g,) = em(Lx, ... ,LS) and

v   Fr   53&I,,\\<-m.
\     \i=\        //

Thus, the coefficients of z~k , 1 < k < m , in Yf¡=i Q¡L¡ are 0. Let

d, + \

Qi = Yq(i)zJ-'
7 = 1

with d¿ = deg(g,) for 1 < / < s ; recall that deg(0) = -1 . Then, by working
out the coefficients of Q¡L¡, we get

EISA  i=Ô   for\<k<m,

and so the vectors Uj(m), 1 < j < d¡+ 1, 1 < / < s , are linearly dependent

over Fq . Therefore 5Z/=i(^í + 1) > QmiQ, ... , Cs) + l by Definition 5; hence

em(Lx, ... , Ls)> Qm(Cx, ... ,Cs)-s+l.

Now let gx, ... , gs £ N0 be such that ££=! g* = Qm(C\, ... ,Cs)+\ and such

that the vectors uf(m), 1 < j < g¡■, 1 < / < s, are linearly dependent over

Fq . Then there exist r(p £ Fq , 1 < j < g¡, 1 < i < s, not all 0 with

í    Sl    ,-,  ,-,

EEÍXV.=0   forl<*<m.
<=i j=i

Then with

R¡ := 53 rfz¡-'£Fq[z]   for 1 < / < s
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we have

" 1Ft(z2R'L>) ) <_w'

and therefore

s

em(L\,... ,Ls)<J2(g>- l) = Qm(Ci,..., Cs)-s+l.
(=i

Thus we have shown

gm(Ci, ... ,CS) = em(Lx, ... ,Ls) + s-\    for m > 1.

Lemma 4 implies that S(LX, ... , Ls) is a strict (T, s )-sequence in base q with

Y(m) = m - em(L\, ... , Ls) - s + I    for m > 1.

Note that this formula for Y(m) holds also for m = 0 since eo(Li, ... , Ls) =
1 -S.    D

We now establish connections between S(Li, ... , Ls) and the diophantine

approximation constants introduced in Definition 6.

Theorem 4. Let (L{, ... , Ls) be an s-tuple of elements of Fq((z~1)) for which

1, L\, ... , Ls are linearly independent over Fq(z).

(i) For a constant t £ N0, S(L\, ... , Ls) is a (t, s)-sequence in base q if

and only if

(8) vh(Lx ,...,LS)- dh(Li ,...,Ls)<s + t   for all h > 0.

In particular, S(L\, ... , Ls) is a (t, s)-sequence in base q for some t £ No if

and only if vh(Lx, ... , Ls) - dh(L\, ... , Ls) is bounded.
(ii) S(L\, ... , Ls) is a (0, s)-sequence in base q if and only if

vh(Li, ... , Ls) = h + l   for all h >0.

Proof, (i) By Theorem 3 and Lemma 6, S(Li, ... , Ls) is a (T, s)-sequence in

base q with

Y(m) = m- em(Lx, ... , Ls) - s + 1 = m - dh(Lx, ... , Ls)-s+l

< vh(Li,... ,LS)- dh(Lx, ... ,Ls)-s

for vh_x(L\, ... , Ls) < m < vh(L\, ... , Ls) and « > 0. Thus, if (8) holds,
then S(L\, ... , Ls) is a (t, s)-sequence in base q . Furthermore, we have

T(vA(Li ,...,Ls)-l) = vh(Li ,...,LS)- dh(Li, ... , Ls) - s   for all h > 0,

and so from the strictness property in Theorem 3, if S(L\,..., Ls) is a (t, s)-

sequence in base q, then (8) must be satisfied.

(ii) If S(Li, ... , Ls) is a (0, s)-sequence in base q, then (8) holds with

t = 0. By combining this inequality with Lemma 5, we get

dh+l(L{ ,...,LS)- dh(L{ ,...,LS)<\    for all h > 0.

By using again (8) with t = 0, we obtain

vh(Li, ... , Ls) <dh(Li, ... , Ls) + s < h+ 1    for all h >0.



GENERALIZED (í, s)-SEQUENCES 2067

In view of Remark 6, this shows that vb(L¡, ... , Ls) = h + I for all « > 0.
Conversely, if vh(L\, ... , Ls) = « + 1 for all « > 0, then (8) trivially holds
with t = 0, and so S(L{, ... , Ls) is a (0, s)-sequence in base q.   D

Corollary 1. Let L\ £ Fq((z~1)) be irrational with continued fraction expansion

Ll = [A0;Al,A2,...].

Then S(Li) is a (t, \)-sequence in base q if and only if deg(y4A) < t + 1 for

all « > 1.

Proof. This follows from Theorem 4(i) and the formulas in Remark 7.   □

Next we show that the distribution properties oí S(L\, ... ,LS) can also be

expressed in terms of the notion of type introduced in Definition 8.

Theorem 5. If the s-tuple (L\, ... , Ls) of elements of Fq((z~*)) is of type < x,

then S(L\, ... , Ls) is a (T, s)-sequence in base q with

Y(m) = m - x~x(m) -s + 1   forallm£N0,

where the inverse function x~l of x is defined as in Lemma 7.

Proof. This follows by combining Lemma 7 and Theorem 3.   D

Theorem 6. For real ß > 1, an s-tuple (L\, ... , Ls) of elements of Fq((z~x))

is of finite type < ß if and only if S(L\, ... , Ls) is a (T, s)-sequence in base

q with

(9) T(m)<Pj^m + 0(l)   forallm£NQ.

Proof. If (Li, ... , Ls) is of finite type < ß , then in the notation of Lemma 7

we have for the corresponding function x,

ÏYL
x~l(m)>j + 0(l)   for all me N0.

Thus, it follows from Theorem 5 that S(L\, ... , Ls) is a (T, s)-sequence in

base q with T satisfying (9). Conversely, suppose that S(L¡, ... , Ls) is a

(T, s)-sequence in base q with T as in (9). From the strictness property in

Theorem 3 we infer that

Y(m) > m - em(L\, ... , Ls) - s + 1    for all m £ No,

and so
m

em(Li, ... , Ls)> -j + y   for all m £ N0,

where we can assume that the constant y satisfies y < 1 - s. Now choose the

function

x(x) = [ß(x - y)\ + 1    for integers x > 1 - s.

Then x is nondecreasing with t(1 - s) > 1 . Furthermore, for all m £ No we

have

x(em(Ll ,...,LS))> OH.
V

ß \~ö + y-y) +i>w;

hence em(L\, ... , Ls) > x  ' (m). The second part of Lemma 7 shows now that

(L\, ... , Ls) is of type < x and so of finite type < ß .   D
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Corollary 2. If the s-tuple (L\, ... , Ls)  of elements of Fq((z~1)) is of finite
type < ß, then the star discrepancy of the first N > 2 terms of the sequence

S(Li, ... , Ls) satisfies

¿t',*,, r «1 Í 0(N-l'P(logN)s~l)   ifß>\,

0(N~l (log NY) ifß = l,
D*N(S(Ll,...,Ls)) -{

where in both cases the implied constant depends only on q, s, ß, and (L\, ... ,

Ls).

Proof. This follows from Theorem 1 (i) and Theorem 6.   D

Theorem 7. Let (L\, ... , Ls) be an s-tuple of elements of Fq((z~1)) for which

\, L\, ... , Ls are linearly independent over Fq(z). Put ¿4 = dh(L\, ... , Ls)

and vb = Vh(L\, ... , Ls) for h > 0, and let the function T be such that
S(Li, ... , Ls) is a strict (T, s)-sequence in base q.

(i) ELo <?T(m) = 0(k) if and only if J2Lo ̂ ~dh = 0(j) ■
(\i) If YJh=o<lVh-dh = 0(j), then

D*N(S(LX, ... , Ls)) = 0(N~l(logNY)   forN>2.

Proof, (i) If we put V-\ =0, then by Theorem 3 and Lemma 6 we have for

«>0,
Y(m) = m-dh~s+\   for vh_x <m<vh.

Thus, for Vj <k < Vj+\, j > 0, we obtain

k j vh-l k

(10) 53 <7T<m) = <?■-* 53 (T*4   53   qm + q-dj+>~s+l ¿2 I™'
m=0 h=0 W"»*-l m=v¡

Now we suppose that there exists a constant M such that

j
53 ^-d* <Mj   for all; >l.
h=0

Then from (10) we get

m=0 ^ h=0

q h=0 H

By Remark 6 we have Vj > j + I; hence

¿ q1™ < ^tMvj < ~^Mk ,
m=0 Q Q

so that one direction is shown. For the converse we assume that there exists a

constant Mx such that

k

Yq^^KMik   forallfc>l.
m=0
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Now we apply (10) with k = v¡ , j > 0, to obtain

Vj j J

(11) ¿2qT(m) >Q~s¿2qVh~dh >i_1E^^"''

m=0 h=0 h=0

where we used Lemma 5 in the second inequality.  The arithmetic-geometric
means inequality then yields

1/Í/+1)vj / / \ l/u+l)

J2<lT{m)>q~lU+l) []JqVk~v"-> =q-\j+l)qv'l{i+l).

m=0 \A=0 /

It follows that

gVj/U+l) g
Vi

< — E<?T(m)^^ fora11 j^°■
VO'+D   vJm=o

Therefore, the sequence (Vj/(j + l))7=o,i,... is bounded, say v¡ < M2(j + 1)

for all j > 0 with a suitable constant M2. Thus, from the first inequality in

(11) we get

j vj

53 qVh~d" <QS¿2 qT(m) ̂ QSM\vi ̂  QsMxM2(j + 1)

h=0 m=0

for all j > 0, and so the converse is proved.

(ii) This follows from part (i) and Theorem l(ii).   D

Remark 8. In view of Remark 3, the first condition in Theorem 7(i) can also

be replaced by yL=\ q1(m)ms-x = 0(ks).

Remark 9. For s = 1 the formulas in Remark 7 show that the condition
ELo^*_</* = °U) in Theorem 7 is equivalent to £¡Li Qáes(Ah) = O(j),
where Li = [Aq\ A\, A2, ...] is the continued fraction expansion of the ir-

rational element L, of Fq((z~1)). Therefore, if £a=i Qde&{Ah) = O(j), then

D^(5(Li)) = 0(/V-' log /Y) for N > 2 (this can also be deduced from [8, The-
orem 5]). In the case of classical Kronecker sequences in dimension s = 1 there

is an analogous result, but in this case the converse holds as well. It is an open

question whether the converse holds also for the sequences S(L\ ).

We now establish an analog of Theorem 2 for sequences of the type

S(L\, ... , Ls). Since these sequences form a set of ^-measure 0, we have to

use another measure. We use the same notation as in Section 3; in particular,
we write

Hq = {L£Fq((z-i)):v(L)<0}.

Furthermore, we note that the sequence S(L\, ... , Ls) and its distribution

properties depend only on the fractional parts of Lx, ... , Ls. Therefore, we

can assume that (L\, ... , Ls) £ Hsq.

We now let p again be the unique Haar probability measure on Hq , and we

denote by ps the product measure on Hsq induced by p .

Theorem 8. Let D: N -> [0, oo) be such that

OO v_ 1Ems    1
..,  . < oo.

aD{m)
m=l *
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Then for ps-almost all (L{, ... , Ls) £ H* the sequence S(Li, ... , Ls) is a

(T, s)-sequence in base q with

Y(m)<D(m) + 0(l)   for all m> 1,

where the implied constant may depend on (Li, ... , Ls).

Proof. The arguments for the proof of this theorem are quite analogous to those

for the proof of Theorem 2. Instead of J?S(Y>, M) in the proof of Theorem 2

we use here ^(D, M), where the matrices in the s-tuples (Ci, ... , Cs) are

restricted to the C, of the special form (7). Similarly, ^(h, m, d\, ... ,ds)
is defined in analogy with ^(h, m, d\, ... , ds). The system of equations

¿53«y)cf(m) = o
i=i j=i .

is now a system in the (m - \)s + m - D(m) - M variables wf , ... , u(^+d,_l,

1 < i < s, of the form

í    d,

E ¿Zh?uf+r = °   for 0 < r < m - 1.
1=1 7=1

The rank of this system is m, and therefore

/^(^(h, m, dx, ... , ds)) = q~m.

The result of the theorem follows then as in the proof of Theorem 2.   D

Theorem 9. For every e > 0, ps-almost all s-tuples (L\, ... , Ls) £ Hsq are of

type < x with

x(x) = x + (s-r-e)log?(x + s) + 0(1)   for x > 1 -s,

where logg denotes the logarithm to the base q and the implied constant depends

only on q, s, e, and (L\, ... , Ls). In particular, ps-almost all (L\, ... , Ls) €

H3q are of finite type < 1 + e for all e > 0.

Proof. For a fixed e > 0 we put

D(m) - (s + - j log^ m   for m £
2i

Then Theorem 8 implies that for /¿s-almost all (L\, ... , Ls) £ Hsq the sequence

S(L\, ... , Ls) is a (T, s)-sequence in base q with

Y(m) <D(m) + 0(\)   for all m €N.

Now we fix such an s-tuple (L\, ... , Ls) and we note that the strictness prop-

erty in Theorem 3 yields

Y(m) > m-em(L\, ... , Ls) -s +1    for all m £ No.

Therefore

(12) em(Li, ... , Ls) > m-D(m) + y   for all m £ N

with a suitable constant y . Now we put

X[(x) = x + L(s-r-e)logi(x + s)J +y\    for x > 1 -s,
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where the integer y\ > s is determined later. We note that x\ is nondecreasing

with Ti(l — s) > 1. Next let m £ N be so large that

(13) m-~D(m) + y > 1 -s.

Then using (12) we obtain

x\(em(Lx, ... ,LS)) > Xi(m-D(m) + y)

= m - is + -J \ogq m + y + [(s + e) logq(m - D(m) + y + s)\ + yx > m

for ail m £ N satisfying ( 13), if yx is chosen sufficiently large. For the remain-

ing m £ No we have

xi(em(Lu ... ,LS)) > m

if y\ is sufficiently large. Thus, with a suitable choice of y\ we get

Xi(em(Li, ... , Ls)) > m   forall«ieN0,

and so

em(L\, ... , Ls) > x¡l(m)   forallmeN0.

Therefore, the second part of Lemma 7 shows that (L\f, ...., Ls) is of type
< x\, and the desired result follows.   D

If we choose the function D as in the proof of Theorem 9, then we obtain

from Theorem l(i) and Theorem 8 that for /2s-almost all (L\, ... , Ls) £ Hsq

the star discrepancy of the sequence S(L\, ... , Ls) satisfies

D*N{S(Li, ... , Ls)) = 0(N~l(logN)2s+°)

for /V > 2 and for all e > 0, where the implied constant depends only on q ,

s, e, and (L\, ..., Ls). For s = 1 a sharper result was shown in [8, Theorem

6]. In the case where q is prime and s > 2 is arbitrary, Larcher [6] has proved

by a completely different method that this probabilistic discrepancy bound can

be reduced to 0(N-\\ogN)s(\og\ogN)2+£).

Finally, we prove a probabilistic result on the growth rate of vb(L\, ... , Ls)-

db(L\, ... , Ls). This is a generalization of probabilistic results on the growth

rate of the degrees of the partial quotients in the continued fraction expansion

of a single formal Laurent series L\  (compare with [13]).

Theorem 10. For ps-almost all s-tuples (Li.Ls) € Hsq we have for all e > 0

that

è*(fi, ... ,Ls)-dh(Lx, ...,Ls)<(s + e)logqh + 0(l)   for h > 1,

where the implied constant depends only on q, s, e, and (L\, ... , Ls).

Proof. We first fix £ > 0 and choose the function D as in the proof of Theorem

9. Then for /ij-almost all (Ly, ... , Ls) £ Hq we have the inequality (12). We

fix such an s-tuple (Lt, ... , Ls), and for « > 0 we use the abbreviations

dfi = db(L\, ... , Ls) and vb = vb(L\, ... , Ls). Now for h > 1 we put
m = Vf, - I in (12), and together with Lemma 6 this yields

dh>vh-l-D(vh-i) + y.

Consequently we get

(14) vh - dh < D(vh) + yx    for all« >1
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with some constant y\ . Setting v-\ = 0, we deduce vb - db > vb - vh_l for

h > 0 from Lemma 5, and so

h h

Vh < 53(V; - dj) < 53(D(^) +7l) + 0(1)
;=0 j=\

< hD(vh) + 0(h) = 0(h tegua)

for h > 1. Now we put

_ 7+e'
Then vh = 0(hvsh) ; hence

vh < y2hl/{l~ö)   for all« >1

with a suitable constant y2. It follows then from (14) that

vh-dh<[s + |) log, vh + 0(1) < (s + |) log.to«'/^) + 0(1)

= (s + e)log<?« + 0(l)

for all « > 1. By letting e run through a sequence converging to 0 through

positive values, we get the final result.   D

Remark 10. If we put s = 1 in Theorem 10 and combine the result with the

formulas in Remark 7, then we obtain that for /2-almost all L\ £ Hq we have

deg(^)<(l+e)log(?« + 0(l)

for all A > 1 and e > 0, where the implied constant depends only on q , e,

and Li. This result should be compared with [13, Theorem 6].
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