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THE CONNECTION MATRIX IN MORSE-SMALE FLOWS II

JAMES F. REINECK

Abstract. Given a connection matrix for a Morse-Smale flow on a compact

manifold, if there are no periodic orbits of equal or adjacent indices related in

the partial order, we show that the periodic orbits can be replaced by doubly

connected rest points in such a way that the given connection matrix induces

the unique connection matrix for the resulting flow. It follows that for this class

of flows, all nonuniqueness in the connection matrix is a consequence of the

continuation theorem for connection matrices.

1. Introduction

The purpose of this paper is to extend the results of [8] on the connection
matrix for Morse-Smale flows. Recall that a Morse-Smale flow on a manifold is

one where the chain recurrent set (and hence the Morse decomposition) consists

of hyperbolic critical points and periodic orbits, and all stable and unstable

manifolds intersect transversally. In [8] it was shown that if there are no periodic

orbits, then the connection matrix is unique, but if there are periodic orbits,

then the connection matrix may not be unique. However, the nonuniqueness

is a consequence of the continuation theorem for the connection matrix. If

we replace each periodic orbit with two doubly connected rest points in such
a way that transversality is preserved and the flow is not changed except on

small neighborhoods of the periodic orbits, then the (unique) connection matrix

for the altered flow induces a connection matrix for the original flow. On 2-

manifolds, all nonuniqueness is a consequence of this continuation property

if some technical assumptions are satisfied, i.e., if A is a connection matrix
for a given Morse-Smale flow on a 2-manifold, then it is possible to replace the

periodic orbits with doubly connected rest points in such a way that the resulting

flow has A as its unique connection matrix. In this paper we will prove a result

for manifolds of dimension greater than two. We must assume there are no

orbits connecting periodic orbits of adjacent indices. It is not known to what

extent this hypothesis can be relaxed, but this assumption allows us to read off
connection information for sets below a periodic orbit by looking at the flow

on the boundary of a neighborhood of the periodic orbit (Lemma 4.1 ), and this

lemma is not true if periodic orbits of adjacent indices are present.
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The rest of this section will be used to summarize background material. We

assume the reader is familiar with Morse decompositions, the Conley index,

and index nitrations. References include [1,3, 9].

Notation. Let {Mp \ p e (P, <)} be a Morse decomposition of an isolated

invariant set S. For an interval I C P, define

C(MP, Mpl) = {x | co*(x) c Mp, co(x) c Mp< },

M(I) = [J Mp U (   (J   C(MP ,Mp,)\
p€P ^p,p'€P '

Then M (I) is an isolated invariant set and we define

CH(I) = H,(h(M(I);Z2)).

If (A, A*) is an attractor-repeller pair in an isolated invariant set S, then

we can find a compact triple of spaces (N2, Ni, N0) such that (N2, N0) is an
index pair for 5, (N2, /Vi ) is an index pair for A*, and (iV"i, 7Vo) is an index

pair for A . We consider N2/Ni as a pointed space with the equivalence class

of ./Vi as the distinguished point, and similarly for the other two pairs. Then

there is a long exact sequence of pointed spaces (using Z2 coefficients)

-> Hg(Ni/N0) — Hq(N2/N0) -+ Hq(N2/Ni) -^ Hq_i(Ni/N0) -> ••• .

Since this is essentially independent of the triple we write

-► CHq(A) -* CHq(S) -> CHq(A*)   d{A'A"\ CHq_i(A) — ••• .

We call d(A, A*) the flow defined boundary map. Exactness implies that if

CH(S) = 0, then d(A,A") is an isomorphism. If C(A*, A) = 0, then
CH(S) = CH(A*) e CH(A) and it follows that d(A,A*) = 0. So we have

Lemma 1.1. Ifd(A,A*)¿0, then C(A*,A)¿0.

Given a Morse decomposition { Mp | p e P } , if p and p' are adjacent with
p < p', then there is a flow defined boundary map d(p, p'). Similarly, if (/, J)

is an adjacent pair of intervals, then (M(I), M(J)) is an attractor-repeller pair

in M(IJ), so there is an exact sequence

(1.2.)        -> CHq(I) -> CHq(IJ) — CHq(J) -^^ CHq_i(I) -+ ■'■■

The connection matrix condenses the Morse theoretic information contained in
the maps d(I, J) into maps defined between the individual sets { Mp \ p e P}.

To do this, for an interval I C P, define

CA(/) = 0C//(z)
i€l

and let CA denote CA(jP) . A Z2-linear map A: CA -> CA can be thought of
as a matrix

A(p,p'):CH(p')^CH(p)  | p',peP  .

We say A = A(P) is upper triangular if A(p, p') = 0 for p ¿t p' and A is
a boundary map if each A(p, p') has degree -1 and A o A = 0. It is not

difficult to show that if A is an upper triangular boundary map, then so is the
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restriction A(/) : CA(/) -♦ CA(/). If / and / are adjacent intervals, then
there is an obvious exact sequence of chain complexes

0 -» CA(I) -» CA(IJ) —► CA(J) —> 0

which gives a long exact homology sequence

(1.3) -► HqA(I) -* HqA(IJ) — HqA(J) -» Hq_iA(I) —*%'.

Definition 1.4. We say the upper triangular boundary map A: CA —► CA is

a connection matrix if for each interval I c P there is a homomorphism

<D: HA(I) -> CH(I) such that:

(1) For peP, <D(/?): HA(p) = C7/(p) -» C//(/>) is the identity.
(2) For each adjacent pair of intervals (I, J), the following diagram com-

mutes:
■•■ -► H„A(I) -► H„A(IJ)  --► HqA(J)  -> W,_iA(/)  -> ■■■

*(/) <HU) *(/) *(/)

••• -► CHq(I) -► CHq(IJ) -► CH„(J)    a(/,J)» CHq_i{I) ->  •••

where the top row is 1.3 and the bottom row is 1.2.

The existence of connection matrices was shown by Franzosa (see [4]). The

first condition implies that if p and p' are adjacent, then A(p, p') = d(p, p'),

the flow defined boundary map. Using induction and the 5-lemma, the second

condition implies that HA(I) = CH(I) for any interval I.

2. Statement of the Result

In this section we assume that the flow under consideration is a smooth

(i.e., C2 ) Morse-Smale flow on a smooth «-manifold. The Morse decomposi-

tion {Mp | p e P } consists of hyperbolic rest points and periodic orbits, and

stable and unstable manifolds intersect transversally. If Mp is a rest point,

then h(Mp) = Zk , the pointed A:-sphere, where k is the dimension of the

unstable manifold. If Mp is a periodic orbit, let k be the number of eigen-

values of the Poincaré map of modulus greater than 1. We call Mp twisted

if the Poincaré map reverses orientation on the eigenspace corresponding to

the positive eigenvalues, otherwise Mp is untwisted. If Mp is untwisted, then

A (Afp) = Zfc V l,k+l (where V means take the disjoint union and identify the

distinguished point), and if Afp is twisted, then h(Mp) = Zfc_1 A RP2 (where

X AY = (X x Y)/(X V Y) ). In either case, we say the periodic orbit has index
k, and its homology index is

Z2 if q = k , k + 1

0 otherwise.

(If k = 0, then h(Mp) is actually the disjoint union of a circle and the distin-

guished point, but the homology is isomorphic to the homology of Xo V I1 , so

we will abuse notation.) The following result is proven in [8].

Theorem 2.1. Suppose there are no periodic orbits. Then each nonzero map in

the connection matrix is flow defined, so the connection matrix is unique.

In the same paper we construct examples with periodic orbits where the con-

nection matrix is not unique.  We want to "replace" the periodic orbits with

CI%(MP)*Í
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doubly connected rest points to obtain a unique connection matrix. The fol-

lowing definition makes precise the notion of "replace". Let W" denote the

unstable manifold and Ws denote the stable manifold.

Definition 2.2. Let %f = {Ui, U2, ... , Um} be a collection of pairwise disjoint

neighborhoods of the periodic orbits yi,y2, ... ,ym in the Morse-Smale flow
4> such that y i c U¡ for i = I, ... , m and each U¡ is disjoint from every
other set in the Morse decomposition. We call the flow 4>' a ^-refinement of

<f> if
(1) 4>' is Morse-Smale.

(2) </>' agrees with 4> outside of \J¡ml U¡ ■
(3) In each U¡, <f>' has two rest points {q, p) of index k and k + l where

k +1 is the dimension of the unstable manifold of y¡. There are exactly

two orbits connecting p and q and there are no other rest points or
periodic orbits in U¡. Finally, Wu(y¡) in 4> equals Wu(p)\J Wu(q) in

4>' and Ws(y/) in 4> equals Ws(p) U Ws(q) in </>'.

A picture of a step in a ^-refinement is given in Figure 1.

The repelling periodic orbit is replaced by a repelling fixed point, a saddle

point, and two connecting orbits. The vector field generating the flow is un-

changed on a neighborhood of the periodic orbit. The idea of such a refinement
is due to Franks [2]. Notice that CH(y) = CH(M(p, q)) where p, q are the

rest points that replace y .

Suppose { Afp I p e P } is a Morse decomposition of an isolated invariant set
S in <f> and 4>' is a ^-refinement of 0. Then there is a Morse decomposition

{ Afp I p e P } of S in 4>' as follows. If Afp is a rest point, then M'p — Mp
and if Afp is a periodic orbit y, then Mp consists of the two rest points
plus the two connecting orbits which replaced y. However, there is a finer

Morse decomposition for S in cf>', namely the rest points. Denote this Morse

decomposition by { Af" | r e R } . Let A" be a connection matrix for { Afr" |

r € R } in the flow 4>'. Using the isomorphism CH(y) s CH(M(p, q)), A"
induces a map A : CA(P) —► CA(P) for the original Morse decomposition
{ Afp I p G P } in 4>.

>

q

Figure 1
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Theorem 2.3 [8]. If the U¡ in % are small enough, then the map A induced by

A" is a connection matrix for the Morse decomposition { Mp \ p e P } in (j>.

The interesting question is the converse of Theorem 2.3: given a connec-

tion matrix A for a Morse-Smale flow and a collection í¿, can one find a
^-refinement 0' whose (unique) connection matrix induces A ? The answer is
yes if no periodic orbits of the same or adjacent indices are comparable in the
flow ordering on Afp .

Suppose y is a periodic orbit of index one. Then the rest point q which is
introduced in the ^-refinement will have two orbits in its unstable manifold.

Thus we must assume the following.

(Al) If y is a periodic orbit of index one, then there are two l's in the

column of A corresponding to CHi(y). Similarly, if y is a periodic
orbit of index n - 2, then there are at most two 1 's in the row of A

corresponding to C/f„_i(y).

Also, if y is a periodic orbit of index one, and there are two l's in the column
of A corresponding to CHi (y) we must make the following assumption.

(A2) If y is a periodic orbit of index one, and Wu(y) is locally an annulus

(i.e., y is untwisted), then for any p e P with p < y, Ws(p) does

not intersect both boundary circles of the annulus. Similarly, if y is a

periodic orbit of index n - 2, and Ws(y) is locally an annulus, then

for any p G P with y < p, Wu(p) does not intersect both boundary

circles of the annulus.

These assumptions are necessary. Examples are discussed in [8].

Theorem 2.4. Fix a collection of neighborhoods % of the periodic orbits of a

Morse-Smale flow on a compact n-manifold. Assume Al, A2 and

(A3) If y is a periodic orbit of index k, then there are no periodic orbits of

index k - 1, k, or k + 1 comparable to y in the flow defined order on

{Mp\p€P}.

Then given any connection matrix A, there is a í¿-refinement of the flow whose

connection matrix induces A for the original flow.

It is not known to what extent assumption A3 can be relaxed. The rest of

this paper is devoted to the proof of Theorem 2.4.

3. Preliminary results

In this section we collect some lemmas which will be used in our main con-

struction.The following lemma is quite useful.

Lemma 3.1 [8]. Suppose {Mp \ p G (P, <)} is a Morse decomposition of an

isolated invariant set S, {x„} is a sequence in S and co(xn) c Afp for each

n, and x„ -» x. Then co(x) c Mp, for some p' with p < p'. Similarly, if

co*(x„) c Afr for each n, then co*(x) c Afr< for some r' with r' < r.

From now on we will assume that the flow is Morse-Smale on a compact

manifold, and generated by a smooth vector field X.

Definition 3.2. If a periodic orbit y of index k is untwisted, we say y is in

standard form if there is a tubular neighborhood  V of y with coordinates
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(d, x, y) G S1 x R* x R"-*-1 in V such that the vector field has the form

d/C i-\ Yl     K.      1 r\
v^       O v^ o

1=1 7=1 "

If y is twisted, then it is in standard form if it has a neighborhood whose double

cover has coordinates (d, x, y) in which the vector field has the above form.

If we define the equivalence relation ~ by

(6, xi, ... , xk, y¡, ... , yn_k-\)

~ (d + n, -xi,x2,... ,xk, -yi,y2,... ,yn-k-\)

on V, and let V be the quotient Vf ~, then the vector field X induces a

vector field Í on F. We say y is in standard form if there is a neighborhood

of y diffeomorphic to V and the diffeomorphism carries the vector field to X.

An argument of Franks [2] generalizing a result of Newhouse-Peixoto [6]

shows that any Morse-Smale flow is topologically conjugate to a Morse-Smale

flow whose periodic orbits are in standard form. Since topologically conjugate

flows have the same connection matrices, we may assume that all of the periodic

orbits are in standard form.

The following lemmas describe the flow defined boundary maps in some of

the situations we will be interested in.

Lemma 3.3 [7]. Suppose Mp is a rest point of index k + 1 and Mq is a rest

point of index k . If p and q are adjacent, then d(q,p) counts the number of

connecting orbits (mod 2).

Lemma 3.4 [8]. Suppose y is a periodic orbit of of index k and Mq is a rest

point of index k. If y and q are adjacent, then d(q, y) counts the number of

connecting orbits (mod 2). Similarly, if Mp is a rest point of index k + 1 and

if p and y are adjacent, then d(y,p) counts the number of connecting orbits

(mod 2).

In the coordinates (d, x, y) descibed in Definition 3.2, in a neighborhood

F of a periodic orbit y , the vector field has the form

g k q n-k-l        q

i=l ;=1

Locally, Wu(y) = {(d,x,0)} and W'(y) = {(0,0, y)}. Following Franks [2],
we can replace y by two rest points, in the following way. Suppose first that y

is untwisted. Fix e > 0. Let p(t) be a smooth function which is 0 if t > e

and 1 if t < e/2. Define a new vector field X' by

(3.5) X' = [p(x2 + y2)sind + (\-p(x2+y2))]^ + Yjx~-   £ yt~.
¡=1 ' J=l y'

Note that we have replaced the periodic orbit by 2 hyperbolic critical points,

p = (0, 0, 0) of index X*+1 and q = (n, 0, 0) of index lk . If the resulting

flow is Morse-Smale, then this replacement is one step in a ^-refinement. If y

is twisted, then we work in the double cover and use sin 2d instead of sin d in

the definition of X'. This gives us a well-defined vector field on the quotient.
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Let B- = {(d, x, 0) | |jc| = e/2 } . Then B~ = S1 x S*"1 c Wu(y) under
the flow for X and B~ c (Wu(p) U Wu(q)) in the flow for X'. Note that
in the flow for X', Wu(q) n B~ = { (re, x, 0) | |x| = e/2 } . In particular,

W(q) f\B~ represents a generator of Hk-i(B~). Notice also that

(3.6) B- = \J(Ws(r)nB-)
r<7

and each intersection is a smooth manifold whose dimension is determined by

the index of Afr. We will alter the vector field inside of B~ to arrange the

appropriate connections for the rest point q .

Lemma 3.7. Given any (k-l)-sphere S? in B~ which is isotopic to {(n, x, 0) |

\x\ — e/2 }, by adjusting the vector field in the set { (d, x, 0) | \x\ < e/2 } we
can arrange for Wu(q) nfi"=y.

Proof. The situation is illustrated in Figure 2.

First assume that gamma is untwisted. We will alter the vector field to

0.8) Me,x,y)le + £X,JL   "'-¿'»A-
1=1 7=1

'dy¡

with an appropriate function a. For w > 0, define B~ = {(d, x, 0) | \x\ =

n } . For any a, the vector field has two properties that we will exploit. First,

for any n, B~ is tranverse to the flow, and second, flowing for time t takes

B~ diffeomorphically to BZ for some n' because of the form of the ^- and

J- terms in the vector field. We first define a to be3y,

a(d,x, 0)
J sii
10,

sinö, if |jc| > e/3 or |x| < e/12,

if x = e/4 or x = e/6.

Now fill in a(d, x, 0) in a smooth way for |x| G [e/12, e/6] and |x| G

[e/4, e/3]. Let &" be the image of 5? in B~,4 when we flow 5" back-

ward by the flow of 3.8.   Let <¥"' denote Wu(q) n B~6.   &" is isotopic to

'{(7c,jc,0)|W = e/2}

Figure 2
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S"' in S1 x Sk~l since S? is isotopic to {(ti, x, 0) | \x\ = e/2}. By the
isotopy extension theorem (see, e.g., [5]), we can extend the isotopy of S?'

to &"' to an isotopy of Sl x Sk~l . We use this isotopy to fill in a(d, x, 0)

for \x\ G [e/6, e/4] and take •¥" to ,9" under the flow. By construction,
Wu(q)f\B- =3>.

If y is twisted, we make the above construction in a fundamental domain of

the double cover and extend to the whole double cover by ~ equivariance.   D

Remark 3.9. Notice that a in the proof of Lemma 3.7 is only restricted in a
neighborhood of Wu(y), and we can arrange a to be sinö in a neighborhood

of Ws(y) = {(d, 0, y)}. We can do a similar isotopy in the stable manifold

for \y\ G [e/12, e/3] without changing Wu(q) n B~ . Thus we can arrange to

have Ws(p) n {(0, 0, y) \ \y\ = e/2 } to be any curve isotopic to { (0, 0, y) \

\y\ = e/2 } as well as Wu(q) n B~ = S?

4. The main construction

In this section we indicate how to replace a periodic orbit with two critical

points to obtain the appropriate number of connecting orbits. Let <f> be a

Morse-Smale flow, let A be an upper triangular boundary map satisfying

(1) if p and p' are adjacent, p < p', then A(p, p') = d(p, p'),
(2) for any interval I c P, HA(I) =• CH(I),

and assume the hypotheses of Theorem 2.4 are satisfied. Notice that A is like a

connection matrix, but we do not require the isomorphisms O(f) of Definition
1.4. As noted in § 1, any connection matrix satisfies these assumptions.

Let y be a periodic orbit of index k, with coordinates and set B~ as in §3.

Consider the collection of Morse sets Afr such that the entry A(r, y) could be

nonzero, i.e., r < y and CHq(r) ^ 0 for q = k or q = k - 1. Assumption

A3 implies Mr is not a periodic orbit of index k or k - 1. If Afr is a point

of index k, then r and y are adjacent. By transversality, Ws(r)C\B~ must

be a finite number of points, and Lemma 3.4 implies that A(r, y) counts the

number of connecting orbits (mod 2). If Afr is a point of index k - 1, then

Ws(r)nB" is a 1-manifold, i.e., a finite collection of circles and open intervals.

If Ws(r)nB~ is not a circle, then by Lemma 3.1, the endpoints of the intervals

must lie on Ws(s) where r < s < y. By assumption A3 and transversality, Ms

must be a rest point of index k. Thus

(   (J    r(r)nr]u(    U     r(j)nr]

is a graph Y plus some circles in B~ , where the vertices are labeled by points

of index k and the edges and circles are labeled by points of index k - 1.

Lemma 4.1. Suppose Mr is a point of index Yf-, Ms is a point of index Zk~i,

and the set of connecting orbits C(Mr,Ms) consists of j orbits. Then for each

vertex in T labeled Mr, there are exactly j edges labeled Ms incident to it (an

edge is counted twice if both ends are incident to the vertex). The matrix entry

A(s ,r) = j (mod 2).

Proof. W"(Mr) n ^(Afs) consists of j components, and the intersection is

transverse. Choose a small disc D c B~ such that r is the only vertex in D
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and for each s-edge e¡, D n e¡ is connected, i.e., D n e¡ is diffeomorphic to
a line. For any e > 0, there is a T such that flowing forward for time T

will map D e-close (in the C1 sense) to a disc D' in W"(Mr). For e small

enough, the transversality implies that the image of D intersects WS(MS) in

precisely / components, and these are the images of on e¡ under the flow,
so there are exactly j s-edges in D. Transversality and assumption A3 imply

that Afr and Ms are adjacent, so Lemma 3.3 implies A(s, r) = j (mod 2).   D

Let Afs be a rest point of index k - 1, so Ws(s)C\B~ is a 1-manifold. We

will now show that one can isotop Wu(q) n B~ (where q is the rest point of

index k created when y is replaced) so that \C(q, s)\ = 1 (mod 2). We must

then show that this procedure can be carried out simultaneously for all such s,

but we first illustrate the method for a single 5. Start by replacing y by (p, q)
as in 3.5. Let S? = Wu(q)nB~ , and make a small isotopy of 5?, if necessary,

to obtain transversality.

Lemma 4.2. If Ms is a rest point or periodic orbit of index k - 1, then S? can

be isotopedso that after the the isotopy there is transversality and |<5^n W^s)! =

A(s, y) (mod 2).

Proof. If k = 0 there is nothing to prove. If k = 1, then the argument

is similar to the one given here, but it is it is slightly different if B~ is not

connected, and it is contained in [8]. So assume k > 1.

First assume that y is untwisted. Let i = \Wu(q) n B~ D Ws(s)\. If we

isotop S? — Wu(q) nB~ across a circle or an edge in T, then after perturbing

to achieve transversality, i will not change (mod 2). Thus, the parity of i can
only change when we isotop 5? through a vertex. Also, if r is a vertex, then

as we isotop S? through r, each s edge either gains an intersection (if there

was none before) or loses an intersection (if there was one before). See Figure

3.
The rays eminating from the central vertex are the edges in Ws(s). Thus, as

we isotop 5? through the vertex we have

/ before isotopy +i after isotopy = # of s edges incident to r.

If the number of s edges incident to r is even, then i will not change (mod

2). If the number of edges is odd, then i will change (mod 2).

It is possible to isotop 5? so that it passes through only one vertex r during

the isotopy. Choose a point x G 5^\T and a smooth path x in B~ connecting

Figure 3
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x and r which does not pass through S? or any other vertex. Then there is

a small neighborhood W of t which does not intersect any other vertex. The

isotopy fixes points in 5? \ W . Inside W, we isotop S? so that it stays in W

and passes through the vertex. If y is twisted, fix a fundamental domain in the

double cover and choose t to lie in this fundamental domain, then make the

isotopy ~ equivariant.

To finish the proof of the lemma, we must show that either there is a vertex

with an odd number of s edges incident to it (to isotop through and change

the parity of \S" n IVs(s)\ if necessary), or else A(s, y) = \S" n IVs(s)\ for

any isotopy class with transverse intersections. Suppose there is no vertex of

odd degree. Consider the interval I generated by s and y in P, i.e., / =

{p G P\s < p < y}. Assumption A3 implies that / = {s, rx, ... , r¡, y} where

ri, ... , r¡ are points of index I.k. The restriction A(7) of the connection

matrix to / has the following form:

s   ri    ...    r¡   yk    yk+]

A(I)

s

n
yk

yk+i

I      0    ...    0

*

v
The zeroes in the first row are there because of Lemma 4.1 and the assumption

that each vertex has even degree. We have dim HA(I) = dim CH(I), and

CH(I) is determined by the flow. The dimension of HAk-i(I) depends on

the entry A(s, yk). This entry is thus determined by the flow. If we look

at I' = {s,T\",..., r¡,p, q) after a replacement, we have CH(I') = CH(I)

since the filtration in the original flow gives us an index pair for Af (/'). By

Lemma 3.3 the A(s, rf) entries of any /' connection matrix must be the same

as those in the above connection matrix, and since CH(I') = CH(I), in any /'

connection matrix, the (s, q) entry must be the same as A(s, yk) regardless of

how Wu(q) sits in B~ . Thus for any isotopy of 5?, A(s, y) = \57 V\ Ws(s)\

(mod 2).   D

Of course, an analogous statement holds for the Ws(p) in the stable man-

ifold when Ms is of index Zk+2, and the isotopy in the stable manifold is

independent of the one in the unstable manifold.

If there are several sets Ms as in Lemma 4.3, then the isotoping of 5? to

get the appropriate flow defined maps in the new connection matrix (i.e., the

right number of connecting orbits (mod 2)) must be done in a systematic way

so that the restrictions are satisfied simultaneously. Again the algebra indicates

how to do this.

Lemma 4.3. Let Si, ... , sm be the edges in Y corresponding to rest points of

index k- 1. Then S? = W"(q)nB~ can be isotopedso that after the the isotopy

there is transversality and for each i, \S" n Ws(s¡)\ = A(s, y) (mod 2).

Proof. Again if Ac = 0 there is nothing to prove, and if k = 1 the argument

is given in [8].   So we assume k > 1  and first assume y is untwisted.   Let
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r{, ... , r¡ be the rest points of index k between y and Si, ... , sm . We will

show by induction on m that we can isotop S? so that for each i, \S? n

Ws(Si)\ = A(s, y)  (mod 2).  The case m = 1  is Lemma 4.2.   So we assume

that we've isotoped S? so that the result holds for j — 1.i — 1   and

show that we can further isotop S? so that the result holds for s¿. Let I =

{si, ... , Si, ri, ... , r¡, y} . Assumption A3 implies that / is an interval. The

restriction Ak(I) has the form

5] Í
T

Si-l

\

X

st    \■ ■ ■    y    ■■■ * /

Let B be the submatrix obtained by deleting the last column, i.e.,

B

Suppose the /-vector v G kcr(A). If we isotop S? as in Lemma 4.2 through

each vertex rt for which vt = 1, then for each j, | Wu(q) n B~ n Ws(sj)\ will

change an even number of times since for each j, J2,=0 ajtvt = 0 in Z,2. We

distinguish two cases.

Case 1. Rank( B ) = rank( A ) +1. Then there is a vector w such that Aw = 0

and 5Zr=o ytvt = * • If we isotop J? through the vertices rt for which w, = 1,

then \S? n Ws(sj)\ will be unchanged (mod 2) for j = 1,...,/'- 1 since

^4ti; = 0, but \S? n W/s(5,)| will change by 1 (mod 2) since we isotop through

an odd number of vertices with odd s¡ incidence.

Case 2. Rank( B ) = rank( A ). We will show that the entry A(s¡ ,yk) is the same

for any connection matrix. Choose the smallest collection of rows of A which

sum to y, say rows ix, ... , i¡¡. These rows are linearly independent. Consider

the interval

\,'Sj, rx, ... ,r,,y}.J = {sm »

Ak(J) has the form

Mil

V y\

n
aiti

dhl
y¡

yft.

X¡,

MV,?)/
and its rank is determined by the flow. The first h rows are linearly independent

and the sum of each of the first / columns is 0, so

rank(A(7)) =
ifA(sj,yk) = Zl0Xi,ii '

ifA(Sj,yk)^ZL0x.,-
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Since the rank of A(J) is determined by the flow, A(Sj, yk) must be the same

for any connection matrix. After replacement by p and q , the corresponding

interval

J' = {sit ,... ,sih,Sj,ri,...,r¡,q,p}

has all maps counting connecting orbits since each set is a critical point. Since
HA(J) = HA(J'), we must have A(Sj, q) = A(Sj, yk) for any replacement, i.e.,

for any isotopy class of 5*.

In either case we can isotop 5? to obtain the right number of connecting

orbits (mod 2).
If y is twisted, we fix a fundamental domain, do the isotopy in the funda-

mental domain, and make it equivariant.   D

Again, there is an analogous statement for Ws(p) the stable mainifold.

5. Proof of Theorem 2.4

In this section we complete the proof of the main result. Fix a collection ^

of neighborhoods of the periodic orbits, and assume A1-A3 are satisfied.

Proof of Theorem 2.4. Let A be an upper triangular boundary map satisfying

(1) if p and p' are adjacent, p < p', then A(p, p') = d(p, p'),
(2) for any interval I cP, HA(I) S CH(I).

If we replace a periodic orbit y by two doubly connected rest points {p, q} ,

then A induces a map on the homologies of the Conley indices of the sets in

the new Morse decomposition (with CH(y) replaced by CH(p) © CH(q) ) as

noted in §2. We will show that there is a ^-refinement such that all of the

maps in A induce flow defined boundary maps in the ^-refinement. It follows

from Theorem 2.1 that A induces the unique connection matrix for the %-

refinement, which is the conclusion of the theorem. We proceed by induction

on the number of periodic orbits.

If there is one periodic orbit, then Lemma 4.3 shows that we can make the

refinement in this case. All maps involving the new critical points p and q

count the number of connecting orbits (mod 2), hence they agree with the flow

defined boundary maps and we are done in this case.

Now assume that for any Morse-Smale flow with j - 1 periodic orbits, if A

is an upper triangular boundary map satisfying properties 1 and 2, then for any

^ there is a ^-refinement such that A induces the unique connection matrix

for the refinement. Let (p be a Morse-Smale flow with j periodic orbits and

A be a connection matrix. Choose a periodic orbit y and use the procedure of

Lemma 4.3 to replace it with two points {p, q) such that all maps A(s, q) and

A(p, r) count the number of connecting orbits (mod 2) for points 5 of index

Z*-1 and r of index lk+2. Suppose now that n is a periodic orbit of index

k - 2. If 7t and y are adjacent, then the connection matrix for the interval

{n, y) has the form

n n y y

a:*-2 /O 0 0 0   \
8*-'       0 0 a 0
yk           0 0 0 0

yk+l   \   0 0 0 0/
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where a is the only possible nonzero entry. If we do any replacement, then

{n,q,p} will be an interval with CH({n, q, p}) = CH({n,y}) and the
connection matrix having the same form. We must thus have the flow map

d(q, n) = a, so A induces the correct map in this case. If n and y are not

adjacent, and A(nk~x ,yk) = \, then since Ws(n)C\B~ is a 2-manifold, we can

isotop 5? so that it doesn't pass through a vertex and so that S^nWs(n) ^ 0 .

We do a similar isotopy, if necessary, for Ws(p) if there are periodic orbits of
index k + 2 lying above y in the partial order.

Now we have a flow with j — I periodic orbits, and the induced map A

satisfies A2 = 0. By construction, A is upper triangular, and A agrees with

the flow defined boundary maps for adjacent Morse sets. Our induction will be

complete if we can show HA(I) = CH(I) for any interval I in the new index

set (i.e., y replaced by p and q ) with the flow defined partial order. So let
I be an interval. If {p, q} c I or {p, q] n I = 0, then I is an interval in

the original flow, so HA(I) = CH(I) in this case. So assume q e I, p $ I.
J = lop is an interval since p and q are adjacent, and since I is an interval,
p is maximal in J . It follows that

HAq(I) S HAq(J) S CHq(J) £ CHq(I)    forq¿k,k + l,

and Ak+i(J) has the form

n  p
* * ̂

:     :
* *

* 0/

where r¡, ... , r¡ are critical points of index Zk+1 and Si, ... , sm are critical
points of index Xfc . Thus all of the entries in Ak+i(J) and in Ak+i(I) are flow

defined maps and count the number of connections (mod 2). There are two

possibilities. If the p column is in the span of the rx, ... ,r¡ columns, then

HAk(J)^HAk(I),

dim(HAk+i(J)) = dim(HAk+i(I)) + 1-

Since the maps in HAk(J) are all flow defined, Theorem 2.1 implies that prop-

erty 2 must hold for the homology, i.e.,

CHk(J)^CHk(I),

dim(CHk(J)) = dim(CHk(I)) + 1.

Similarly, if the p column is not in the span of the ri, ... , r¡ columns, then

dim(HAk(J)) = dim(HAk(I)) - 1,

HAk+i(J) * HAk+(I),

and since the maps are flow defined, the same relations must hold for CH(I)

and CH(J). Thus A satisfies properties 1 and 2 for the Morse decomposition

with y replaced by p and q. Now the refinement has j - 1 periodic orbits,

so by induction we can replace the remaining periodic orbits in such a way that

the maps in A induce the flow defined maps in the final Morse decomposition,

i.e., A induces the unique connection matrix for the refinement.   □

S\   ( *

Sm
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Theorem 2.4 says that for flows satisfying assumptions A1-A3, there is no

unnecessary ambiguity in the set of connection matrices. Theorem 2.3 implies

that every connection matrix which can be realized by a refinement must be

a connection matrix for the original flow, and Theorem 2.4 implies that every

connection matrix is realizable by a refinement.
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