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A CONSTRUCTIVE PROOF OF
THE POINCARÉ-BIRKHOFF THEOREM

LI YONG AND LIN ZHENGHUA

Abstract. In this paper, with the use of the homotopy method, a constructive

proof of the Poincaré-Birkhoff theorem is given. This approach provides a

global method for finding fixed points of area-preserving maps and periodic

solutions of Duffing equations.

1. Introduction

As is well known, the Poincaré-Birkhoff theorem, proposed by Poincaré [38]

in 1912 and proven by Birkhoff [7] in 1913, has been generalized by many au-

thors, for example, Birkhoff [8-10], Jacobowitz [29], Ding [20], [21], Conley and
Zehnder [12], [13] (about Arnold's conjecture [6]), Franks [24], [25] and Flucher
[22]. Today, these notable results have become powerful tools in studying the

dynamical systems and periodic solutions for some significant equations, for

example Newton equations and Duffing equations. The related works can be

found in [14, 16-20, 23, 25, 28, 29, 35] (and [15, 32, 34, 36] utilizing Moser's
twist theorem [37]), and the references therein.

As an important aspect for applications, it is also significant to have a way of

finding fixed points of area-preserving maps, such as Poincaré maps of Newton

equations and Duffing equations. Generally, such a map of an annulus which

twists the boundary curves in opposite directions has at least two fixed points,

and the sum of indices of fixed points on such an annulus equals zero (see [25]).

These result in some difficulties in utilizing the classical numerical methods, for

example, the Newton method and the continuation method. The main reasons

are the local convergence of the former and the strong regularity of the latter,

along the manifold of solutions.
The main aim of this paper is to present a global method of finding fixed

points of area-preserving maps and periodic solutions of Duffing equations.
More precisely, with use of the continuous homotopy method, we shall establish
constructively the following Poincaré-Birkhoff theorem given by Jacobowitz [29]

and Ding [21].
Let A denote an annular region in R2 \ {0} , whose inner boundary Tx and

outer boundary T2 are two disjoint closed simple curves.  By D¡ we denote
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the bounded open region bounded by T¡■, i = 1, 2 . Hence, A = D2\DX, and

0 € A c D2.

Theorem. Let T:A-* T(A) c R2 \ {0} be an area-preserving homeomorphism.

Suppose:
(i) T has the polar coordinates

r*=f(r,6),     e* = e + g(r,6)

such that g(r, 6) > 0 on Tx and g(r, 6) < 0 on T2 where f and g are C2

continuous and 2n-periodic in 6.

(ii) There exists a continuous area-preserving map TX:D2 —> R2 such that

TX\A = T, and 0e TX(DX).
Then T has at least two fixed points in A.

Now let us make some comments.

(a) In our result, the inner boundary curve Tx is not necessarily star shaped

relative to the orgin.

(b) The continuous homotopy method which we use has been proposed orig-

inally by Keller [30], Kellogg, Li and Yorke [31] and Smale [39]. This method
has played an important role in various problems of finding fixed points or zeros

of maps; see, for example, [1-3, 11, 26, 27, 33, 40]. There are three distinct,

but interrelated, aspects of the homotopy method: ( 1 ) construction of the right

homotopy map, (2) theoretical proof of global convergence for this homotopy

map, and (3) tracking the zero curve of this homotopy map. The first aspect is

to link the problem considered to a simpler one by considering a single param-

eter problem. The second aspect is a key to that method, because it guarantees

the third aspect, that is, following paths to find the desired solutions. There

have been some typical algorithms in the third aspect; see, for example, [2, 3,

27].
Our constructive proof means for almost every point near the set g(r, 6) =

0, there exists a C path passing to that point such that two ends of this path

are two distinct fixed points of the area-preserving map considered. Hence, by

utilizing the usual path-following methods, one can find numerically two fixed

points. In particular, when fixed points of the map are isolated, an end of that

C1 path leads to a fixed point with positive index and another end leads to one

with negative index. Because the zeros of g(r, 6) = 0 are easier to determine

than the fixed points of T (for example, using the Newton method), we provide

an effective global method of finding fixed points of area-preserving maps and

periodic solutions of the Duffing equations. To our best knowledge, such global

methods seem not to have been applied to this problem. Of course, the aspect of

path-following can be carried out by utilizing the typical methods. This makes

us focus our attention on the theoretical proof of the global convergence for the

given homotopy (Newton-type), that is the constructive proof.

This paper is organized as follows. Section 2 is the main part, which exhibits

such a "constructive proof of the Poincaré-Birkhoff theorem. There it will be

seen that for the singular case, T has infinite fixed points in the set g(r, 6) =

0, and finding fixed points is generally simpler; but for the nonsingular case,

the problem becomes more complicated. In Section 3, we outline a general

framework of applications to the Duffing equations. As stated above, we use

the path-following algorithm given by Allgower and Georg [3]. Neverthless, we
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also provide an experimental example, which shows the efficiency of the reduced

algorithm.
It should be pointed out that recently Alpern and Prasad [4, 5] have estab-

lished a very interesting conbinational proof of the famous Conley-Zehnder-

Franks theorem. This approach is different from ours. In particular, our

approach reduces finding fixed points of area-preserving maps into following

solutions of suitable ordinary differential equations with initial values. Conse-

quently, it is convenient to implement to applications.

2. Constructive proof

In this section, we give a constructive proof of the Poincaré-Birkhoff theorem.

From this proof we can obtain a global method of finding two fixed points for

area-preserving maps. The following lemmas are vital to our discussion.

Lemma 1 (Sard's theorem). If cf>: U c Rm —> R" is a Ck map on the open set U

with k > max{0, m-n}, then the set of singular values of (¡> has n-dimensional

Lebesgue measure zero. Consequently, the set of regular values of <j) is dense in
Rn.

Lemma 2 (the parametrized Sard theorem [11]). Let V c R" , U c Rm be open

sets, and 4>: V x U —> Rk a C map, where r > max{0, m - k}. If 0 £ Rk
is a regular value of <f), then for almost all a £ V,   0 is a regular value of

<t>a = <f(a, •).

Lemma 3 (Garcia and Zangwill [26]). Let V c R" be an open set and let

(¡>: Vx[0, 1] —» R" be a Cx function and 0 a regular value on V. Then H~x =:

{(x, t) £ V x [0, l]:<f>(x, t) = 0} is a finite number of disjoint continuously

differentiable paths. Any path is either a loop in V x [0, 1] or starts from a

boundary point of V x[0, 1 ] and ends at another boundary point of V x [0, 1 ].

Lemma 4 (Garcia and Zangwill [26]). Let <f>: V x [0, 1] —> Rn be a Cx homo-

topy, and 0 a regular value on V, where V c Rn is an open bounded set. Then

each solution x(s) of the initial value problem

dx
^ = (-1)'+1 det#, x,(0) =x,o       (/= 1,...,« + 1)

determines a Cx path in </>_1(0), where s is a parameter and

<P', = (<t>Xl , ■■■   , 0x,_, , (¡>xM , ■■■   , <t>x„+t)-

Lemma 5. Under the assumptions of the Theorem, there exists an area-preserving

map T2:  D2 -» R2 such that T2\A = T and T2(0) = 0.

Proof. By the assumption (ii), we have P = Trx(0) £ Dx . Hence there exists

a ball BS(P) with center P and the radius ô such that BS(P) C Dx .

Let Px £ dB n OP, where OP denotes the line segment with end points 0

and P. Set Ox - \[P + Px]. Choose a polar coordinate system (p, 4>) in R2

which has Ox as its pole. With this coordinate system, define S: R2 —» R2 by

p* = p,    4>* = cf> + h(p),

where h(p) is a C°° function satisfying h(p) = 0, for p > 3/2; h(p) = it,

for 0 < p < a/4. Obviously, S is an area-preserving diffeomorphism, and

S(0) = P,    S\A = id (identity).
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Define T2 — Tx oS. Then T2:D2 -> R2 is an area-preserving homeomor-

phism, because it is a composition of such maps. Moreover,

T2\a = TxoS\A = TX\A = T,     T2(0) = TxoS(0) = TX(P) = 0,

which completes the proof of the lemma.

For convenience, we also define a map H R2 \ {0} —> (R+ \ {0}) x [0, 2n] by

U(x,y)

y>o,

y <0.
'x¿+y¿

Proof of the theorem. Let

F(/>) = T(p) -p = Yi-x(f(U(p)), g(U(p))),

J = {p£A:g(U(p)) = 0},

where / = f(r, 8) - r. By Lemma 5, without loss of generality, we may assume

that the map Tx satisfies Tx(0) = 0. Hence, Tx:D2\{0} -► i?2\ {0} . With the
polar coordinate system, we can write Tx in the following form:

r* = fx(r,6),     8* = 8 + gx(r,d),   inD2\{0},

where fx and gx are continuous on D2 \ {0} . Since Ti^ = T, we have

(1) fi(r,8) = f(r,8),     gx(r, 8) = g(r, 8),   on A..

From the property of the polar coordinate system it follows that fx is 2it-

periodic in 8 , and for some integer k, gx(r, 6) — g(r, 6) + 2kn, on D2\ {0} .
Since gx(r, 8) is continuous and D2 \ {0} is connected, k is independent of
(r, 8). From (1) and the periodicity of g(r, 8), we obtain k = 0, which

implies that gx(r, 8) is also 2^-periodic in 8.
Define

f(r, 8) = (Mr, 8),8 + gx(r, 8))  on (R+ \ {0}) x [0, 2tt]

and set

F(r, 8) = (Fx(r, 8), F2(r, 8)) = Tx(r, 8) - (r, 8),   on (R+ \ {0}) x [0, 2it].

We shall complete the proof by the following two steps.
Io . Singular case. For all (r, 8) e UA, the Jacobian F'(r, 8) is singular.

Take a simply connected region Q. c D2 such that Dx c Q and dCl c J.

Indeed, by (i) there exists a bounded and connected branch Qx c R2 \ J such

that
0 £ Cix  and dílx c /.

Thus Dx is a region. Let Zi denote the set of all closed simple curves v lying

in Qx . By D(v) we denote the bounded region bounded by v . Set

Çi = \J{D(v):i> lies in Q,}.

»ly connected region.

Fr(r, 0) = O, on<9Q.

Then Q is the desired simply connected region.
«r        1    •We claim:
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By (i), there exists (r0, 80) £ UA such that rank F'(r0, do) = 1. Hence by
Lemma 1, almost every r £ range (Fx) is a regular value of Fx . First, we

prove

(2) Fx (r, 8) = c (a constant), on dil.

If not, then by the continuity of Fx, Fx(ïldQ) is an interval in R. Let Si

denote the set of all regular values in Fx(HdQ). Since dQ is bounded and

closed, and Fx is C1, Sx is open in R, and consequently, S2 = Fl~x(TlSx) is

open in the relative topology of TldÇl. By the inverse function theorem, for

each (ro, do) £ S2, there exists a positive number n = n(ro, do) such that on

[8q - n, 80 + n], the equation

(3) Fx(r,8) = Fx(r0,8o)

has a unique solution (r(8), 8) satisfying

r(80) = rQ,     \r(8)-r0\<n,

if FXr(ro, 8q) ^ 0 ; or on [ro - n, r0 + t]], equation (3) has a unique solution

(r, 8(r)) satisfying

0(ro) = 0o,     |Ö(r)-öo|<f?,

if Fxe(r0, 80) t¿ 0.   We can choose a small n such that FXr ^ 0, on Z, =

[?o - 1, ro + *l]x [do - n, 8o + n]; or FXg / 0 on /, . For definiteness, let us
assume it is the former case.  Since F' is singular, there exists a continuous

function X(r, 8) defined on In such that

(4) (F2r,F2e) = k(r,8)(FXr,Fxg)  on I,.

From (4) and
_ dFx(r(8),8) dr

°=-dd-= Flrd8+Fxe

it follows that

dF2(r(8),8) dr dFx(r(8),8) _
-Jq-= rirjQ-+ ïie = ¿(r(8), 8)-^-=0,  on/,.

Hence on InndQ.,

(5) (Fx(r, 8),F2(r, 8)) = (Fx(r0, 9o),F2(r0, 80)) = (Fx(r0, 80), 0),

which implies

(r(8), 8)£d£l.

Set I(n(r, 8)) = (r-n(r,8),r + n(r, G)) x (8 - n(r, 8), 8 + n(r, 8)). Since

the set of all members in {I(n(r, 8)): (r, 8) £ S2} disjoint from each other is

countable, by (5) Sx is also countable, which contradicts the openess of Sx .

Therefore (2) holds.
Now we prove that c = 0. If c ¿ 0, then from Fx(r, 8) = c on d£ï, we

have f(r, 8) = r + c, on YldQ,. Note

g(r, 8) = 0, onodil

Therefore,

nf(íí) = {(/-*, 8*):r* = r + c,8* = 8*, (r, 8*) £ UÇÏ} = G(YIQ),
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where G(r, 8) = (r + c, 8). Hence

UT(Q.) = G(Ylíí).

Given any AS = {(r, 8): 0 < rx < r < r2, dx < d < d2} c nQ, we have

G(AS) C YlTx(Cl),

meas[C7(AS)] = ¿r(02 - dx)[(r2 + c)2 - (r, + c)2]

= ^ñ(82-8x)(r2-rx)(r2 + rx+2c)
360

= ^(82-dx)(r2-rx) + meas(AS).

Thus, when c ^ 0, we obtain

measte (fi)] = meas[nri(Q)] = meas[C7(nf¿)] # meas(nQ) = meas(Q),

a contradiction. This proves that c = 0, and consequently, every point in 9Q

is a fixed point of T.
2° Regular case. For some «o G IL4, F'(ao) is nonsingular. We claim that

for some (r0, d0) £ UA ,

f(ro, 0o) - r0 t¿ 0.

If not, then

f(r, 8)-r = 0, onHL

Choose any 8 £ g(UA) and consider the equation

f(r,8)-r = 0,  g(r,8)-8 = 0.

Denote J(8) = {U~x(r, 8)£A:g(r, 6)-0 = 0}. Hence

(fr-l)dr + fedd = 0, onUA,

grdr + ggdd = 0, on UJ(8).

Therefore,

detffi     1    fe\ =0    onIL/(0),
V   8r      gej

which leads to a contradiction, because d is arbitrary.

By Lemma 1 and the above claim, almost every point (r, d) £ (FX(UA),

(rji, a2 )) satisfying r / 0 is a regular value of (FX,F2), where ax =

maxpgr., g(r(p), d(p)) < min^r, g(r(p), d(p)) = o2. For such a regular value

(r,8), set

TB:r*=f(r,8),     8* = 8 + gx(r, 8) - 8,        8£(ox,o2).

Obviously, Tq is an area-preserving homeomorphism defined on Tl(D2 \ {0}).

Set

Fe(r,d) = (fx(r,d)-r,gx(r,d)-d);

and define a homotopy map H: YIÄ x WÄ x \-X(r), 1] —► R2 by

ZZe-(Po, P, A) = F9(p) - (1 - ¿)Fg(po),
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where p = (r, 8), Fs(p0) = (r, 0), Po € F^x(r, 0), and X(r) is a positive

constant such that

(6) \\r\m > max{r:r = ^x2 + y2, (x,y)£AU T(A)}.

Notice that if for some po = (r, 8) £ HA, F'(r, 8) is nonsingular, then

(7) WL8)=-^-")F'^e)

is also nonsingular for X < 1. Set V = {P = (r, 8) £ F-X(F(YIA)): (r, 8) is a
regular value of F on HA and r ^ 0, 8 £ (ax, a2)} . By Lemma 2, for almost

all po £ V, 0 is a regular value of HPo = H(p0, •), for X £ [-X(r), 1). Denote

by Vx all such regular values.

Choose any (r, 8) such that F~x(r, 8) c Vx. Let xx = r, x2 = 8, x-¡ = X

and P = (xi, x2). Then by Lemmas 3, 4, for each po = (/"o, öo) £ F~l(r, 8),

the solution (P(s, po), X(s, po)) of the initial value problem

dx
^ = (-l)'+IdetZ/;,        1 = 1,2,3,

(P(0),X(0)) = (po,0)

determines a C1 path (P(s, po), X(s, po)) in H~x(0), where

#i = (//;,#;) = det(^ o) = -^9'

zz^ = (/z;i,zz;) = det(/^1  ¿)(=/i" (p));

and

ZZ-^O) = {/> = (r, 0) e n^:ZZ(p0, P, A) = 0,

(8) Ae[-A(f),l),p06Z='-1(r,ö)}

= {P(s, po) £ UA:X(s, po) £ [-X(r), 1), p0 £ F-X(r, 8)}.

Since d £(ox, a2) and

H(po,P(s,po),X(s,po)) = 0,

we have

gi(r(s,Po), d(s,p0)) = gi(r(s,p0), d(s, p0)) - d

= (l-X(s,po))-0 = 0, for -X(r) < X(s, po) < 1.

Hence,

(9) J[d] = {(r, 0): (r, 0) = (r(S, p0), B(s, p0))} C n^.

By Lemma 3, (P(s, po), X(s, po)) is either a loop in TIÄ x [-X(r), 1] or starts

from boundary points of YlAx[-X(r), 1] and ends at boundary points of YlAx

[-X(f), 1]. We shall prove that the former is impossible. Let (P(s, po), X(s, po))

be a loop. By Q(po) we denote the bounded region bounded by P(s, po) ■ We

claim

0 £ Cl(po) and the orbit {P(s, po)} is star shaped about the origin 0.
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First, {P(s, po)} is star shaped about the origin 0. Set P(s) = P(s, po) =

(r(s), d(s)), X(s) = X(s, po). If not, then there would exist so £ R such

that d(so) is minimal and dd/ds\s=So = 0. Since dd/ds = grr, we see

gr(r(so), 6(so)) = 0. Notice that the line 0 = d(so) is a tangent of (r(s), 0(5))

at (r(so), d(so)) ■ By the area-preserving property of Tg , we have

detr¿(r,0) = det(Í    l + gg)=r-

Hence for any (r, 8) £ VIA ,

(10) Ar*A8* = det fr       fe    \
gr    i+gej

ArA8 = (r + <*Ar)ArA0,
(r+ÍAr,6+íA6)

whenever |Ar|, |A0| are sufficiently small. Since for sx, s2 £ R, along the curve

{P(s)}, we get

(11) Ar*A0* = Ar* Ad = fi(r + £Ar, 0 + £A0)ArA0.

From

r*(s) = f(r(s),d(s)) = (l-X(s))r + r(s),

(12) d*(s) = g(r(s),d(s))-d = 0,

rank(Hr, He, Hx)\{r(s),e{s),x(s)),Ms)<\ - 2,

it follows that

gg(r(s0),d(so))¿0,
dd*(s)

(13)
dr*(s)

ds
= fr

dr(s)

s=s0
ds

ds

s=s0

dd(s)

s=s0 ds
= 0,

J=J0

Then

Conseqently,

Because P(s) is a loop, we can choose such an Jn to possess the following

property:

(P) For every e > 0, meas{0(s):s € [s0 - e , so + e]} > 0.

Then using (10),(11), and (13) yields

0 ¿ r(s0) = fr(r(s0), d(s0))[l + gg(r(s0), d(s0))] = fr(r(s0), d(s0)).

gg(r(s0),d(so)) = 0.

rank(/Zr, He, Hx)\(r(s0),8(s0),Us0)) = 1 >

a contradiction.
It is clear that 0 £ ii(po) ■ By the claim and (12), we have

(14) Tg[Çl(p0)]cn(po), if r < 0 ;

or

(15) Te[iî(po)]DCi(pQ), ifr>0.

Notice that X(s) £ 1 . Therefore from (14) and (15) it follows that

meas[Tg(Çl(po))] ¿ meas(Cl(po)),

a contradiction. This shows that {(P(s), X(s))} is not a loop.
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By(6),(9)and(12), we get

(16) X(s)>-U(r),  fors£R.

Hence T(po) = {(P(s), X(s)):X(s) < 1} starts from the points in YIA x {1} and

ends at the points in YIA x {1} . Set

S± = {q £ UA: P(s, po) leads to q, as X(s) -> l,ie R±}.

We claim

(17) S+nS- = 0.

If not, then S+ n S- ^ 0 . By the above arguments, for each s £ R with

X(s) < 1, 0(5) is not an extreme value. Otherwise, for some so £ R, d(so) is

an extreme value. Then for any interval I containing so, the property (P) does

not hold. Therefore

0(5) = a constant,   for X(s) < 1.

dr(s)

Since   rank(ZZr, He , H?)\(p{s)^(s))^(s)<\ = 2, we have

d$   ¿0,  forA(5)<l.

This shows that S+ n £_ = 0, a contradiction. Hence when X(s) < 1,

(18) ^1>0   (or^<0).
ds    ~~ ds    ~

From (17) and (18) it follows that there exist 8X,82£ R with \8X - 02| = 2it
such that

U       I 02,      asA(j)-» 1,5CZÎ_.

Then F(po) bounds a bounded region £l(po) ■ Notice that for each 0 £

(min{0i, d2}, max{0i, 02}), {(r, d):r > 0}r\T(po) contains only one point.

Thus by (12), meas(Tg(Sl(po))) # meas(Q(j9o)) • This contradiction shows that
(17) is true.

Using (12), we know that every point p £ S+liS- is a fixed point of Tg . By

(17), Tg has at least two fixed points in A. In particular, when S+ and S- are

isolated sets, letting {P+} = S+ and {/>_} = S_ , we have index(7g , Z-±) = ±1 .

Indeed, choose e > 0 such that B((P+)nBe(P-) = 0 . By Sard's theorem, there

exist two sequences of regular values, {X(Sk)}Sk>o and {X(tk)}tk<o suchthat

X(Sk) - 1, X(tk) ^l,k^oo, P(sk) £ Bt(P+),P(tk) £ Bf(P-).

Hence, for sufficiently large k,

deg(id - Tg, B( (P+ ), 0) = deg(id -TB , B((P+), rk)

(19) =        £        sgndet(^(^)),

pe(ià-Te)-Hrk)

where rk = -(1 -X(sk))(o) ■ Notice

P(sk) - P+, X(sk) < 1, X(sk) -> 1, 5fc > 0.
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Therefore, from (19) it follows that

index(rö, P+) = 1.

Similarly,
index(rö,ZJ_) = -l.

Now we prove that T has at least two fixed points in A . In the same way as

in choosing (r, 8), choose a sequence {(rk, 8k)} such that 8k £(ox, a2), 8k -*
0, k —> oo, and without loss of generality, let fy —> Fo ̂  0. Set

HkiPk , P, A) = Fg (p)-(l- X)Fg (pk),

where pk£ Fgx (rk, 0). Then the Cauchy problem

(-l)l+xdet(Hk)'i,        i =1,2,3,
dx¡

(20) ¿5

Ip*(0),4(0)) = Cp*,0)

determines a C1 path (/^(s), Afc(5)) in (//^"'(O). Applying the Arzela-Ascoli

theorem and passing to a subsequence if necessary, we may assume Pk —> P*,

and for each compact interval I with Xk(s) < 1,

(21) Pk(s)-^P(s),    Xk(s) ̂ X(s) uniformly on I.

Set
Sk± = {q £ UA: Pk(s) leads to q, as Xk(s) ->l,i£ R±}

and
oo    oo

d±=n u^±-
fc=l ¡=A:

Obviously, every point p £ D+ U Z)_ is a fixed point of T in A . We claim that

D+ U Z)_ contains at least two points.

Indeed, if not, then D+ U Z)_ = {p} . Since rk -> ro ^ 0, we have

lim sup{|rí:(5)-^(51)|-r-|0/t(5)-0/t(5i) (mod27T)|:Afc(í), Afe(ji) < 1}>0.
fc—»oo

Notice if D+ U Z)_ = {/?}, then

8'k(s)¿0, forÍ(¿<l,

(22) lim meas{8k(s):Xk(s) < 1} > 2n.
k-*oo

First, we have

lim meas{8k(s):Xk(s) < 1} # 0.
fc—»oo

If not, without loss of generality, we assume

lim meas{0^(5):Afc(5) < 1} = 0.
k—»oo

Hence lim^^meas^^):^^) < 1} > 0. Since when Xk(s) < 1, 8k(s) is

monotonie, and if 8'k(s) = 0, then 0^(5) = a constant, and r'k(s) # 0. We have

D+uD-=f\\J{rk(s):Xk(s)<l}.
k=\ i=k
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Figure 1

This shows

meas(Z)+ UZ)_) = lim meas{r¿(5):Aí:(5) < 1} > 0,
k—»oo

a contradiction.

Thus, 8k(s) is strictly monotonie. Since meas{0fc(s):4 < 1} > 0, by (P)

and D+ U Z)_ = {p} we get (22), and d'k(s) ¿ 0. It follows that for each k,
there exist 8k+, 8k_ £ R such that

(23)
Thus,

0k(s) -*. Bk± , when Xk(s) -* 1, 5 e R±.

(24)
\0k+ - OkA mod 2n)\ -» 0,  |0fc(j) - 0O( mod 2tt)| -» 0,

\rk(s) - r0\ + \rk(s) - r0\ ->0, as 4(5) -* 1, 5 6 Zc± , k -> oo,

where (r0, do) = p ■ By (22) and Jordan's separation theorem, for each k,

there exists a point qk = (/■&, 0,) lying in the line segment lk determined by

Sk+ and Sk_ , such that

disl(qk, Sk+) = inf{dist(Sfc+ ,q):q£ ({pk(s)} n lk) US*_}.

See Figure 1.
Then there exists tk £ Rö {-<x>} such that qk £ {pk(tk)} . Let Nk denote

the line segment determined by {qk} and Sk+ ■ Thus, the curve

rk = {Pk{s):Xk{s)< l,s€[tk,oo)}uNk

is a simple closed curve.

For any e £ (0, 7t/8), let

/\(5) - WIM , öfc(s)) = /»*(*), 4(5) = 4(^),  for 0,(5) ¿ (0o - c , 0o + e).

By the Arzela-Ascoli theorem, without loss of generality, we may assume

Pk(s) —>P(s), Xk(s) —> X(s), uniformly with respect to 8k(s) g (0o-e,0o + e)-

This shows that (P(s), X(s)) is a loop and satisfies

X(s) < 1, Tx(P(s)) - P(s) = (l-X(s)) (g) .

The set Q is a bounded region bounded by {^(5)}. Then Í2 is star shaped

about the origin. Notice if D+ U Z)_ = {p} , then A(s) ̂  1. Thus

meas(7i(ß)) > meas(íí), for r0 > 0,

meas(ri(Q)) < meas(£2), for rQ < 0,

which leads to a contradiction. This completes the proof of the theorem .
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3. A NUMERICAL EXAMPLE TO THE DUFFING EQUATIONS

In the above section, we have established the global convergence of our ho-

motopy. As an application, in this section, we shall give a general framework

of finding periodic solutions for the Duffing equations and also shall provide a

numerical example.
Consider the Duffing equations

(25) x" + F(t,x) = 0,

where F:R x R —» R is a continuous function which is twice continuously

differentiable in the second variable and 2it-periodic in the first variable. Then

(25) has the equivalent form

(26) x' = y,    y' = -F(t,x).

Let (x(t, xo, yo), y(t, xo, yo)) denote the unique solution of (26) with the

initial value (x(0), y(0)) = (xo,yo). Then the Poincaré map T:R2 -+ R2
defined by

T(x0, yo) = (x(2it, xo, y0), y(2it, x0, y0))

is an area-preserving homeomorphism (see [29]).

Set x = reos 0, y = rsin 0 . Then (26) is transformed into

r' = r sin 0 cos 0 - sin 8F(t, r cos 0),

0' = - sin2 0 -- cos 8F(t, reos0).

Denote by (r(t, ro, 0o), 8(t, ro, do)) the unique solution of (27) with the initial

value (r(0), 0(0)) = (r0, 0o). Using the notation of the Theorem,

(28) ro" = r(27r,ro,0o) = /(ro,0o),

0o* = 0(27r,ro,0o) = ^(ro,0o) + 0o-2Â:7r,        Â: = 1,2,....

To compute the periodic solutions of (25), we first fix a variable 0o 6 [0, 2n),

and find a point r0 near the set {r: g(r, do) = 0, r > 0} by Newton's method.

By the parametrized Sard theorem, the choice of such a point (ro, 0o) is of

probability one. That zero is a regular value of the homotopy

(29) H(r, d,X)= (/(;(V%7) - (1 -A) (/(r°' Ö00) - r°) •

When X = 0, the solution of H(r, 0, X) = 0 is (ro, 0o, 0) ; and when X —>
1, any limit point (r* ,0*) of the solutions of (29) satisfies f(r*, d*) = r*,

g(r*, d*) = d* + 2kn,k= 1,2, ... .
It is clear (29) is equivalent to the following initial value problem to the

differential equation:

(30) dH(r(s),d(s),X(s))=^    m = Q

By the discussion in section 2, to find two solutions of (25), we only need to

follow two different directions to X(s) = 1 of the curve determined by (30).

Following the line of Allgower and Georg [3], we have the following algo-

rithm.
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Algorithm 1 (Euler-Newton method).

Step 0: Given an initial point 0o £ [0, 2n), compute ro such that g(ro, 0o)
= 0 by Newton's method, and X(0) = 0, an initial steplength ho > 0, x £

(0,1) and three small positive numbers ex, e2, e^ > 0. Set k: = 0.

Step 1 : Compute a predictor direction nk :
(a) Compute a unit tangent vector £,k e Z?3 ;

(b) Determine the direction nk of predictor step:
If the sign of

úeX(DH(rk,dk,Xk)^

does not change, then nk=£,k;
If the sign of

det(D//^'^

changes, then nk = -& ;
Step 2: Compute the next iterative point (rk+x, dk+x) :

(a) Compute a predictor point

{rk,j, 8kj,Xkj) = (rk, dk,Xk) + xJhknk.

(b) Compute a corrector point

(rk+\j > 0¿+i,j> 4+1,y)

- \{rk,j, dkj, hj)\ - DH(rk, dk , Xk)+H(rkJ, dkJ, XkJ),

; = o, 1,2,....

until   \\H(rk+XJ,dk+Xj,Xk+Xj)l  < ei •    Set   (rfc+i, 0/t+i, 4+i)  =  (Ot+ij,

0fc+l,7> ^k+\,j) ■
Step 3: If 4+1 € [1 - e2, 1], then set X = 1 and use Newton's method

to compute the periodic solutions for the Duffing equations until the iterative

point (rk, dk) satisfying \H(rk, 6k, \)\ < 63 ; else choose a new steplength

hk+x > 0. k: = k + 1, go to Step 1, where

DH(r,d,X)=?.H{r'd'Xl
(dr,dd,dX)

and

DH(r, d,X)+ =DH(r, 0 , X)T(DH(r, d, X)DH(r, 0 , X)T)~X

is the Moore-Penrose inverse, and hk+x is chosen as in [3].

Remark. By f(r, d) = r(2n, r, 0)-r, g(r, 0) = 0(2tt, r, 0) - 0 + 2kic, k =
1, 2, ... , we can use fourth order Runge-Kutta method to compute f(r, 0),

g(r, 0) and the approximation of

df(r,8)     df(r, 8)   dg(r, 8)     dg(r,8)
dr     '       dd     '      dr     '       d8     '

In the following, we give an example for the superliner Duffing equation.

For the general theory of such equations, refer to [28] and [29]. Set g(r, 8) =

0(27t, r, 0) - 0 + 2it, ex = 0.1, e2 = 0.01, e3 = 10"5. Numerical results are

computed by double precision operations.
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(4 e2-1)

Figure 2. The homotopy path curve

y

<*i.yp

(4/2)

Figure 3 Figure 4

Example 1. Find at least two periodic solutions of x" + x3 = (sin/)/10.

By (26) and (27), Example 1 can be transformed into

sin/"
r' = r sin 0 cos 0 - sin 0 ( (r cos 0)3

10

0' = -Sin20 - icos0 ((rcos0)3 - ^ .

By a simple computation, we obtain an initial value (ro, 0o) = (1.210101,

-1.018535). Using homotopy (29), we can get two distinct solutions (x*, yx) =

(0, -0.955017) and (x^,y*2) = (0, 1.009132). In the following, Figure 2 is
the homotopy path, which is generated by (29) and its initial point is (ro, 0o) ;
Figures 3 and 4 are two periodic solutions of Example 1, and their initial points

are (x*, y*), (x2, y2), respectively. Hence they are two distinct 27r-periodic
solutions of the equation.
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