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LP THEORY OF DIFFERENTIAL FORMS ON MANIFOLDS

CHAD SCOTT

Abstract. In this paper, we establish a Hodge-type decomposition for the LP

space of differential forms on closed (i.e., compact, oriented, smooth) Rieman-

nian manifolds. Critical to the proof of this result is establishing an LP es-

timate which contains, as a special case, the L2 result referred to by Morrey

as Gaffney's inequality. This inequality helps us show the equivalence of the

usual definition of Sobolev space with a more geometric formulation which we

provide in the case of differential forms on manifolds. We also prove the LP

boundedness of Green's operator which we use in developing the LP theory of

the Hodge decomposition. For the calculus of variations, we rigorously verify

that the spaces of exact and coexact forms are closed in the LP norm. For

nonlinear analysis, we demonstrate the existence and uniqueness of a solution

to the /1-harmonic equation.

1. Introduction

This paper contributes primarily to the development of the LP theory of dif-
ferential forms on manifolds. The reader should be aware that for the duration
of this paper, manifold will refer only to those which are Riemannian, compact,

oriented, C°° smooth and without boundary. For p = 2, the LP theory is well

understood and the L2-Hodge decomposition can be found in [M]. However,

in the case p ^ 2, the LP theory has yet to be fully developed. Recent appli-

cations of the LP theory of differential forms on W to both quasiconformal

mappings and nonlinear elasticity continue to motivate interest in this subject.

Specifically, in the case of quasiconformal mappings, see [IM] and [I], and in

the case of nonlinear elasticity see [RRT] and [IL]. We expose many of the tech-

niques used for p = 2, add critical new techniques for p ^ 2 and provide a

general framework for developing the LP theory of forms on manifolds. Also,

we carry out this program for the restricted class of manifolds mentioned above

as well as provide applications to both the calculus of variations and the study

of ^-harmonic equations.

Let A' M denote the / th exterior power of the cotangent bundle. Also, let

C°°(/\ M) denote the space of smooth /-forms on M (i.e., sections of /\ M).

The familiar Hodge decomposition for C°°(/\l M) says that a> = h+Aß where

dh = d*h = 0, d is exterior differentiation, d* is coexterior differentiation and
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A = dd* + d*d is the Laplace-Beltrami operator. Actually, the decomposition is
even more descriptive (§6, [M] or [W]), but this will serve us here. We express
this decomposition as

(1.1) C°° (/\'M) =^®A-C°° (f\M)

Let Lp(/\lM) denote the space of measurable /-forms on M satisfying JM\co\p
< oo. Perhaps the first complication in replacing the left side of (1.1) with

Lp(f\l M) is the fact that the meaning of d* and d of an LP form is unclear.

This leads to the introduction of the Sobolev spaces W{<p(l\l M). There is
a classical definition available (see [M]). Using this definition and Gaffney's

inequality for L2, it is possible to introduce a potential operator

(1.2) c¿:l2^m)-,^2^m)

which yields the decomposition

(1.3) L2 (f\ m) = MT ® AÍ1L2 (A' m\

In fact, the result is even better. Namely, we have the following identity which

uniquely determines the potential.

(1.4) œ = h + ACi(œ)

for co£L2(r\' M).
In §5, we define an Lp analogue to Q. In keeping with some other standard

references (e.g., [W]), we refer to this operator as Green's operator and denote

it by G. Of course, before G can be effectively exploited, its LP theory must

be developed. This leads us to a more geometric definition of Sobolev space
(see §3). Namely,

(1.5) Wx-P (a'M) ={o)£^ (f\ m) :co,dœ,d*co£Lp}

where 3^"(A M) is the space of /-forms which have generalized partials (again,

see §3). In order to make use of this definition, we require that it be equivalent

to the usual one. It turns out that showing that the usual Sobolev space is

imbedded in ours presents little difficulty but the reverse is quite challenging. A

key step is showing that for any smooth /-form with compact support in R" ,

we have the Gaffney type inequality

(1.6) ||V<u||> < C [ (\dœ\p + \d*co\»)       (see §4)
Jr"

where C = C(n, p) and 1 < p < oo . Using this Euclidean result, we establish

a local version of (1.6) for an arbitrary manifold (see [M] for the case p = 2 )

which gives equivalence of (1.5) with the usual Sobolev space. We indulge our-

selves a bit by commenting that both (1.6) and the rest of our techniques are
valid for a much wider class of manifolds than those treated here. Unfortu-

nately, manifolds which are noncompact or with boundary require a study of

growth conditions for the metric tensor. Such concerns would distract us from
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the more concise presentation of techniques we intend to give. Consequently,

those results will appear separately (see [Sc] for some further discussion).
Using fi, we then give a definition for Green's operator and establish fun-

damental results about its LP theory leading fairly quickly to the LP -Hodge

decomposition (see §6).
Finally, using Hodge's decomposition, we are able to rigorously establish the

closedness of the spaces of exact and coexact forms in the LP norm. Of course,

such information is essential to the calculus of variations and in the case of dif-

ferential forms on manifolds, it constitutes a nontrivial part of this calculus.

Further, we exploit the LP -Hodge decomposition in defining a nonlinear op-

erator from the exact Lp forms to the exact Lq forms. Appealing again to

this decomposition as well as to Browder's theory, we show that there exists a

unique (modulo closed forms) solution to the ^-harmonic equation.

2. Notation and preliminary results

Unfortunately, the notational complexities of the local expressions of the

exterior and coexterior derivatives often obscure very elegant facts concerning

these operators. We take some time here to expose, as cleanly as possible, one

such fact which will be of essential importance (specifically in §4).

Fix 1 < / < n . For all / = {1 < z'i <...<//<«}, J = {1 < j\ < ... < j¡ <
n} and all 1 < /, j < n , there are polynomials a\j , b\J and cIJ , so that for

any /-form a>, represented in any system, we have

\d*co\2 + \doo\2 =   £   ajf(g)d^d^L
i,j ,1 ,J

(2.1) +E#'(*.V*&/
i,i,J

+ z2cU(S,^g)oJiCOj,
¡j

Perhaps some explanation is required.   The notation a\J(g)  means that the

polynomial a\j has exactly enough variables to accommodate all the compo-

nents of g and that äff is being evaluated pointwise at the components of

g(x). Similarly, bjJ and cIJ have exactly enough variables to accommodate

all the components of g as well as all the partials of these components. For

later use, when the metric tensor is fixed, we will usually write

(2.2)   \tut + m' = S>i/§^+£V'3=rfi+£«"«*>■

An easily overlooked fact is that these polynomials, a\j, b\J and cIJ have

absolutely nothing to do with coordinate systems. They are being evaluated at

points depending on the representation of the metric tensor and consequently

the values of ajf(g), b\J (g, Vg) and cIJ(g, Vg) at a given point of the man-

ifold depend on the coordinate system. The explicit forms of these polynomials

are not given here since they are quite complicated and play no role in forth-

coming analysis. Another fact that will be useful is that when the metric tensor

is locally represented with constant coefficients then a\j (g) = a'J are constant
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over the domain of the system and b\J(g, 0) = cIJ(g ,0) = 0. This simplifies

(2.2) giving

(2.3) \^co\2 + \dœ\2 = J24jd^^-

In particular, when gy = S¡j, the constants are exactly those occurring for

Euclidean space.
For the formulation of Sobolev space in §3, it will be useful to define

(2.4) [o)]p = \oj\p + \dœ\p + \d*ca\p

for differential forms œ and 1 < p < oo . Indeed, we make immediate use of

this notation by citing the following pointwise inequality:

(2.5) [fco]p < C[f]p[co]p

where / is a function, co is a differential form, C = C(p) and 1 < p < oo.

Another use of (2.4) is given by observing that locally, say within open U

compactly contained in a regular coordinate system, we have

(2.6) [co]p<C(U,p)\Vco\p

where \Vco\p = (¿~^ ifpH2)^ ^ = E oiidx1, {jc1 , ..., xn} are local coordinates

and regular coordinate system is defined in §3. Recall that, classically, the

(1, p)-Sobolev space of /-forms is given (see [M]) as

(2.7) Wx'p (A m\ = {co with generalized gradient : co and |V<y| £ LP}

and so (2.6) expresses that d and d* are continuous linear operators of Wl'p

to LP . As we shall see, (2.6) also gives that the classical Sobolev space (i.e.,

(2.7) ) is imbedded in the one given by a more geometric definition which we

provide in §3.

The familiar integration by parts formula,

(2.8) (du, v) = / (du, v) = / (u,d*v) = (u, d*v)
Jm Jm

for C°°-smooth forms expresses a duality relationship between d and d* that

is of critical importance. Once we show equivalence of (2.7) with (1.5), the

Meyer and Serrin result asserting density of the smooth forms in classical

Sobolev space will allow us to argue that (2.8) holds for u £ Wx'p(/\l M)

and v £ Wl'q(f\' M) with p and q are Holder conjugate, 1 < p, q < oo.

Finally, we mention one fact from abstract measure theory which will be

useful in §4. Suppose (X, p) is a measure space and ¿if = {A¡ : i £ N} is a

cover of X by measurable sets. Denoting the multiplicity of srf by

/( =sup{^ Xa(x) :x£X}

A€S/

we have

(2.9) J2Í fdp<K j fdp.
,=1 Ja, Jx
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3.  A FORMULATION OF SOBOLEV SPACE

We take a moment to introduce the so-called classical or usual Sobolev spaces.

Given an /-form which is locally integrable ( co £ L¡oc(f\! M)), we say that it

has a generalized gradient in case, for each coordinate system, the pullbacks of

the coordinate functions of œ have generalized gradient in the familiar sense

(see [S]). We set

W ( A M j = \ co £ L/oc ( A M I : co has generalized gradient >

Of course, for the manifolds we consider here, L,1^ = L1 . If we now choose an

atlas for M, say s/ , then for (U, (/> = (x1, ..., x")) £ sf , we can define the
local gradient modulus by

iv^wi2 = £Äwi:
, 'dxk

I,k

and the global gradient modulus by

(3.1) IVwrfEE Y, iVt/^WI2.
V&sf

Notice that this definition of modulus depends on the atlas chosen and that the

gradient itself was not defined.  If we choose sé  so that it is a locally finite

cover of M, then we may define (classical) Sobolev space as

cWl-P I A    J/U/mclA    M\ ■ m      IT7/-,il C  T p\(f\ m)= {to £ (f\ mY.co,  \Vco\ £ Lp}

with norm ||tu||p + ||Va>||p . Similarly, W^'p is constructed for k = 2, 3, ....

Simple examples demonstrate that it is possible to choose, in perfectly rea-

sonable ways, two atlases which yield Sobolev spaces that are not equivalent

as normed linear spaces. It is important then to specify some class of atlases,

call them regular, all of which yield equivalent Sobolev spaces. When referring

to a coordinate system ( U, <f>) as regular, we shall mean that there is another

system (V, \p) with U compact, U c V and y/\u = 4>. A regular atlas is

simply a locally finite cover by such systems. From here on, classical Sobolev

space refers to one constructed as above using a regular atlas. This is all fairly

familiar and once again, [M] is a fine reference. Further, it is also well known

that many of the results concerning Sobolev space in W are transferred and

that perhaps cheif among these is the Sobolev Imbedding Theorem.

Unfortunately, this definition is unsatisfying from a geometric perspective.

We would like to define these spaces without reference to coordinate systems.

We propose the following definition.

Definition 3.2. The (1, p)-Sobolev space ofdifferential forms on M is given by

(A' m) = {co£W (f\ m\ n LP (f\ m\  : dto £ Lp (/\^+i m)

(A'-V)}

Jm

and d*co£Lp

with norm

llû>lr? IP-
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The fact that classical Sobolev space is imbedded in the one given by this

new formulation is a nearly immediate consequence of the pointwise estimate

(2.6). However, the reverse is far from clear. We shall find a regular atlas

yielding classical Sobolev space for which the imbedding is reversible. Since

the manifolds of concern here are compact, this issue will be essentially a local

one. The next section is dedicated to establishing the local bounds.

4.  GaFFNEY'S INEQUALITY

Given a point y £ M and p = 2, we may choose a regular coordinate system,

(U, <j> = (x',..., x")), containing y and a constant, say C > 0, so that

(4.1)        Jv \vvœ\p = ¡C¿2if^fl2)! < ¿/¿M" + \d< + \d*™T)

for any co £ Cq°(/\ U). See for example [M, p. 292]. This result is a corner-

stone in the variational method leading to the decomposition theorem and it

is our goal in this section to establish this for p =¡¿ 2. We point out here that

(4.1 ) is quite simple for p = 2 while for p ^ 2, it is far from clear even for
M = W.

In the proof of upcoming Proposition 4.3, we will make use of two identities

for the Riesz transforms in W . For appropriate definitions, LP theory and

other basic results, see [S].

Lemma 4.2. Let R, denote the ith Riesz transform. Then

(1) /R„ f(x)(R,g)(x)dx = /K„ g(x)(Rif)(x)dx

(f £ Lp, g £ Lq , p + q = pq and 1 < p, q < oo).

(2) Rj(ZllRij&) = -§é      forf£W'P(W).

Proposition 4.3 (Gaffney type inequality for LP ; Euclidean case).

||Vco\\p < CDp(co)      for co £ C0°° (f\ IE

where Dp(co) = /R„ \dco\p + \d*co\p and C = C(n,p).

Proof. For co — £ cojdx', set

F = |Vco\p~2Vco and <f> = ¿ RjFJ.

;=i

F-* in this case is the differential form \Vco\p~2dco/dxJ, where dco/dxj is the

/-form with /th (/ = {1 < /', < ... < i¡ < «}) component dco¡/dxJ . Then

RjFj means the differential form with 7th component Rj(\Vco\P~2dco¡/dxj).

Let u satisfy

(4.4) Vu = R4> = (Rl<p,...,Rn(t>).

See for example [S, §V] to confirm that such a solution u exists. Notice that

this means

^ = Rk<Pl = Rk(J2RjF>)I = Rk(J2mVco\p-2d^)).
7=1 7=1
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Recalling the notation from (2.8) and using basic relationships between d, d*,

A, V and div, we observe

(dco,du) + (d*co,d*u)= I  ((dd* + d*d)co,u) = /  (Aw,«)
Jv Jr»

= / (yVAcu/Ji/x', u) = / (V divVcoidx', u)
Jr» JR"     j

= i (div(Vw), u) = - / (Vco, Vu)
Jr" Jr»

= - Í ¿((Va»)', Rk4>)      (by 4.4)
7r" k=l

= - i  ¿((Vw)fc,¿^/í7F>)

R" k=\ j=\

.      n      n

= -/ ËEkvû^./w"')
Jv k=i 7=1

Now applying Lemma 4.2(1) to this last expression gives

= - /   ¿¿<***j(Vû>)*, /"") = - /   ¿(¿A*/î;(Vû>)*, F')
■*»" t-i   l_l •'R"  ¿=l   i--lfcH 7=1 "K   7=1   fe=l

Next, applying Lemma 4.2(2) gives

= f Y((V(°y >fj) = [ (vc°>F)
Jr» j=l Jr»

=  Í (Vco, |Vû>|'-2Vû>)
Jr»

= /  |Vtu|>
Jr»

\Vco\\p = | / (dco, du) + (d*co, d*u
Jr»

= I|V^.

So we have

< / \(dco,du)\ + \(d*co,d*u)\
Jr»

<\\dC0\\p\\du\\q + \\d*C0\\p\\d*U\\q

<(\\d*co\\p + \\dco\\p)H\\d'u\\q + \\du\\^

= Dp(co)pDq(u)ï .

This last inequality follows from the numerical fact that for a\, a2, b\, b2 > 0,

we have a\bi + a2b2 < (ap + a%)p(bQ + b\)l° when p, q are Holder conjugate.
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We now make use of (2.6) to continue with

||Vtü.||^ < C(2>pÉo)^||V«||«

< C(Dpco)p\\R\\q\\(f>\\q       (boundedness of R)

<C(Dpco)p\\F\\q

= C(Dpco)HÍ (|Vtur2|Vt»|),)i
Jr»

= C(Dpco)p([  IVH^-1')?
Jr»

= C(DpOï)ï\\V~co\\f,-i

For notational simplicity, we are employing the convention of generically de-

noting constants by C, despite the fact that the constant may be larger from

one inequality to the next. Dividing both sides by ||Vfc>||p_1 gives

\\Vco\\p<C(n,p)(Dpco)l

as desired.   D

Remark. Notice that Proposition 4.3 can be immediately strengthened to

W0l'p(r\lR"). Indeed, choosing con £ C^(/\lRn) so that con -► co in Wx>?

and observing that Dp(con) —> Dp(co) gives the desired strengthening.

Proposition 4.5 (Gaffney type inequality). Given y £ M, there is a regular

system, (U, <f> = (x], ..., x")), containing y and a constant, C = Cu(n,p)

(depending on U, dimension and p), satisfying

i^p-= l^ß?)^ <-c\«K.,

for any co £ Wl-P(/\l M) with spt(w) c U.

Proof. Initially choose a system (V, 4> = (x1, ..., xn)) so that g¡j(y) - Sij and

(¡)(V) = B where B is a Euclidean ball centered at (¡>(y) = 0 and gtj are the

components of the metric tensor w.r.t. (f>. We observe that given e > 0 there

is C(e) and 0 < p = p(e) < 1 giving

(4.6)
llE^-^^^ + ̂ ^ + Yc'^^

< e [ \VuCo\p + C(t
Ju

CO

where U = (f>~l(pB), co £ Wl-p(/\lM) with spt(w) c U, the special poly-
nomials ajf, bjJ and clJ were given in §2 and ô denotes the tensor with
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constant components Sfj. To see this estimate, consider

Jf7

I«// - -Wff$f^ + E ̂ H + E is'wtf
1^-^1(3)1^^(1 A2+ \n-^\2)

dx¡ '      ' '     (9xJ

+ EH^II^oo(|0|2 + |a7,|2)

+ Ellc/JH^.oo(|^/|2 + k-1^|2)]^

< K[j \VuCo\p E Wij - flf/WI + ̂  / IVt/tal" + (>/* + **) ^ M>].

Recalling that f7 = 4>~l(pB), we see that the continuity of a\j (g) and conti-

nuity of g along with g(y) = <5 provide for the existence of a small /? > 0 for

which

K - ajf(S)\\u,oo = \\a'if(g) - a\j(ê)\\u,oo < ¿ •

Also, we may choose a small rj > 0 so that Vp < jk ■ Denoting C(e) =

K(np - n~p), we have (4.6).
Now that U is in hand, observe that there is a constant C > 0 so that

To see this estimate, recall from (2.3) that for Euclidean forms we have

Ya'if^mco^djcoj) = \dco\2 + \d*co\2

where 9, denotes the Euclidean partial with respect to the z'th standard basis

vector. This gives

(4.8) /   |Efl"W(ô/W/)(3;ûJy)|5=  i (\dco\2 + \d*co\2)^.
JpB J pB

Now observe that

/BiEtfw&&i«Wj£#Mi&w£rM«

= C, /   |E<(¿)(o/^)/(o;^)y|^

= C, / (|rfa>/ + |¿*a>0|2)t       (by 4.8)
JpB

>C2 I   |V&^|P       (by Proposition 4.3)
JpB

[ |Vt/
./I/

IpB

/(

>c2

>C      Wucof.

Notice that when  C\   and  C were introduced, there was a dependence on

the metric tensor hence on the location of y and when C2 was introduced,
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Proposition 4.3 was used which gives a dependence on dimension and p. Also
observe that we are using the notation w¿ to indicate the 'pullback' of the
form co to Euclidean space via the chart <$> (i.e., co^ is the Euclidean form

with components (co^)¡ = (<«/)</> = co¡ o <f>~x ).

Before giving the final analysis, consider the following LP estimate.

<cEl«//WI / M<04),wm)Ah
JpB

JpB JoBIpB JpB

< CDp(a^)       (by Remark after 4.3)

< C||£U||i,p < oo.

This means | £ai/W§ff fffl^ is an Lp function. Thus we may add and
subtract its LP norm without fear. We are now in position to make the final
string of estimates. First though, keep in mind the following numerical fact.

(4.9) \a + b\r>-\b\r + 2x~r\a\r

for arbitrary real numbers a and b but with r > 0. For completeness, notice

that (4.9) follows by \a\r = \a + b - b\r < (\a + b\ + \b\)r < 2r~l(\a + b\r + \b\r)
for r > 1 and for 0 < r < 1 we can replace 2r_1 with 1. Finally, let us

estimate.

\MP,p - \H\p ■ / \do}\P + lrf*°>r > ci / (\dto\2 + \d*co\2)^

(where Cx = 2l~^ for p > 2 and d = 1 for 1 < p < 2)

^XiE^ÎSSShE^^^-^1 (2-2)
= c^iE(«í/-^))^í^+E^^

»JÍiE4fCDÍ55SH«

tlXj^ + E^WM1   07 4.9)

> C3 / IVi/ûjI" - § / |Vi/tu|' - CHI?       (by 4.6 and 4.7)
Ju l Ju

This gives

||<,p + (Q-i)IMI£>^yjvlHí'-

By factoring a large enough number from the left-hand side, the result follows.
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Proposition 4.10. There is a regular atlas for M, say sf = {(£/,, 4>i)}f={, satis-

fy ing

¡=i JU'

for any co £WX 'P(/\1 M) and some C = C(sf , n, p).

Proof. Using the compactness of M and Proposition 4.5, we may select finitely

many systems {(V¡, (ßi)}^=i and C = C(sf , n, p) > 0 so that

(4.11) / \ViCo\P < C\\œ\\ptp       (V,w.r.t. <f>,)
Jv

for /' = 1, 2, ..., N and any co £ Wx <p(/\l M) with spt (co) C V\. Also, while

choosing the V¡, we can choose open U¡ c V-, and partition of unity {C/}/Li

satisfying:    U U,■■= M, spt (£,-) c V¡   and   d(x) = 1 when  x £ U¡. Now,

/ |V/ta|" = / \Vi(CiC0)\P < f \Vi(dco)\P
JUi Ju¡ JVi

< C / [dco]p       (by (4.11))
JVi

<c[[co]p       (by (2.2)).
Jv,

Thus

N N .

E / \vmp < cE / [^ ^ c / ["ip    (by (2-9))- D
,=i Ju, ,=1 -/K, Jm

An immediate consequence of Proposition 4.10 and the comments following

Definition 3.2 is

Corollary 4.12. Regular atlases yield classical Sobolev space (§3) equivalent to

the geometric one (Definition 3.2).

5. Harmonic fields and Green's operator

Definition 5.1. We define and denote the harmonic l-fields by

M*(/\ m) = \co£w(^\m\ :dco = d*co = 0,

co £ LP  for some 1 < p < oo > .
J

Proposition 5.2. MT(A] M) c C°°(A AO .

Prao/. Let co £ M*(f\l M). Thus there is 1 < p < oo so that co £ LP. Also

î/*ûj = í/w = 0 gives ft) e Wx-P. If p > n then w e C(AJ M) and hence
co £ L2. If p < n then choose r < p so that for some positive integer, say k ,
we have j^ > n . Now co £ U and d*co = dco = 0 imply co £ Wx'r. Since

Corollary 4.12 gives that || • ||i)P is equivalent to the classical Sobolev norm,

we may apply the Sobolev imbedding theorem to get co £ L1 ' ^ . Of course
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we still have d*co = dco — 0 so that co £ Wx'^~r . We repeat this process k

times to get co £ Wx • !?* so that co has a continuous representative and hence

co £ L2. In [M, Chapter 7], it is shown that the L2 harmonic fields are C°°

and we have just observed that Mf c L2   D .

This regularity result reveals that even though we have expanded the space of

forms from C°° to LP , we haven't introduced any new harmonic fields. Con-

sequently, it is classically known that M?(A] M) constitutes a finite dimensional

real vector space.

In analogy with the classical definition of the Dirichlet integral, we define the

Lp-Dirichlet integral by

(5.3) Dp(co)= [ \dco\P + \d*co\P
Jm

and use the 'perp' notation to denote the orthogonal complement of Mf in Lx,

as

(5.4) M"± = {co£Lx : (co, h) = 0 for a\\ h £M*}

Employing only minor modifications of the reasoning in [M, Chapter 7], we see

that

0 <n = inf{Dp(co) : \\co\\p = 1, co £ M*L n Wx •"}

as well as

(5.5) Dp(co) < \\co\\p v < X-^-Dp(co)

i
for ft) € H1- <~\WX'P . This means that D¡¡ is a norm equivalent to || • ||¡ ¡p on

H±n<%r¡,P . But of course the LP norm is equivalent to ||.||i,p on M? c_Wx>p

and (H±r\Wx'P)eM' = WX'P . These facts motivate the following observations

and definition.

Lemma 5.6. For co £ Lx(/\! M) there is unique H(co) £ M' such that

(5.7) (co-H(co),h) = 0      for all h £ ¿P.

Proof. Let {ex, ..., eN} be an orthonormal basis for Mf (in L2 of course).

Set
H(w) = ^2(co,ek)ek

and write h = Y^nk^k > then

(ft) - //(ft)), h) = (ft), «) - (//(ft)) , «) = E(W' ek)hk - E(W' ek">hk = °-

Now if «' = Yjh',ek also satisfies

(ft)-«',«) = 0       forall«€¿r

0 = (ft) - //(ft)), hi - //(&))) - (ft) - «', h' - //(ft)))

= («' - //(ft.), «' - //(ft.)) = ||«' - H(co)\\2 = 0.

Thus, «' = //(ft)).    D
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Definition 5.8. Given co £ Lx, we set //(ft)) to be the unique element of Mf

guaranteed by Lemma 5.6 and refer to //(ft)) as either the harmonic projection

or sometimes the harmonic part of co.

Proposition 5.9 (Harmonic Projection).

(1) H : LP —► Mf is a bounded linear projection (regardless of the norm on
Mf).

(2) Lp = (Lpr\Mf^)®Mf for l<p<oo.
i

(3) For \<p<oo we have that \\H(co)\\p+D£(co) is a norm equivalent to

\\co\\Up on Wx>p = (Wx<pV\MfL)®Mf.

Proof. As discussed after Proposition 5.2, Mf is finite dimensional as a real

vector space. This gives part (1). Part (2) follows since co - (co-H(co)) + H(co)

and if T € Mf^ f\M* then 0 = (t, t) = ||t||2 implies t = 0. For part (3), we

noted in (5.5) that /)/ and || -\\i,p are equivalent norms on Mf1-nWx'p . The

definition of || • ||i yP and M" give that || • 111 ,p = II * \\p on ^ ■ Part (3) is then
a consequence of the inverse function theorem.   D

In [W, Chapter 6], Green's operator is defined as

G : C°° (f\M) ^M*±nC°° (a'^)

by letting G(co) be the unique element of M"±r\C°°(AlM) satisfying Poisson's

equation

(5.10) AG(co) = co - //(ft)).

That there is such a unique operator is part of the Hodge theory and can be

found in any standard reference such as [W]. We would like to define Green's

operator more generally for LP. This work will be broken into the cases of

2 < p < oo and 1 < p < 2 and greatly facilitated by the following information

which can be found in [M, Chapter 7]. We are given an operator Q : L2nM'± —>

Wx'2 Ç^MfL which is rather extensively developed there. Further, for p > 2,

Morrey gives

(5.11) dQ(co), d*Q(co) and Q(co) £ Wx-p'nM'±

and the estimate

(5.12)
\\dd'n((o)h + \\d*dCi(co)\\2 + \\dCi(co)\\2 + \\d*n(co)\\2 + \\Q(co)\\2 < C\\co\\2.

He also shows that Q(co) is the unique form in Wx'pnM'± satisfying

(5.13) AQ(ft)) = ft)       for co £ M*^ n LP       (p>2).

With these facts in hand, we see that we can make the following

Definition 5.14. For p > 2, we define Green's operator

G : L» (A1 Mi* ^Wx'pn MfL
(A*-

by G(co) = Q(ft) - //(ft))), where // is the harmonic projection (see Definition
5.8).

Remark. Notice that <7(ft>) = il(co-H(co)) so that by (5.13) we have AG(co) =

co - //(ft)). By the uniqueness result for Poisson's equation, we find that Defi-

nition 5.14 extends the one given above.
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Proposition 5.15. For p > 2, there is C = C(p) so that

\\dd*il(co)\\p + \\d*dQ(co)\\p + \\dQ(œ)\\p + \}d*Ù(ca% + \\íl(co)\\p < C\\co\\p

for all co £ Lp .

Proof. We apply the closed graph theorem. Let \\co„\\p + \\G(co„) - v\\p —► 0 as

n —► oo. Since LP is imbedded in L2 , we see that \\con\\2 + \\G(con) - v\\2 -> 0
as «-»oo. But now

\\G(con)\\2 = \\G(con-H(con))\\2

< C\\co„ - H(con)\\2       (by 5.12)

< C(||ft)„||2 + ||//(ft)n)||2)       (by triangle inequality)

< C\\co„\\2       (by 5.9)

—> 0 as « —> oo.

Thus v = 0 and so the closed graph theorem says that G is bounded. We

repeat this argument for d*dG, dd*G, dG and d*G to finish the proof.   D

We will observe that for p < 2, we have Proposition 5.15 as well. In prepa-

ration for the next result, we recall that for smooth forms, Green's operator

commutes with anything the Laplacian does (e.g., d* and d, see [W]) and is

selfadjoint. In particular, when n, co £ C°°(/\' M), we have

'(G(n),co) = (n,G(co)),

(5.16) I       dG(r,) = Gd(n),
d*G(co) = Gd*(co).

Proposition 5.17. For 1 < p < 2, there is C = C(p) so that

\\dd*a(œ)\\p + \\d*dQ(co)\\p + \\dC¿(co)\\p + ||¿*£2(íu)||, + \\a(œ)\\p < C\\co\\p

for all co £ C°° .

Proof. Set n„ = G(co)(\G(co)\2 + ^)^ and observe that nn £ C°° . Also notice

that by the Lebesgue Dominated Convergence Theorem (LDCT),

(5.18) hn\\qq^\\G(o))\\Pp       as«-oo.

Next, observe that \(G(co), nn)\ increases to ||C7(ft))||£ (again by the LDCT).
Thus, given e > 0, we may select a large positive integer, say TV, so that for

« > N we have ||(7(ft))||£ < \(G(co), nn)\ + e . Now we have

||G(ft))||^<|(G(ft)),//„)| + e

= \(co,G(nn))\ + e (by 5.16)

<\\o)\\P\\G(nn)\\q + e (by Holder)

<C\\co\\p\\nn\\q + e (by 5.15)

-C||ft)||p||C7(ft.)||?'+e       (by 5.18),

Thus, letting e —► 0, we see

(5.19) ||G(ft»)||^<C||ft)||p||G(ft))|||.
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£
Under the assumption that ||C7(ft>)||p > 0, dividing 5.19 by ||G(<w)||/ gives

(5.20) \\G(co)\\p < C\\co\\p.

Of course, when ||G(<u)||p = 0, we see that (5.20) is immediate. Next, we set

n„ = dG(co)(\dG(co)\2 + i)2^ . As above, r¡„ £ C°° and by the LDCT,

(5.21) \\nn\\l^\\dG(co)\\Pp       as «^oo.

Again we observe that \(dG(co), n„)\ increases to ||ú?c7(ft))||p by the LDCT.
Thus, given e > 0, we may select a large positive integer, say N, so that for

n > N we have ||¿G(<u)||^ < \(dG(co), n„)\ + e. Now we have

||¿G(ft.)||£<|(¿C7(ft)),M„)| + e

= \(co,G(d*nn))\ + e       (by 2.8 and 5.16)

< \\co\\p\\G(d*nn)\\q + e       (by Holder)

< Cllwllpll^ll, + e       (by 5.15 and 5.16)

-C||ft>U¿G(ft.)||f+e       (by 5.21).

Thus, as argued above we have the following analogue to (5.20)

(5.22) ||dG(û>)||„<C|M|p.

Finally, setting

rln = d*G(o))(\d*G(o))\2 + )i)^,

nn = dd*G(co)(\dd*G(0))\2 + i)V

nn a d*dG(co)(\d*dG(co)\2 + -\*?
n

in turn, we argue analogously to obtain

||rf*G(ft.)||<C||ft)||p,

\\dd*G(o))\\<C\\co\\p,

\\d*dG(co)\\ <C\\co\\p.

These inequalities, together with (5.20) and (5.22) give (5.17).   G

Notice that §4 (e.g. Corollary 4.12) and Proposition 5.17 guarantee that G

is a bounded linear operator of C°° (as a subspace of Lp ) into W2>p ^Mf1-.

This allows us to give

Definition 5.23. For 1 < p < 2, we define Green's operator

G:Lp (¡\m\ -.f2^/1

to be the unique bounded linear extension guaranteed by the density of C°° in

LP and the boundedness of G into W2-p nMf1-.

Observe that for any co £ Lp(/\lM)  and any n £ Lg(/\lM)  with p, q

Holder conjugate indices, we have

(5.24) (G(co),n) = (co,G(n)).
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The verification of (5.24) is a standard density argument using (5.16). Of
course, selfadjointness is not the only useful property which is preserved by

our extension of Green's operator to LP . Indeed, we will use that G and A

commute when operating on sufficiently smooth forms. This fact, together with

(5.24), reveals that for co £ LP(f\l M) and n £ C°°(A/ M), we have

(5.25) (AG(co),n) = (co,AG(n))

6. Lp-Hodge Decomposition

Proposition 6.1. For 1 < p < oo and co £ LP(AJ M), we have AG(co) = co -

//(ft.).

Proof. Let con £ C°° satisfy: \\co - con\\p —» 0 as « —» oo. According to the

Remark following Definition 5.14,

(6.2) AG(n) = n - H(n)

when n £ C°° . Since H is LP bounded, we see that AG(con) -* co-//(ft)) in

LP . Of course, this strong convergence implies weak convergence. We will now

show that AG(con) —> AG(co) weakly in LP . By the uniqueness of weak limits

we will then be done.

Let r\n £ C°° satisfy:  \\n„ - n\\q —► 0 as n-»oo. Now

\(AG(con) - AG(co), n)\ = \(AG(con - co), r¡)\

= \(AG(con - ft)), n - nk) + (con - co, AG(nk))\    (by 5.25)

< \\AG(con - co)\\p\\n - nk\\q + \\con - û>y|AG(ifc)||,

< \\AG(con - co)\\p\\r] - nk\\q + \\con - co\\p\\nk - H(nk)\\q .

Now letting k -* oo gives

\(AG(con) - AG(co), n)\ < C\\con - co\\p ̂ 0 as « -> oo.

As discussed, this settles the issue.   D

Lemma 6.3. If a £ WX^(A]~X M), ß £ Wx'p(/\!+x M) and h £ M* satisfy
0 = da + d*ß + h, then 0 = da = d*ß = h .

Proof. Let 4> £ C°°(/\' M). According to the C°°-Hodge Decomposition, there

are r\ e C°°(A/-1), co £ C°°(/\l+l M) and t £ Mf satisfying

d> = dn + d*co + x.

Notice that (d*ß, dn) = (ß, ddn) = (ß, 0) = 0 and («, dn) = (d*h , n) = 0
thanks to the duality between d and d*. Linearity then gives

(6.4) (da,dn) = (da + d*ß + h, dn) = (0,dn) = 0.

Finally, we have

(da, 4>) = (da, dn) + (da, d*co) + (da, t)

= 0 + (a,d*d*co) + (a,dr)       (by 6.4)

= (a,0) + (a,0)       (since d*d* = 0 and x £ M*)

= 0.
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Since C°°(/\'M) is dense in Lq(/\!M) for p,q Holder conjugate and <j> was
arbitrary, we see that da = 0. Analogously, we see that d* ß = 0 and it follows

that « = 0.   D

Proposition 6.5 (The LP Hodge Decomposition). Let M be a compact, ori-

entable, C°°, Riemannian manifold without boundary and 1 < p < oo. We

have

(1) LP(/\lM) = AG(LP) (SM* = dd*G(LP)®d*dG(LP)®M'
(1 <l<dim(M)).

(2) dWx '"(A/_1 M) = dd*G(LP) and d*Wx>p(f\l+l M) = d*dG(Lp).

Specifically, co = AG(co) + H(co) for co £ Lp(/\!M), where G is Green's oper-
ator and H is harmonic projection.

Proof. Proposition 6.1 says that AG(co) = co- H(co). Adding //(ft)) to both
sides of this equation and using the definition of A reveals that

(6.6) co = dd*G(co) + d*dG(co) + H(co).

Since dd'G(LP) c dWx-P(A[~x M) and d*dG(LP) c d*Wx'P(A¡+x M), the

uniqueness result (Lemma 6.3) and (6.6) give (1). For part (2), let co £

Wx'P(f\'~xM). Part (1) gives

dco = da + d*ß + H(dco)

where a = d*G(dco) and ß = dG(dco). Now Lemma 6.3 says d*ß = H(dco) =

0 so that da = dco£ dd*G(Lp) as desired. The equality d*Wx-p(/\'+x M) =
d*dG(Lp) is verified by analogous reasoning.   D

Notice that we can make some geometric statements here. In particular,

if dco £ dWx-P(f\'-x M) and d*n £ dWx-"(/\l+x M) for 1 < p,q < oo

and p, q Holder conjugate, then (dco, d*n) = 0. This expresses the fact that

dWx'P(l^~x M) and d*Wx^(/\l+x M) are 'orthogonal' in some reasonable

sense. It is provocative to reason that 0 = (dco, d*n) by using the duality

relationship between d and d* to write

(6.7) (dco,d*n) = (ddco,n) = (0,n) = 0.

Unfortunately, dco may only be in Lp(/\l M) at best. Thus, without using the

general notion of distributions throughout this paper, applying d to dco may

not be possible. Fortunately though, the Meyers and Serrin density result gives

a sequence, con £ C°°(/^~x M), which approximates co in Wx'p(/\l~x M).

This means, in particular, that dco„ approximates dco in Lp(f\l M). Since

(6.7) is valid for con , we may write

\(dco, d*n)\ = \(dco, d*n) - (dcon, d*n)\

= \(dco-dcon,d*n)\

< \\dco - dcon\\n\\d*n\\a —► 0 as « -» oo.
M Mf   II fill

We summarize this reasoning in
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Proposition 6.8. For co £ Wx -p(f\l~l M), n £ Wx>i(f\'+X M), 1 < p, q < oo

and p, q Holder conjugate, we have (dco, d*n) = 0 (i.e., dWx'p(A^~x M) is

'orthogonal' to d*Wx'"(/\'+x M) ).

There is some nice terminology here. We refer to the forms in

dWx>P(f\l~x M) as exact LP forms and those in d*Wx<p(Al+xM) as coex-

act LP forms. In order for co £ C°° to be closed, it is equivalent to check that
(ft), d*n) = 0 for all n £ C°° . Fortunately, this distributional understanding of

closed is available for the LP forms and Proposition 6.8 reveals that the closed

LP forms are exactly those in dWx'p(f\l~x M) ® Mf. Similarly, the coclosed

LP forms are exactly those in d*Wx 'p(f\'+x M)®Mf .

7. Applications to nonlinear analysis and the calculus
OF VARIATIONS

Proposition 7.1. dWx 'p(f\'~l M) and d*Wx-P(f\l+x M) are closed subspaces

ofLP(/\lM) for \<p<oo.

Proof. Let v £ C\u>(dWx-p). This means there are co„ £ C°° satisfying

\\dco„ - v\\p -> 0 as n-»oo. The LP -Hodge Decomposition says co„ = an + k„

where dk„ = 0 and a„ £ d*C°° . We have

IM?,, < CDp(an)        (5.5)

= C\\dan\\p        (d*d*=0)

= C\\dcon\\p       (dkn = 0)

< CK       (K > 0, independent of «).

But since Wx>p is a reflexive Banach space (w.r.t. Sobolev norm), there is

a (Sobolev) weakly convergent subsequence of an . For notational simplicity,

denote the subsequence again by a„ and say an —> a weakly in Wx'p . Now

|| -Up is (LP) weakly lower semicontinuous and d is continuous from (Wx 'p ,

weak) to (Lp , weak ). Consequently we have

||¿/a-í;||p<liminf||fi?an-í;||p

= lim inf 11^-^11^ = 0.

Thus da — v and dWx p is closed in LP . Precisely analogous arguments give

that d*Wx'P is closed in LP .   □

TT  •       .u- U 1Using this result, we may also give

Proposition 7.2. Let dWx-P(f\'~x M) and dWx^(/\'~[ M) be regarded as sub-

spaces of Lp(/\' M) and Lq(/\l M) respectively, where 1 < p, q < oo and p, q

are Holder conjugate. The linear transformation

i-\ /-i
<t>:dWx'q(f\     M)^dWx'p(/\     M)*

given by

fp(dn)(dco) = (dco,dn)

is a Banach space isomorphism. Here, dWx'p(/\'~l M)* denotes the dual of

d^T^ 'P(A     M)
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Proof. First of all, notice dWx<P(/\'~x M) and dWx^(f\'~x M) are indeed

reflexive Banach spaces since Proposition 7.1 gives that they are closed in LP

and LP respectively. Linearity of <I> is obvious. For injectivity, suppose

(da,dn) = 0 for all a £ Wx'P(/\'~x M) and some n £ Wx^(/\'~x M). Let t

be an arbitrary element of Lp(/\l M). According to the //-Hodge Decompo-

sition, we may write x — da + d* ß + « . This gives

(x,dn) = (da + d*ß + h,dn)

= (da, dn) + (d*ß, dn) + (h, dn)

= 0 + (d*ß,dn) + (h,dn)

= 0 + («, dn)       (by Proposition 6.8)

= 0       (since dn£M'-L).

This is enough to conclude that the LP form dn is 0. It follows that <P is in-

jective. To get surjectivity, let F £ dWx'p(f\l~x M)*. The Hahn-Banach The-

orem says that there is F £ Lp(f\ M)* with ||F|| = ||F|| and F\dW\.P^t-\M^ =

F. The Riesz representation theorem for LP gives y £ L9(/\l M) satisfying

F(co) — (co, y). It is then our job to show that when we restrict F to exact

LP forms, there is an exact Lq form which can be used in place of y. Again,

by the L^-Hodge Decomposition, we can write y = da + d*ß + h . For any

dco £ dWl -"(A'-1 M), this gives

F (dco) = (dco, y) = (dco, da) + (dco, d* ß) + (dco, h) = (dco, da)

= 4>(da)(dco).

Thus, 0(i/a) = F and <P is surjective. If we verify that 0 is bounded then by

the Inverse Function Theorem, we will be done. But this boundedness is clear

since by Holder's inequality we have

\(dn,dco)\<\\dn\\q\\dco\\p       (i.e., ||<D|| < 1).   D

We turn now to the study of (homogeneous) ^-harmonic equations,

(7.4) d*A(du) = 0

where A is a monotone bundle mapping from A' M into itself. That is to say

that A satisfies

(1) \A(C)-A(^)\<K(\C\ + \è\)P-2\i:-^,
(2) (A(Q - A(Z) \C-0> ¿(ICI + líl)p-2K -1\2 ,
(3) A(Q)£L«(h!M),

where 1 < p, q < oo are Holder conjugate, £ and £ are arbitrary elements

from the same fiber of A' M and b°th Ä^ and k are independent of C and

£. Of course, A(du)(x) = A(du(x)) and d*A(du) - 0 is meant in the dis-

tributional sense. Making (7.4) nonhomogeneous does not dramatically in-

crease the complexity of the problem and will be dealt with more thoroughly

in work to appear elsewhere. Also observe that conditions (1) and (3) give that
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A(co) £ L«(A' M) for any co £ LP(/\l M). Indeed,

/ \A(co)\«= f \A(co) - A(0) + A(0)\«
Jm Jm

<2«M(0)||J + 2«/ \A(co)-A(0)\"
Jm

< 29\\A(0)\\< + 2«K [ (\co\P-2\co\y       (by condition (1))
Jm

m

¡M

= 21^(0)||«+ 2«/qft>||£< ex,.

This study is well motivated by the fact that for a large class of bundle maps

W : f\ M -* f\ M

/[«] = [ W(du).
Jm

there exist such A for which solving the .4-harmonic equation (7.4) is equiva

lent to minimizing the associated functional

M

A familiar special case is the p-harmonic example where W(du) = \du - a\p

for a fixed LP form a . In this case, the classical Euler-Lagrange equation yields

A(Q = |C - a\P-2(C - a).
According to the //-Hodge Decomposition (i.e., Proposition 6.5), we have

L"(A' M) = dWx^((\X M) e d*Wx>«(f\X M)®Mf.

For the purpose of effectively exploiting this decomposition, we define T to

be the projection of LP onto dWx'q . Precisely, if co = da + d*ß + « where

a£Wx'"(t\l~x M), ß £WX>*(A!+X M) and /zeX,then

(7.5) T(co) = da.

We restrain ourselves from a thorough development of this operator and explore

only those properties which will be immediately useful. The most apparent

property of T is that it is a bounded linear projection of Lq with the coclosed

forms as its kernel and the exact forms as its range. A slightly less obvious prop-

erty of T is that when TA(du) — 0, then « is a solution of the ^-harmonic

equation (7.4). Indeed, for such u, A(du) is coclosed giving (A(du), dco) = 0

for any co £ Wx'p(f\~ M), which is precisely what it means for u to solve

d*A(du) = 0 in the distributional sense. As we will now demonstrate, we can

do even better. To be precise, we will show that

(7.6) TA(dWx'p(J^~X M)) = dWx^(f\~X M).

Since Proposition 7.2 gives (dWx p)* = dWx<q , it is natural to use Browder's

theory to verify the surjection (7.6). Perhaps now it is more or less apparent

why conditions (1) and (2) were imposed since, when we view TA as an op-

erator from dWx'p(t\~x M) to dWx-q(t\~x M), they will yield that TA is
monotone, continuous and coercive. Indeed, continuity follows from condi-

tion (1) and the boundedness of T. Next, Propositions 6.5 and 6.8 give that
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A(dco) = TA(dco) + K where (k , dn) = 0 for every n £ Wx-p(/\1~x M). Thus,

for all ft), n £ Wx'P(/\'~1 M), we have

(7.7) (TA(dco),dn) = (A(dco),dn).

We then argue that

(TA(dco) - TA(du) \ dco - du) = (A(dco) - A(du) \ dco - du)       (by 7.7)

= / (A(dco) - A(du) | dco - du)
Jm>M

>
>M

k [ (\dco\ + \du\)P-2\dco - du\2 > 0
Jm

which is exactly monotonicity for the operator TA.   For coercivity, observe

that

(TA(dco) | dco) _ (TA(0) | dco) _ (A(dco) - A(0) \ dco)

\\dco\\p \\dco\\p \\dco\\p (by   ■ }

= fM(A(dco)-A(0)\dco-0)

\\dco\\p

f   \dco\P
> k»l   n (by condition (2))

\\dco\\p

= k\\dco\\Pp~x.

(TA(dco)   dco)     (TA(0)   dco)
-   ,- --;——- -* 00

\\dco\\p \\dco\\p

as ||i/ft)||p —* oo. Further,

|(7V1(0) | dco)\      (A(0) | dco)        _    , n,
(by 7.7)

\\dco\\p \\dco\\p
< ||^(0)||9       (by Holder's inequality).

It follows that
(TA(dco) | dco)

\\dco\\p

as ||i/ft)||p —► oo. According to Browder's theory (see for example [Z]), TA

is surjective. As discussed, this gives the existence of a solution to the A-

harmonic equation (7.4). Finally, the estimates given above for monotonicity

of TA reveal that the solution is unique up to a closed Lp form.
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